예제 #1
0
inline DistEstimate RefEstimator::estimate(const ReadPair & p) const {
    DistEstimate d;

    if(p.strand() == BOTH){
	DistEstimate d1 = estimate_(p, pblocks_);
	DistEstimate d2 = estimate_(p, mblocks_);
	if(!d1.fail && !d2.fail) d.fail = true;
	else if(!d1.fail)        d = d1;
	else                     d = d2;
    }else if(p.strand() == MINUS){
	d = estimate_(p, mblocks_);
    }else if(p.strand() == PLUS){
	d = estimate_(p, pblocks_);
    }

    return d;
}
예제 #2
0
파일: QUEST.cpp 프로젝트: nyanp/STF
void QUEST::do_compute(const datatype::Time& t) {
	if(t <= this->last_update_) return; //既に別のブロック経由で更新済みなら再計算しない

	util::Trace trace(util::Trace::kControlBlock, name_);

	//センサから取得した衛星基準座標系における地球,太陽方向
	datatype::StaticVector<2> w_sun = this->source<0, datatype::StaticVector<2>>().get_value(t);
	datatype::StaticVector<2> w_earth = this->source<1, datatype::StaticVector<2>>().get_value(t);
	//軌道情報をもとに計算された衛星位置における地球,太陽方向
	datatype::StaticVector<3> v1 = datatype::OrbitCalc::getSunDirection3D(this->source<3, datatype::DateTime>().get_value(t));
	datatype::StaticVector<3> v2 = datatype::OrbitCalc::getEarthDirection3D(this->source<2, datatype::PositionInfo>().get_value(t));
	datatype::StaticVector<3> w1 = datatype::TypeConverter::toRectangular(w_sun);
	datatype::StaticVector<3> w2 = datatype::TypeConverter::toRectangular(w_earth);

	this->value_ = estimate_(v1, v2, w1, w2);
	this->last_update_ = t;
}
예제 #3
0
std::vector<int> Pathfinder::getPathFrom(int start) const
{
    if (goal_(start)) return {start};

    // Record shortest path costs for every node we examine.
    std::unordered_map<int, AstarNodePtr> nodes;
    // Maintain a heap of nodes to consider.
    std::vector<int> open;
    int goalLoc = -1;
    AstarNodePtr goalNode;

    // The heap functions confusingly use operator< to build a heap with the
    // *largest* element on top.  We want to get the node with the *least* cost,
    // so we have to order nodes in the opposite way.
    auto orderByCost = [&] (int lhs, int rhs)
    {
        return nodes[lhs]->estTotalCost > nodes[rhs]->estTotalCost;
    };

    nodes.emplace(start, make_astar_node(-1, 0, 0));
    open.push_back(start);

    // A* algorithm.  Decays to Dijkstra's if estimate function is always 0.
    while (!open.empty()) {
        auto loc = open.front();
        pop_heap(std::begin(open), std::end(open), orderByCost);
        open.pop_back();
        if (goal_(loc)) {
            goalLoc = loc;
            goalNode = nodes[loc];
            break;
        }

        auto &curNode = nodes[loc];
        curNode->visited = true;
        for (auto n : neighbors_(loc)) {
            auto nIter = nodes.find(n);
            auto step = stepCost_(loc, n);

            if (nIter != nodes.end()) {
                auto &nNode = nIter->second;
                if (nNode->visited) {
                    continue;
                }

                // Are we on a shorter path to the neighbor node than what
                // we've already seen?  If so, update the neighbor's node data.
                if (curNode->costSoFar + step < nNode->costSoFar) {
                    nNode->prev = loc;
                    nNode->costSoFar = curNode->costSoFar + step;
                    nNode->estTotalCost = nNode->costSoFar + estimate_(n);
                    make_heap(std::begin(open), std::end(open), orderByCost);
                }
            }
            else {
                // We haven't seen this node before.  Add it to the open list.
                nodes.emplace(n, make_astar_node(loc, curNode->costSoFar + step, 
                    curNode->costSoFar + step + estimate_(n)));
                open.push_back(n);
                push_heap(std::begin(open), std::end(open), orderByCost);
            }
        }
    }

    if (!goalNode) {
        return {};
    }

    // Build the path from the chain of nodes leading to the goal.
    std::vector<int> path = {goalLoc};
    auto n = goalNode;
    while (n->prev != -1) {
        path.push_back(n->prev);
        n = nodes[n->prev];
    }
    reverse(std::begin(path), std::end(path));
    assert(contains(path, start));
    return path;
}