double eraEe00b(double date1, double date2) /* ** - - - - - - - - - ** e r a E e 0 0 b ** - - - - - - - - - ** ** Equation of the equinoxes, compatible with IAU 2000 resolutions but ** using the truncated nutation model IAU 2000B. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned (function value): ** double equation of the equinoxes (Note 2) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The result, which is in radians, operates in the following sense: ** ** Greenwich apparent ST = GMST + equation of the equinoxes ** ** 3) The result is compatible with the IAU 2000 resolutions except ** that accuracy has been compromised for the sake of speed. For ** further details, see McCarthy & Luzum (2001), IERS Conventions ** 2003 and Capitaine et al. (2003). ** ** Called: ** eraPr00 IAU 2000 precession adjustments ** eraObl80 mean obliquity, IAU 1980 ** eraNut00b nutation, IAU 2000B ** eraEe00 equation of the equinoxes, IAU 2000 ** ** References: ** ** Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to ** implement the IAU 2000 definition of UT1", Astronomy & ** Astrophysics, 406, 1135-1149 (2003) ** ** McCarthy, D.D. & Luzum, B.J., "An abridged model of the ** precession-nutation of the celestial pole", Celestial Mechanics & ** Dynamical Astronomy, 85, 37-49 (2003) ** ** McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), ** IERS Technical Note No. 32, BKG (2004) ** ** Copyright (C) 2013-2015, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { double dpsipr, depspr, epsa, dpsi, deps, ee; /* IAU 2000 precession-rate adjustments. */ eraPr00(date1, date2, &dpsipr, &depspr); /* Mean obliquity, consistent with IAU 2000 precession-nutation. */ epsa = eraObl80(date1, date2) + depspr; /* Nutation in longitude. */ eraNut00b(date1, date2, &dpsi, &deps); /* Equation of the equinoxes. */ ee = eraEe00(date1, date2, epsa, dpsi); return ee; }
void eraBp00(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** e r a B p 0 0 ** - - - - - - - - ** ** Frame bias and precession, IAU 2000. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 5) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** eraBi00 frame bias components, IAU 2000 ** eraPr00 IAU 2000 precession adjustments ** eraIr initialize r-matrix to identity ** eraRx rotate around X-axis ** eraRy rotate around Y-axis ** eraRz rotate around Z-axis ** eraCr copy r-matrix ** eraRxr product of two r-matrices ** ** Reference: ** "Expressions for the Celestial Intermediate Pole and Celestial ** Ephemeris Origin consistent with the IAU 2000A precession- ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003) ** ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial ** intermediate origin" (CIO) by IAU 2006 Resolution 2. ** ** Copyright (C) 2013-2017, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { /* J2000.0 obliquity (Lieske et al. 1977) */ const double EPS0 = 84381.448 * ERFA_DAS2R; double t, dpsibi, depsbi, dra0, psia77, oma77, chia, dpsipr, depspr, psia, oma, rbw[3][3]; /* Interval between fundamental epoch J2000.0 and current date (JC). */ t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC; /* Frame bias. */ eraBi00(&dpsibi, &depsbi, &dra0); /* Precession angles (Lieske et al. 1977) */ psia77 = (5038.7784 + (-1.07259 + (-0.001147) * t) * t) * t * ERFA_DAS2R; oma77 = EPS0 + ((0.05127 + (-0.007726) * t) * t) * t * ERFA_DAS2R; chia = ( 10.5526 + (-2.38064 + (-0.001125) * t) * t) * t * ERFA_DAS2R; /* Apply IAU 2000 precession corrections. */ eraPr00(date1, date2, &dpsipr, &depspr); psia = psia77 + dpsipr; oma = oma77 + depspr; /* Frame bias matrix: GCRS to J2000.0. */ eraIr(rbw); eraRz(dra0, rbw); eraRy(dpsibi*sin(EPS0), rbw); eraRx(-depsbi, rbw); eraCr(rbw, rb); /* Precession matrix: J2000.0 to mean of date. */ eraIr(rp); eraRx(EPS0, rp); eraRz(-psia, rp); eraRx(-oma, rp); eraRz(chia, rp); /* Bias-precession matrix: GCRS to mean of date. */ eraRxr(rp, rbw, rbp); return; }