int soidDoit(limnObject *obj, int look, int gtype, float gamma, int res, float AB[2], float ten[7]) { int partIdx, axis; float cl, cp, qA, qB, eval[3], evec[9], matA[16], matB[16]; if (AB) { qA = AB[0]; qB = AB[1]; axis = 2; } else { tenEigensolve_f(eval, evec, ten); ELL_SORT3(eval[0], eval[1], eval[2], cl); cl = (eval[0] - eval[1])/(eval[0] + eval[1] + eval[2]); cp = 2*(eval[1] - eval[2])/(eval[0] + eval[1] + eval[2]); if (cl > cp) { axis = 0; qA = pow(1-cp, gamma); qB = pow(1-cl, gamma); } else { axis = 2; qA = pow(1-cl, gamma); qB = pow(1-cp, gamma); } /* fprintf(stderr, "eval = %g %g %g -> cl=%g %s cp=%g -> axis = %d\n", eval[0], eval[1], eval[2], cl, cl > cp ? ">" : "<", cp, axis); */ } if (tenGlyphTypeBox == gtype) { partIdx = limnObjectCubeAdd(obj, look); } else if (tenGlyphTypeSphere == gtype) { partIdx = limnObjectPolarSphereAdd(obj, look, 0, 2*res, res); } else { partIdx = limnObjectPolarSuperquadAdd(obj, look, axis, qA, qB, 2*res, res); } ELL_4M_IDENTITY_SET(matA); ELL_4V_SET(matB + 0*4, eval[0], 0, 0, 0); ELL_4V_SET(matB + 1*4, 0, eval[1], 0, 0); ELL_4V_SET(matB + 2*4, 0, 0, eval[2], 0); ELL_4V_SET(matB + 3*4, 0, 0, 0, 1); ELL_4M_SCALE_SET(matB, eval[0], eval[1], eval[2]); ell_4m_post_mul_f(matA, matB); ELL_4V_SET(matB + 0*4, evec[0 + 0*3], evec[0 + 1*3], evec[0 + 2*3], 0); ELL_4V_SET(matB + 1*4, evec[1 + 0*3], evec[1 + 1*3], evec[1 + 2*3], 0); ELL_4V_SET(matB + 2*4, evec[2 + 0*3], evec[2 + 1*3], evec[2 + 2*3], 0); ELL_4V_SET(matB + 3*4, 0, 0, 0, 1); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); return partIdx; }
int main(int argc, const char *argv[]) { const char *me; char *err, *outS; float p[3], q[4], mR[9], eval[3]={0,0,0}, scale[3], len, sh, cl, cp, qA, qB; float matA[16], matB[16], os, rad, AB[2]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookRod, lookSoid; int partIdx=-1; /* sssh */ int res, axis, sphere; FILE *file; me = argv[0]; hestOptAdd(&hopt, "sc", "scalings", airTypeFloat, 3, 3, scale, "1 1 1", "axis-aligned scaling to do on ellipsoid"); hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan", "Directly set the A, B parameters to the superquadric surface, " "over-riding the default behavior of determining them from the " "scalings \"-sc\" as superquadric tensor glyphs"); hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1", "over-all scaling (multiplied by scalings)"); hestOptAdd(&hopt, "sh", "superquad sharpness", airTypeFloat, 1, 1, &sh, "0", "how much to sharpen edges as a " "function of differences between eigenvalues"); hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL, "use a sphere instead of a superquadric"); hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0", "location in quaternion quotient space"); hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015", "black axis cylinder radius (or 0.0 to not drawn these)"); hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25", "tesselation resolution for both glyph and axis cylinders"); hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off", "output file to save OFF into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); mop = airMopNew(); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); obj = limnObjectNew(100, AIR_FALSE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); /* create limnLooks for ellipsoid and for rods */ lookSoid = limnObjectLookAdd(obj); look = obj->look + lookSoid; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 0.2, 0.8, 0); look->spow = 0; lookRod = limnObjectLookAdd(obj); look = obj->look + lookRod; ELL_4V_SET(look->rgba, 0, 0, 0, 1); ELL_3V_SET(look->kads, 1, 0, 0); look->spow = 0; ELL_4V_SET(q, 1, p[0], p[1], p[2]); ELL_4V_NORM(q, q, len); ell_q_to_3m_f(mR, q); if (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) { qA = AB[0]; qB = AB[1]; axis = 2; } else { ELL_3V_SCALE(scale, os, scale); ELL_3V_COPY(eval, scale); ELL_SORT3(eval[0], eval[1], eval[2], cl); cl = (eval[0] - eval[1])/(eval[0] + eval[1] + eval[2]); cp = 2*(eval[1] - eval[2])/(eval[0] + eval[1] + eval[2]); if (cl > cp) { axis = ELL_MAX3_IDX(scale[0], scale[1], scale[2]); qA = pow(1-cp, sh); qB = pow(1-cl, sh); } else { axis = ELL_MIN3_IDX(scale[0], scale[1], scale[2]); qA = pow(1-cl, sh); qB = pow(1-cp, sh); } /* fprintf(stderr, "eval = %g %g %g -> cl=%g %s cp=%g -> axis = %d\n", eval[0], eval[1], eval[2], cl, cl > cp ? ">" : "<", cp, axis); */ } if (sphere) { partIdx = limnObjectPolarSphereAdd(obj, lookSoid, 0, 2*res, res); } else { partIdx = limnObjectPolarSuperquadAdd(obj, lookSoid, axis, qA, qB, 2*res, res); } ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, scale[0], scale[1], scale[2]); ell_4m_post_mul_f(matA, matB); ELL_43M_INSET(matB, mR); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); if (rad) { partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, (1+eval[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, -(1+eval[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, (1+eval[1])/2, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, -(1+eval[1])/2, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, (1+eval[2])/2); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, -(1+eval[2])/2); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); } file = airFopen(outS, stdout, "w"); airMopAdd(mop, file, (airMopper)airFclose, airMopAlways); if (limnObjectWriteOFF(file, obj)) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } airMopOkay(mop); return 0; }
int main(int argc, const char *argv[]) { const char *me; char *err, *outS; double eval[3], matA[9], matB[9], sval[3], uu[9], vv[9], escl[5], view[3]; float matAf[9], matBf[16]; float pp[3], qq[4], mR[9], len, gamma; float os, vs, rad, AB[2], ten[7]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookRod, lookSoid; float kadsRod[3], kadsSoid[3]; int gtype, partIdx=-1; /* sssh */ int res; FILE *file; me = argv[0]; hestOptAdd(&hopt, "sc", "evals", airTypeDouble, 3, 3, eval, "1 1 1", "original eigenvalues of tensor to be visualized"); hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan", "Directly set the A, B parameters to the superquadric surface, " "over-riding the default behavior of determining them from the " "scalings \"-sc\" as superquadric tensor glyphs"); hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1", "over-all scaling (multiplied by scalings)"); hestOptAdd(&hopt, "vs", "view-dir scaling", airTypeFloat, 1, 1, &vs, "1", "scaling along view-direction (to show off bas-relief " "ambibuity of ellipsoids versus superquads)"); hestOptAdd(&hopt, "es", "extra scaling", airTypeDouble, 5, 5, escl, "2 1 0 0 1", "extra scaling specified with five values " "0:tensor|1:geometry|2:none vx vy vz scaling"); hestOptAdd(&hopt, "fr", "from (eye) point", airTypeDouble, 3, 3, &view, "4 4 4", "eye point, needed for non-unity \"-vs\""); hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1, &gamma, "0", "how much to sharpen edges as a " "function of differences between eigenvalues"); hestOptAdd(&hopt, "g", "glyph shape", airTypeEnum, 1, 1, >ype, "sqd", "glyph to use; not all are implemented here", NULL, tenGlyphType); hestOptAdd(&hopt, "pp", "x y z", airTypeFloat, 3, 3, pp, "0 0 0", "transform: rotation identified by" "location in quaternion quotient space"); hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015", "black axis cylinder radius (or 0.0 to not drawn these)"); hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25", "tesselation resolution for both glyph and axis cylinders"); hestOptAdd(&hopt, "pg", "ka kd ks", airTypeFloat, 3, 3, kadsSoid, "0.2 0.8 0.0", "phong coefficients for glyph"); hestOptAdd(&hopt, "pr", "ka kd ks", airTypeFloat, 3, 3, kadsRod, "1 0 0", "phong coefficients for black rods (if being drawn)"); hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off", "output file to save OFF into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); mop = airMopNew(); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); obj = limnObjectNew(1000, AIR_TRUE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); if (!( 0 == escl[0] || 1 == escl[0] || 2 == escl[0] )) { fprintf(stderr, "%s: escl[0] %g not 0, 1 or 2\n", me, escl[0]); airMopError(mop); return 1; } if (!(tenGlyphTypeBox == gtype || tenGlyphTypeSphere == gtype || tenGlyphTypeSuperquad == gtype)) { fprintf(stderr, "%s: got %s %s, but here only do %s, %s, or %s\n", me, tenGlyphType->name, airEnumStr(tenGlyphType, gtype), airEnumStr(tenGlyphType, tenGlyphTypeBox), airEnumStr(tenGlyphType, tenGlyphTypeSphere), airEnumStr(tenGlyphType, tenGlyphTypeSuperquad)); airMopError(mop); return 1; } /* create limnLooks for glyph and for rods */ lookSoid = limnObjectLookAdd(obj); look = obj->look + lookSoid; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_COPY(look->kads, kadsSoid); look->spow = 0; lookRod = limnObjectLookAdd(obj); look = obj->look + lookRod; ELL_4V_SET(look->rgba, 0, 0, 0, 1); ELL_3V_COPY(look->kads, kadsRod); look->spow = 0; ELL_3M_IDENTITY_SET(matA); /* A = I */ ELL_3V_SCALE(eval, os, eval); ELL_3M_SCALE_SET(matB, eval[0], eval[1], eval[2]); /* B = diag(eval) */ ell_3m_post_mul_d(matA, matB); /* A = B*A = diag(eval) */ if (0 == escl[0]) { scalingMatrix(matB, escl + 1, escl[4]); ell_3m_post_mul_d(matA, matB); } if (1 != vs) { if (!ELL_3V_LEN(view)) { fprintf(stderr, "%s: need non-zero view for vs %g != 1\n", me, vs); airMopError(mop); return 1; } scalingMatrix(matB, view, vs); /* the scaling along the view direction is a symmetric matrix, but applying that scaling to the symmetric input tensor is not necessarily symmetric */ ell_3m_post_mul_d(matA, matB); /* A = B*A */ } /* so we do an SVD to get rotation U and the scalings sval[] */ /* U * diag(sval) * V */ ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE); /* fprintf(stderr, "%s: ____________________________________\n", me); fprintf(stderr, "%s: mat = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: uu = \n", me); ell_3m_print_d(stderr, uu); ELL_3M_TRANSPOSE(matC, uu); ELL_3M_MUL(matB, uu, matC); fprintf(stderr, "%s: uu * uu^T = \n", me); ell_3m_print_d(stderr, matB); fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]); fprintf(stderr, "%s: vv = \n", me); ell_3m_print_d(stderr, vv); ELL_3M_MUL(matB, vv, vv); fprintf(stderr, "%s: vv * vv^T = \n", me); ELL_3M_TRANSPOSE(matC, vv); ELL_3M_MUL(matB, vv, matC); ell_3m_print_d(stderr, matB); ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ell_3m_pre_mul_d(matA, vv); fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me); */ /* now create symmetric matrix out of U and sval */ /* A = I */ ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); /* A = A*U = I*U = U */ ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); /* B = diag(sval) */ ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval) */ ELL_3M_TRANSPOSE(matB, uu); ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval)*U^T */ TEN_M2T(ten, matA); partIdx = soidDoit(obj, lookSoid, gtype, gamma, res, (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL, ten); if (1 == escl[0]) { scalingMatrix(matB, escl + 1, escl[4]); ELL_43M_INSET(matBf, matB); limnObjectPartTransform(obj, partIdx, matBf); } /* this is a rotate on the geomtry; nothing to do with the tensor */ ELL_4V_SET(qq, 1, pp[0], pp[1], pp[2]); ELL_4V_NORM(qq, qq, len); ell_q_to_3m_f(mR, qq); ELL_43M_INSET(matBf, mR); limnObjectPartTransform(obj, partIdx, matBf); if (rad) { partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, (1+eval[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, -(1+eval[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+eval[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+eval[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+eval[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+eval[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); } file = airFopen(outS, stdout, "w"); airMopAdd(mop, file, (airMopper)airFclose, airMopAlways); if (limnObjectWriteOFF(file, obj)) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } airMopOkay(mop); return 0; }
int main(int argc, const char *argv[]) { const char *me; char *err, *outS; double scale[3], matA[9], matB[9], matC[9], sval[3], uu[9], vv[9]; float matAf[9], matBf[16]; float p[3], q[4], mR[9], len, gamma; float os, vs, rad, AB[2], ten[7], view[3]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookRod, lookSoid; int partIdx=-1; /* sssh */ int res, sphere; FILE *file; me = argv[0]; hestOptAdd(&hopt, "sc", "scalings", airTypeDouble, 3, 3, scale, "1 1 1", "axis-aligned scaling to do on ellipsoid"); hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan", "Directly set the A, B parameters to the superquadric surface, " "over-riding the default behavior of determining them from the " "scalings \"-sc\" as superquadric tensor glyphs"); hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1", "over-all scaling (multiplied by scalings)"); hestOptAdd(&hopt, "vs", "over-all scaling", airTypeFloat, 1, 1, &vs, "1", "scaling along view-direction (to show off bas-relief " "ambibuity of ellipsoids versus superquads)"); hestOptAdd(&hopt, "fr", "from (eye) point", airTypeFloat, 3, 3, &view, "4 4 4", "eye point, needed for non-unity \"-vs\""); hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1, &gamma, "0", "how much to sharpen edges as a " "function of differences between eigenvalues"); hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL, "use a sphere instead of a superquadric"); hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0", "location in quaternion quotient space"); hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015", "black axis cylinder radius (or 0.0 to not drawn these)"); hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25", "tesselation resolution for both glyph and axis cylinders"); hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off", "output file to save OFF into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); mop = airMopNew(); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); obj = limnObjectNew(1000, AIR_TRUE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); /* create limnLooks for ellipsoid and for rods */ lookSoid = limnObjectLookAdd(obj); look = obj->look + lookSoid; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 0.2, 0.8, 0); look->spow = 0; lookRod = limnObjectLookAdd(obj); look = obj->look + lookRod; ELL_4V_SET(look->rgba, 0, 0, 0, 1); ELL_3V_SET(look->kads, 1, 0, 0); look->spow = 0; ELL_3M_IDENTITY_SET(matA); ELL_3V_SCALE(scale, os, scale); ELL_3M_SCALE_SET(matB, scale[0], scale[1], scale[2]); ell_3m_post_mul_d(matA, matB); if (1 != vs) { ELL_3V_NORM(view, view, len); if (!len) { /* HEY: perhaps do more diplomatic error message here */ fprintf(stderr, "%s: stupido!\n", me); exit(1); } ELL_3MV_OUTER(matB, view, view); ELL_3M_SCALE(matB, vs-1, matB); ELL_3M_IDENTITY_SET(matC); ELL_3M_ADD2(matB, matC, matB); ell_3m_post_mul_d(matA, matB); } ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE); /* fprintf(stderr, "%s: ____________________________________\n", me); fprintf(stderr, "%s: mat = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: uu = \n", me); ell_3m_print_d(stderr, uu); ELL_3M_TRANSPOSE(matC, uu); ELL_3M_MUL(matB, uu, matC); fprintf(stderr, "%s: uu * uu^T = \n", me); ell_3m_print_d(stderr, matB); fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]); fprintf(stderr, "%s: vv = \n", me); ell_3m_print_d(stderr, vv); ELL_3M_MUL(matB, vv, vv); fprintf(stderr, "%s: vv * vv^T = \n", me); ELL_3M_TRANSPOSE(matC, vv); ELL_3M_MUL(matB, vv, matC); ell_3m_print_d(stderr, matB); ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ell_3m_pre_mul_d(matA, vv); fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me); */ ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ELL_3M_TRANSPOSE(matB, uu); ell_3m_pre_mul_d(matA, matB); TEN_M2T(ten, matA); partIdx = soidDoit(obj, lookSoid, sphere, gamma, res, (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL, ten); ELL_4V_SET(q, 1, p[0], p[1], p[2]); ELL_4V_NORM(q, q, len); ell_q_to_3m_f(mR, q); ELL_43M_INSET(matBf, mR); limnObjectPartTransform(obj, partIdx, matBf); if (rad) { partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, (1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, -(1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); } file = airFopen(outS, stdout, "w"); airMopAdd(mop, file, (airMopper)airFclose, airMopAlways); if (limnObjectWriteOFF(file, obj)) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } airMopOkay(mop); return 0; }
int main(int argc, char *argv[]) { char *me, *err, *outS; limnCamera *cam; float matA[16], matB[16], winscale, edgeWidth[5]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookIdx; limnWindow *win; int partIdx, wire, concave; Nrrd *nmap; mop = airMopNew(); cam = limnCameraNew(); airMopAdd(mop, cam, (airMopper)limnCameraNix, airMopAlways); me = argv[0]; hestOptAdd(&hopt, "fr", "from point", airTypeDouble, 3, 3, cam->from,"4 4 4", "position of camera, used to determine view vector"); hestOptAdd(&hopt, "at", "at point", airTypeDouble, 3, 3, cam->at, "0 0 0", "camera look-at point, used to determine view vector"); hestOptAdd(&hopt, "up", "up vector", airTypeDouble, 3, 3, cam->up, "0 0 1", "camera pseudo-up vector, used to determine view coordinates"); hestOptAdd(&hopt, "rh", NULL, airTypeInt, 0, 0, &(cam->rightHanded), NULL, "use a right-handed UVN frame (V points down)"); hestOptAdd(&hopt, "or", NULL, airTypeInt, 0, 0, &(cam->orthographic), NULL, "use orthogonal projection"); hestOptAdd(&hopt, "ur", "uMin uMax", airTypeDouble, 2, 2, cam->uRange, "-1 1", "range in U direction of image plane"); hestOptAdd(&hopt, "vr", "vMin vMax", airTypeDouble, 2, 2, cam->vRange, "-1 1", "range in V direction of image plane"); hestOptAdd(&hopt, "e", "envmap", airTypeOther, 1, 1, &nmap, NULL, "16checker-based environment map", NULL, NULL, nrrdHestNrrd); hestOptAdd(&hopt, "ws", "winscale", airTypeFloat, 1, 1, &winscale, "200", "world to points (PostScript) scaling"); hestOptAdd(&hopt, "wire", NULL, airTypeInt, 0, 0, &wire, NULL, "just do wire-frame rendering"); hestOptAdd(&hopt, "concave", NULL, airTypeInt, 0, 0, &concave, NULL, "use slightly buggy rendering method suitable for " "concave or self-occluding objects"); hestOptAdd(&hopt, "wd", "5 widths", airTypeFloat, 5, 5, edgeWidth, "0.0 0.0 3.0 2.0 0.0", "width of edges drawn for five kinds of " "edges: back non-crease, back crease, " "silohuette, front crease, front non-crease"); hestOptAdd(&hopt, "o", "output PS", airTypeString, 1, 1, &outS, "out.ps", "output file to render postscript into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); cam->neer = -0.000000001; cam->dist = 0; cam->faar = 0.0000000001; cam->atRelative = AIR_TRUE; if (limnCameraUpdate(cam)) { fprintf(stderr, "%s: trouble:\n%s\n", me, err = biffGet(LIMN)); free(err); return 1; } obj = limnObjectNew(10, AIR_TRUE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); /* create limnLooks for diffuse (#0) and flat (#1) shading */ lookIdx = airArrayLenIncr(obj->lookArr, 2); look = obj->look + lookIdx + 0; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 0, 1, 0); look->spow = 0; look = obj->look + lookIdx + 1; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 1, 0, 0); look->spow = 0; /* X axis: rod */ partIdx = limnObjectCylinderAdd(obj, 0, 0, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 1, 0.2, 0.2); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 1.3, 0.0, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); /* Y axis: rod + ball */ partIdx = limnObjectCylinderAdd(obj, 0, 1, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 0.2, 1, 0.2); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 1.3, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectPolarSphereAdd(obj, 0, 0, 32, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 0.28, 0.28, 0.28); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 2.6, 0.0); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); /* Z axis: rod + ball + ball */ partIdx = limnObjectCylinderAdd(obj, 0, 2, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 0.2, 0.2, 1); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, 1.3); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectPolarSphereAdd(obj, 0, 1, 32, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 0.28, 0.28, 0.28); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, 2.6); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); partIdx = limnObjectPolarSphereAdd(obj, 0, 2, 32, 16); ELL_4M_IDENTITY_SET(matA); ELL_4M_SCALE_SET(matB, 0.28, 0.28, 0.28); ell_4m_post_mul_f(matA, matB); ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, 3.2); ell_4m_post_mul_f(matA, matB); limnObjectPartTransform(obj, partIdx, matA); win = limnWindowNew(limnDevicePS); win->scale = winscale; win->ps.wireFrame = wire; win->ps.lineWidth[limnEdgeTypeBackFacet] = edgeWidth[0]; win->ps.lineWidth[limnEdgeTypeBackCrease] = edgeWidth[1]; win->ps.lineWidth[limnEdgeTypeContour] = edgeWidth[2]; win->ps.lineWidth[limnEdgeTypeFrontCrease] = edgeWidth[3]; win->ps.lineWidth[limnEdgeTypeFrontFacet] = edgeWidth[4]; win->file = fopen(outS, "w"); airMopAdd(mop, win, (airMopper)limnWindowNix, airMopAlways); if (limnObjectRender(obj, cam, win) || (concave ? limnObjectPSDrawConcave(obj, cam, nmap, win) : limnObjectPSDraw(obj, cam, nmap, win))) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } fclose(win->file); airMopOkay(mop); return 0; }