TEST(McmcNuts, instantiaton_test) { rng_t base_rng(4839294); std::stringstream output; stan::callbacks::stream_writer writer(output); std::stringstream error_stream; stan::callbacks::stream_writer error_writer(error_stream); std::fstream empty_stream("", std::fstream::in); stan::io::dump data_var_context(empty_stream); gauss3D_model_namespace::gauss3D_model model(data_var_context); stan::mcmc::unit_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> unit_e_sampler(model, base_rng); stan::mcmc::diag_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> diag_e_sampler(model, base_rng); stan::mcmc::dense_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> dense_e_sampler(model, base_rng); stan::mcmc::adapt_unit_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> adapt_unit_e_sampler(model, base_rng); stan::mcmc::adapt_diag_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> adapt_diag_e_sampler(model, base_rng); stan::mcmc::adapt_dense_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> adapt_dense_e_sampler(model, base_rng); }
TEST(McmcNutsBaseNuts, transition) { rng_t base_rng(0); int model_size = 1; double init_momentum = 1.5; stan::mcmc::ps_point z_init(model_size); z_init.q(0) = 0; z_init.p(0) = init_momentum; stan::mcmc::mock_model model(model_size); stan::mcmc::mock_nuts sampler(model, base_rng); sampler.set_nominal_stepsize(1); sampler.set_stepsize_jitter(0); sampler.sample_stepsize(); sampler.z() = z_init; std::stringstream output_stream; stan::interface_callbacks::writer::stream_writer writer(output_stream); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); stan::mcmc::sample init_sample(z_init.q, 0, 0); stan::mcmc::sample s = sampler.transition(init_sample, writer, error_writer); EXPECT_EQ(31.5, s.cont_params()(0)); EXPECT_EQ(0, s.log_prob()); EXPECT_EQ(1, s.accept_stat()); EXPECT_EQ("", output_stream.str()); EXPECT_EQ("", error_stream.str()); }
TEST(McmcNutsBaseNuts, build_tree) { rng_t base_rng(0); int model_size = 1; double init_momentum = 1.5; stan::mcmc::ps_point z_init(model_size); z_init.q(0) = 0; z_init.p(0) = init_momentum; stan::mcmc::ps_point z_propose(model_size); Eigen::VectorXd rho = z_init.p; double log_sum_weight = -std::numeric_limits<double>::infinity(); double H0 = -0.1; int n_leapfrog = 0; double sum_metro_prob = 0; stan::mcmc::mock_model model(model_size); stan::mcmc::mock_nuts sampler(model, base_rng); sampler.set_nominal_stepsize(1); sampler.set_stepsize_jitter(0); sampler.sample_stepsize(); sampler.z() = z_init; std::stringstream output; stan::interface_callbacks::writer::stream_writer writer(output); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); bool valid_subtree = sampler.build_tree(3, rho, z_propose, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); EXPECT_TRUE(valid_subtree); EXPECT_EQ(init_momentum * (n_leapfrog + 1), rho(0)); EXPECT_EQ(8 * init_momentum, sampler.z().q(0)); EXPECT_EQ(init_momentum, sampler.z().p(0)); EXPECT_EQ(8, n_leapfrog); EXPECT_FLOAT_EQ(H0 + std::log(n_leapfrog), log_sum_weight); EXPECT_FLOAT_EQ(std::exp(H0) * n_leapfrog, sum_metro_prob); EXPECT_EQ("", output.str()); EXPECT_EQ("", error_stream.str()); }
TEST(McmcHmcIntegratorsImplLeapfrog, unit_e_energy_conservation) { rng_t base_rng(0); std::fstream data_stream(std::string("").c_str(), std::fstream::in); stan::io::dump data_var_context(data_stream); data_stream.close(); std::stringstream model_output; std::stringstream metric_output; stan::interface_callbacks::writer::stream_writer writer(metric_output); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); gauss_model_namespace::gauss_model model(data_var_context, &model_output); stan::mcmc::impl_leapfrog< stan::mcmc::unit_e_metric<gauss_model_namespace::gauss_model, rng_t> > integrator; stan::mcmc::unit_e_metric<gauss_model_namespace::gauss_model, rng_t> metric(model); stan::mcmc::unit_e_point z(1); z.q(0) = 1; z.p(0) = 1; metric.init(z, writer, error_writer); double H0 = metric.H(z); double aveDeltaH = 0; double epsilon = 1e-3; double tau = 6.28318530717959; size_t L = tau / epsilon; for (size_t n = 0; n < L; ++n) { integrator.evolve(z, metric, epsilon, writer, error_writer); double deltaH = metric.H(z) - H0; aveDeltaH += (deltaH - aveDeltaH) / double(n + 1); } // Average error in Hamiltonian should be O(epsilon^{2}) // in general, smaller for the gauss_model in this case due to cancellations EXPECT_NEAR(aveDeltaH, 0, epsilon * epsilon); EXPECT_EQ("", model_output.str()); EXPECT_EQ("", metric_output.str()); }
TEST(McmcUnitENuts, transition_test) { rng_t base_rng(4839294); stan::mcmc::unit_e_point z_init(3); z_init.q(0) = 1; z_init.q(1) = -1; z_init.q(2) = 1; z_init.p(0) = -1; z_init.p(1) = 1; z_init.p(2) = -1; std::stringstream output_stream; stan::interface_callbacks::writer::stream_writer writer(output_stream); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); std::fstream empty_stream("", std::fstream::in); stan::io::dump data_var_context(empty_stream); gauss3D_model_namespace::gauss3D_model model(data_var_context); stan::mcmc::unit_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> sampler(model, base_rng); sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.set_nominal_stepsize(0.1); sampler.set_stepsize_jitter(0); sampler.sample_stepsize(); stan::mcmc::sample init_sample(z_init.q, 0, 0); stan::mcmc::sample s = sampler.transition(init_sample, writer, error_writer); EXPECT_EQ(4, sampler.depth_); EXPECT_EQ((2 << 3) - 1, sampler.n_leapfrog_); EXPECT_FALSE(sampler.divergent_); EXPECT_FLOAT_EQ(1.8718261, s.cont_params()(0)); EXPECT_FLOAT_EQ(-0.74208695, s.cont_params()(1)); EXPECT_FLOAT_EQ( 1.5202962, s.cont_params()(2)); EXPECT_FLOAT_EQ(-3.1828632, s.log_prob()); EXPECT_FLOAT_EQ(0.99629009, s.accept_stat()); EXPECT_EQ("", output_stream.str()); EXPECT_EQ("", error_stream.str()); }
TEST(McmcUnitENuts, tree_boundary_test) { rng_t base_rng(4839294); stan::mcmc::unit_e_point z_init(3); z_init.q(0) = 1; z_init.q(1) = -1; z_init.q(2) = 1; z_init.p(0) = -1; z_init.p(1) = 1; z_init.p(2) = -1; std::stringstream output; stan::interface_callbacks::writer::stream_writer writer(output); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); std::fstream empty_stream("", std::fstream::in); stan::io::dump data_var_context(empty_stream); typedef gauss3D_model_namespace::gauss3D_model model_t; model_t model(data_var_context); // Compute expected tree boundaries typedef stan::mcmc::unit_e_metric<model_t, rng_t> metric_t; metric_t metric(model); stan::mcmc::expl_leapfrog<metric_t> unit_e_integrator; double epsilon = 0.1; stan::mcmc::unit_e_point z_test = z_init; metric.init(z_test, writer, error_writer); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); Eigen::VectorXd p_sharp_forward_1 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); Eigen::VectorXd p_sharp_forward_2 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); Eigen::VectorXd p_sharp_forward_3 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, epsilon, writer, error_writer); Eigen::VectorXd p_sharp_forward_4 = metric.dtau_dp(z_test); z_test = z_init; metric.init(z_test, writer, error_writer); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); Eigen::VectorXd p_sharp_backward_1 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); Eigen::VectorXd p_sharp_backward_2 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); Eigen::VectorXd p_sharp_backward_3 = metric.dtau_dp(z_test); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); unit_e_integrator.evolve(z_test, metric, -epsilon, writer, error_writer); Eigen::VectorXd p_sharp_backward_4 = metric.dtau_dp(z_test); // Check expected tree boundaries to those dynamically geneated by NUTS stan::mcmc::unit_e_nuts<model_t, rng_t> sampler(model, base_rng); sampler.set_nominal_stepsize(epsilon); sampler.set_stepsize_jitter(0); sampler.sample_stepsize(); stan::mcmc::ps_point z_propose = z_init; Eigen::VectorXd p_sharp_left = Eigen::VectorXd::Zero(z_init.p.size()); Eigen::VectorXd p_sharp_right = Eigen::VectorXd::Zero(z_init.p.size()); Eigen::VectorXd rho = z_init.p; double log_sum_weight = -std::numeric_limits<double>::infinity(); double H0 = -0.1; int n_leapfrog = 0; double sum_metro_prob = 0; // Depth 0 forward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(0, z_propose, p_sharp_left, p_sharp_right, rho, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_right(n)); // Depth 1 forward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(1, z_propose, p_sharp_left, p_sharp_right, rho, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_2(n), p_sharp_right(n)); // Depth 2 forward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(2, z_propose, p_sharp_left, p_sharp_right, rho, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_3(n), p_sharp_right(n)); // Depth 3 forward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(3, z_propose, p_sharp_left, p_sharp_right, rho, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_forward_4(n), p_sharp_right(n)); // Depth 0 backward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(0, z_propose, p_sharp_left, p_sharp_right, rho, H0, -1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_right(n)); // Depth 1 backward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(1, z_propose, p_sharp_left, p_sharp_right, rho, H0, -1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_2(n), p_sharp_right(n)); // Depth 2 backward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(2, z_propose, p_sharp_left, p_sharp_right, rho, H0, -1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_3(n), p_sharp_right(n)); // Depth 3 backward sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.build_tree(3, z_propose, p_sharp_left, p_sharp_right, rho, H0, -1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_1(n), p_sharp_left(n)); for (int n = 0; n < rho.size(); ++n) EXPECT_FLOAT_EQ(p_sharp_backward_4(n), p_sharp_right(n)); }
TEST(McmcUnitENuts, build_tree_test) { rng_t base_rng(4839294); stan::mcmc::unit_e_point z_init(3); z_init.q(0) = 1; z_init.q(1) = -1; z_init.q(2) = 1; z_init.p(0) = -1; z_init.p(1) = 1; z_init.p(2) = -1; std::stringstream output; stan::interface_callbacks::writer::stream_writer writer(output); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); std::fstream empty_stream("", std::fstream::in); stan::io::dump data_var_context(empty_stream); gauss3D_model_namespace::gauss3D_model model(data_var_context); stan::mcmc::unit_e_nuts<gauss3D_model_namespace::gauss3D_model, rng_t> sampler(model, base_rng); sampler.z() = z_init; sampler.init_hamiltonian(writer, error_writer); sampler.set_nominal_stepsize(0.1); sampler.set_stepsize_jitter(0); sampler.sample_stepsize(); stan::mcmc::ps_point z_propose = z_init; Eigen::VectorXd p_sharp_left = Eigen::VectorXd::Zero(z_init.p.size()); Eigen::VectorXd p_sharp_right = Eigen::VectorXd::Zero(z_init.p.size()); Eigen::VectorXd rho = z_init.p; double log_sum_weight = -std::numeric_limits<double>::infinity(); double H0 = -0.1; int n_leapfrog = 0; double sum_metro_prob = 0; bool valid_subtree = sampler.build_tree(3, z_propose, p_sharp_left, p_sharp_right, rho, H0, 1, n_leapfrog, log_sum_weight, sum_metro_prob, writer, error_writer); EXPECT_EQ(0.1, sampler.get_nominal_stepsize()); EXPECT_TRUE(valid_subtree); EXPECT_FLOAT_EQ(-11.401228, rho(0)); EXPECT_FLOAT_EQ(11.401228, rho(1)); EXPECT_FLOAT_EQ(-11.401228, rho(2)); EXPECT_FLOAT_EQ(-0.022019938, sampler.z().q(0)); EXPECT_FLOAT_EQ(0.022019938, sampler.z().q(1)); EXPECT_FLOAT_EQ(-0.022019938, sampler.z().q(2)); EXPECT_FLOAT_EQ(-1.4131583, sampler.z().p(0)); EXPECT_FLOAT_EQ(1.4131583, sampler.z().p(1)); EXPECT_FLOAT_EQ(-1.4131583, sampler.z().p(2)); EXPECT_EQ(8, n_leapfrog); EXPECT_FLOAT_EQ(std::log(0.36134657), log_sum_weight); EXPECT_FLOAT_EQ(0.36134657, sum_metro_prob); EXPECT_EQ("", output.str()); EXPECT_EQ("", error_stream.str()); }
TEST(McmcHmcIntegratorsImplLeapfrog, unit_e_symplecticness) { rng_t base_rng(0); std::fstream data_stream(std::string("").c_str(), std::fstream::in); stan::io::dump data_var_context(data_stream); data_stream.close(); std::stringstream model_output; std::stringstream metric_output; stan::interface_callbacks::writer::stream_writer writer(metric_output); std::stringstream error_stream; stan::interface_callbacks::writer::stream_writer error_writer(error_stream); gauss_model_namespace::gauss_model model(data_var_context, &model_output); stan::mcmc::impl_leapfrog< stan::mcmc::unit_e_metric<gauss_model_namespace::gauss_model, rng_t> > integrator; stan::mcmc::unit_e_metric<gauss_model_namespace::gauss_model, rng_t> metric(model); // Create a circle of points const int n_points = 1000; double pi = 3.141592653589793; double r = 1.5; double q0 = 1; double p0 = 0; std::vector<stan::mcmc::unit_e_point> z; for (int i = 0; i < n_points; ++i) { z.push_back(stan::mcmc::unit_e_point(1)); double theta = 2 * pi * (double)i / (double)n_points; z.back().q(0) = r * cos(theta) + q0; z.back().p(0) = r * sin(theta) + p0; } // Evolve circle double epsilon = 1e-3; size_t L = pi / epsilon; for (int i = 0; i < n_points; ++i) metric.init(z.at(i), writer, error_writer); for (size_t n = 0; n < L; ++n) for (int i = 0; i < n_points; ++i) integrator.evolve(z.at(i), metric, epsilon, writer, error_writer); // Compute area of evolved shape using divergence theorem in 2D double area = 0; for (int i = 0; i < n_points; ++i) { double x1 = z[i].q(0); double y1 = z[i].p(0); double x2 = z[(i + 1) % n_points].q(0); double y2 = z[(i + 1) % n_points].p(0); double x_bary = 0.5 * (x1 + x2); double y_bary = 0.5 * (y1 + y2); double x_delta = x2 - x1; double y_delta = y2 - y1; double a = sqrt( x_delta * x_delta + y_delta * y_delta); double x_norm = 1; double y_norm = - x_delta / y_delta; double norm = sqrt( x_norm * x_norm + y_norm * y_norm ); a *= (x_bary * x_norm + y_bary * y_norm) / norm; a = a < 0 ? -a : a; area += a; } area *= 0.5; // Symplectic integrators preserve volume (area in 2D) EXPECT_NEAR(area, pi * r * r, 1e-2); EXPECT_EQ("", model_output.str()); EXPECT_EQ("", metric_output.str()); }