void readEEPROM(void) { suspendRxSignal(); // Sanity check // Read flash if (!scanEEPROM(true)) { failureMode(FAILURE_INVALID_EEPROM_CONTENTS); } pgActivateProfile(getCurrentProfile()); if (rateProfileSelection()->defaultRateProfileIndex > MAX_CONTROL_RATE_PROFILE_COUNT - 1) // sanity check rateProfileSelection()->defaultRateProfileIndex = 0; setControlRateProfile(rateProfileSelection()->defaultRateProfileIndex); validateAndFixConfig(); activateConfig(); resumeRxSignal(); }
void readEEPROM(void) { // Sanity check if (!isEEPROMContentValid()) failureMode(10); // Read flash memcpy(&masterConfig, (char *) CONFIG_START_FLASH_ADDRESS, sizeof(master_t)); if (masterConfig.current_profile_index > MAX_PROFILE_COUNT - 1) // sanity check masterConfig.current_profile_index = 0; setProfile(masterConfig.current_profile_index); if (currentProfile->defaultRateProfileIndex > MAX_CONTROL_RATE_PROFILE_COUNT - 1) // sanity check currentProfile->defaultRateProfileIndex = 0; setControlRateProfile(currentProfile->defaultRateProfileIndex); validateAndFixConfig(); activateConfig(); }
void mpu6000SpiGyroInit(uint8_t lpf) { mpuIntExtiInit(); mpu6000AccAndGyroInit(); mpuIntExtiInit(); spiResetErrorCounter(MPU6000_SPI_INSTANCE); spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_0_5625MHZ_CLOCK_DIVIDER); // Accel and Gyro DLPF Setting mpu6000WriteRegister(MPU6000_CONFIG, lpf); delayMicroseconds(1); int16_t data[3]; mpuGyroRead(data); if ((((int8_t)data[1]) == -1 && ((int8_t)data[0]) == -1) || spiGetErrorCounter(MPU6000_SPI_INSTANCE) != 0) { spiResetErrorCounter(MPU6000_SPI_INSTANCE); failureMode(FAILURE_GYRO_INIT_FAILED); } }
void SensorDetectAndINI(void) // "enabledSensors" is "0" in config.c so all sensors disabled per default { int16_t deg, min; uint8_t sig = 0; bool ack = false; bool haveMpu6k = false; GyroScale16 = (16.0f / 16.4f) * RADX; // GYRO part. RAD per SECOND, take into account that gyrodata are div by X if (mpu6050Detect(&acc, &gyro)) // Autodetect gyro hardware. We have MPU3050 or MPU6050. { haveMpu6k = true; // this filled up acc.* struct with init values } else if (l3g4200dDetect(&gyro)) { havel3g4200d = true; GyroScale16 = (16.0f / 14.2857f) * RADX; // GYRO part. RAD per SECOND, take into account that gyrodata are div by X } else if (!mpu3050Detect(&gyro)) { failureMode(3); // if this fails, we get a beep + blink pattern. we're doomed, no gyro or i2c error. } sensorsSet(SENSOR_ACC); // ACC part. Will be cleared if not available retry: switch (cfg.acc_hdw) { case 0: // autodetect case 1: // ADXL345 if (adxl345Detect(&acc)) accHardware = ACC_ADXL345; if (cfg.acc_hdw == ACC_ADXL345) break; case 2: // MPU6050 if (haveMpu6k) { mpu6050Detect(&acc, &gyro); // yes, i'm rerunning it again. re-fill acc struct accHardware = ACC_MPU6050; if (cfg.acc_hdw == ACC_MPU6050) break; } case 3: // MMA8452 if (mma8452Detect(&acc)) { accHardware = ACC_MMA8452; if (cfg.acc_hdw == ACC_MMA8452) break; } } if (accHardware == ACC_DEFAULT) // Found anything? Check if user f****d up or ACC is really missing. { if (cfg.acc_hdw > ACC_DEFAULT) { cfg.acc_hdw = ACC_DEFAULT; // Nothing was found and we have a forced sensor type. User probably chose a sensor that isn't present. goto retry; } else sensorsClear(SENSOR_ACC); // We're really screwed } if (sensors(SENSOR_ACC)) acc.init(); if (haveMpu6k && accHardware == ACC_MPU6050) MpuSpecial = true; else MpuSpecial = false; if (feature(FEATURE_PASS)) return; // Stop here we need just ACC for Vibrationmonitoring if present if (feature(FEATURE_GPS) && !SerialRCRX) gpsInit(cfg.gps_baudrate);// SerialRX and GPS can not coexist. gyro.init(); // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here. if (havel3g4200d) l3g4200dConfig(); else if (!haveMpu6k) mpu3050Config(); Gyro_Calibrate(); // Do Gyrocalibration here (is blocking), provides nice Warmuptime for the following rest! #ifdef MAG if (hmc5883lDetect()) { sensorsSet(SENSOR_MAG); hmc5883lInit(magCal); // Crashpilot: Calculate Gains / Scale deg = cfg.mag_dec / 100; // calculate magnetic declination min = cfg.mag_dec % 100; magneticDeclination = ((float)deg + ((float)min / 60.0f));// heading is in decimaldeg units NO 0.1 deg shit here } #endif #ifdef BARO // No delay necessary since Gyrocal blocked a lot already ack = i2cRead(0x77, 0x77, 1, &sig); // Check Baroadr.(MS & BMP) BMP will say hello here, MS not if ( ack) ack = bmp085Detect(&baro); // Are we really dealing with BMP? if (!ack) ack = ms5611Detect(&baro); // No, Check for MS Baro if (ack) sensorsSet(SENSOR_BARO); if(cfg.esc_nfly) ESCnoFlyThrottle = constrain_int(cfg.esc_nfly, cfg.esc_min, cfg.esc_max); // Set the ESC PWM signal threshold for not flyable RPM else ESCnoFlyThrottle = cfg.esc_min + (((cfg.esc_max - cfg.esc_min) * 5) / 100); // If not configured, take 5% above esc_min #endif #ifdef SONAR if (feature(FEATURE_SONAR)) Sonar_init(); // Initialize Sonars here depending on Rc configuration. SonarLandWanted = cfg.snr_land; // Variable may be overwritten by failsave #endif MainDptCut = RCconstPI / (float)cfg.maincuthz; // Initialize Cut off frequencies for mainpid D }
void init(void) { drv_pwm_config_t pwm_params; printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(systemConfig()->emf_avoidance); #endif i2cSetOverclock(systemConfig()->i2c_highspeed); systemInit(); #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); // initialize IO (needed for all IO operations) IOInitGlobal(); debugMode = debugConfig()->debug_mode; #ifdef USE_EXTI EXTIInit(); #endif #ifdef ALIENFLIGHTF3 if (hardwareRevision == AFF3_REV_1) { ledInit(false); } else { ledInit(true); } #else ledInit(false); #endif #ifdef BEEPER beeperConfig_t beeperConfig = { .gpioPeripheral = BEEP_PERIPHERAL, .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, #ifdef BEEPER_INVERTED .gpioMode = Mode_Out_PP, .isInverted = true #else .gpioMode = Mode_Out_OD, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.gpioMode = Mode_Out_PP; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef BUTTONS buttonsInit(); if (!isMPUSoftReset()) { buttonsHandleColdBootButtonPresses(); } #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (rxConfig()->serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(rxConfig()); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated dmaInit(); serialInit(feature(FEATURE_SOFTSERIAL)); mixerInit(customMotorMixer(0)); #ifdef USE_SERVOS mixerInitServos(customServoMixer(0)); #endif memset(&pwm_params, 0, sizeof(pwm_params)); #ifdef SONAR const sonarHardware_t *sonarHardware = NULL; sonarGPIOConfig_t sonarGPIOConfig; if (feature(FEATURE_SONAR)) { bool usingCurrentMeterIOPins = (feature(FEATURE_AMPERAGE_METER) && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC); sonarHardware = sonarGetHardwareConfiguration(usingCurrentMeterIOPins); sonarGPIOConfig.triggerGPIO = sonarHardware->trigger_gpio; sonarGPIOConfig.triggerPin = sonarHardware->trigger_pin; sonarGPIOConfig.echoGPIO = sonarHardware->echo_gpio; sonarGPIOConfig.echoPin = sonarHardware->echo_pin; pwm_params.sonarGPIOConfig = &sonarGPIOConfig; } #endif // when using airplane/wing mixer, servo/motor outputs are remapped if (mixerConfig()->mixerMode == MIXER_AIRPLANE || mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_UART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2); #endif #if defined(USE_UART3) pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3); #endif #if defined(USE_UART4) pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4); #endif #if defined(USE_UART5) pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = ( feature(FEATURE_AMPERAGE_METER) && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC ); pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef SONAR pwm_params.useSonar = feature(FEATURE_SONAR); #endif #ifdef USE_SERVOS pwm_params.useServos = isMixerUsingServos(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = servoConfig()->servoCenterPulse; pwm_params.servoPwmRate = servoConfig()->servo_pwm_rate; #endif pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = motorConfig()->motor_pwm_rate; pwm_params.idlePulse = calculateMotorOff(); if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwmRxInit(); // pwmInit() needs to be called as soon as possible for ESC compatibility reasons pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params); mixerUsePWMIOConfiguration(pwmIOConfiguration); #ifdef DEBUG_PWM_CONFIGURATION debug[2] = pwmIOConfiguration->pwmInputCount; debug[3] = pwmIOConfiguration->ppmInputCount; #endif if (!feature(FEATURE_ONESHOT125)) motorControlEnable = true; systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); #ifdef STM32F303xC #ifdef ALIENFLIGHTF3 if (hardwareRevision == AFF3_REV_2) { spiInit(SPI3); } #else spiInit(SPI3); #endif #endif #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_UART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.channelMask = 0; #ifdef ADC_BATTERY adc_params.channelMask = (feature(FEATURE_VBAT) ? ADC_CHANNEL_MASK(ADC_BATTERY) : 0); #endif #ifdef ADC_RSSI adc_params.channelMask |= (feature(FEATURE_RSSI_ADC) ? ADC_CHANNEL_MASK(ADC_RSSI) : 0); #endif #ifdef ADC_AMPERAGE adc_params.channelMask |= (feature(FEATURE_AMPERAGE_METER) ? ADC_CHANNEL_MASK(ADC_AMPERAGE) : 0); #endif #ifdef ADC_POWER_12V adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_12V); #endif #ifdef ADC_POWER_5V adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_5V); #endif #ifdef ADC_POWER_3V adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_3V); #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.channelMask |= (hardwareRevision >= NAZE32_REV5) ? ADC_CHANNEL_MASK(ADC_EXTERNAL) : 0; #endif adcInit(&adc_params); #endif initBoardAlignment(); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(); } #endif #ifdef NAZE if (hardwareRevision < NAZE32_REV5) { gyroConfig()->gyro_sync = 0; } #endif if (!sensorsAutodetect()) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; flashLedsAndBeep(); mspInit(); mspSerialInit(); const uint16_t pidPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz); pidSetTargetLooptime(pidPeriodUs * gyroConfig()->pid_process_denom); pidInitFilters(pidProfile()); #ifdef USE_SERVOS mixerInitialiseServoFiltering(targetPidLooptime); #endif imuInit(); #ifdef USE_CLI cliInit(); #endif failsafeInit(); rxInit(modeActivationProfile()->modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit(); navigationInit(pidProfile()); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(sonarHardware); } #endif #ifdef LED_STRIP ledStripInit(); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USB_CABLE_DETECTION usbCableDetectInit(); #endif #ifdef TRANSPONDER if (feature(FEATURE_TRANSPONDER)) { transponderInit(transponderConfig()->data); transponderEnable(); transponderStartRepeating(); systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED; } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(); } #elif defined(USE_FLASH_M25P16) m25p16_init(); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif #ifdef BLACKBOX initBlackbox(); #endif if (mixerConfig()->mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif if (feature(FEATURE_VBAT)) { // Now that everything has powered up the voltage and cell count be determined. voltageMeterInit(); batteryInit(); } if (feature(FEATURE_AMPERAGE_METER)) { amperageMeterInit(); } #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif void configureScheduler(void) { schedulerInit(); setTaskEnabled(TASK_SYSTEM, true); uint16_t gyroPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz); rescheduleTask(TASK_GYRO, gyroPeriodUs); setTaskEnabled(TASK_GYRO, true); rescheduleTask(TASK_PID, gyroPeriodUs); setTaskEnabled(TASK_PID, true); if (sensors(SENSOR_ACC)) { setTaskEnabled(TASK_ACCEL, true); } setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC)); setTaskEnabled(TASK_SERIAL, true); #ifdef BEEPER setTaskEnabled(TASK_BEEPER, true); #endif setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_AMPERAGE_METER)); setTaskEnabled(TASK_RX, true); #ifdef GPS setTaskEnabled(TASK_GPS, feature(FEATURE_GPS)); #endif #ifdef MAG setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG)); #if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963) // fixme temporary solution for AK6983 via slave I2C on MPU9250 rescheduleTask(TASK_COMPASS, 1000000 / 40); #endif #endif #ifdef BARO setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO)); #endif #ifdef SONAR setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR)); #endif #if defined(BARO) || defined(SONAR) setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)); #endif #ifdef DISPLAY setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY)); #endif #ifdef TELEMETRY setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY)); #endif #ifdef LED_STRIP setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP)); #endif #ifdef TRANSPONDER setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER)); #endif }
void init(void) { drv_pwm_config_t pwm_params; printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); #endif i2cSetOverclock(masterConfig.i2c_highspeed); #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif systemInit(); // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); ledInit(); #ifdef BEEPER beeperConfig_t beeperConfig = { .gpioPeripheral = BEEP_PERIPHERAL, .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, #ifdef BEEPER_INVERTED .gpioMode = Mode_Out_PP, .isInverted = true #else .gpioMode = Mode_Out_OD, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.gpioMode = Mode_Out_PP; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef BUTTONS buttonsInit(); if (!isMPUSoftReset()) { buttonsHandleColdBootButtonPresses(); } #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated dmaInit(); serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL)); #ifdef USE_SERVOS mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer); #else mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #endif memset(&pwm_params, 0, sizeof(pwm_params)); #ifdef SONAR const sonarHardware_t *sonarHardware = NULL; if (feature(FEATURE_SONAR)) { sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig); sonarGPIOConfig_t sonarGPIOConfig = { .gpio = SONAR_GPIO, .triggerPin = sonarHardware->echo_pin, .echoPin = sonarHardware->trigger_pin, }; pwm_params.sonarGPIOConfig = &sonarGPIOConfig; } #endif // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_UART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2); #endif #if defined(USE_UART3) pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3); #endif #if defined(USE_UART4) pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4); #endif #if defined(USE_UART5) pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef SONAR pwm_params.useSonar = feature(FEATURE_SONAR); #endif #ifdef USE_SERVOS pwm_params.useServos = isMixerUsingServos(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; #endif pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwmRxInit(masterConfig.inputFilteringMode); // pwmInit() needs to be called as soon as possible for ESC compatibility reasons pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params); mixerUsePWMIOConfiguration(pwmIOConfiguration); debug[2] = pwmIOConfiguration->pwmInputCount; debug[3] = pwmIOConfiguration->ppmInputCount; if (!feature(FEATURE_ONESHOT125)) motorControlEnable = true; systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_UART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination, masterConfig.looptime, masterConfig.gyroSync, masterConfig.gyroSyncDenominator)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; flashLedsAndBeep(); #ifdef USE_SERVOS mixerInitialiseServoFiltering(targetLooptime); #endif #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspInit(&masterConfig.serialConfig); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig, currentProfile->modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( ¤tProfile->gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(sonarHardware); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USB_CABLE_DETECTION usbCableDetectInit(); #endif #ifdef TRANSPONDER if (feature(FEATURE_TRANSPONDER)) { transponderInit(masterConfig.transponderData); transponderEnable(); transponderStartRepeating(); systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED; } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(); } #elif defined(USE_FLASH_M25P16) m25p16_init(); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif #ifdef BLACKBOX initBlackbox(); #endif if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif int main(void) { init(); /* Setup scheduler */ if (masterConfig.gyroSync) { rescheduleTask(TASK_GYROPID, targetLooptime - INTERRUPT_WAIT_TIME); } else { rescheduleTask(TASK_GYROPID, targetLooptime); } setTaskEnabled(TASK_GYROPID, true); setTaskEnabled(TASK_ACCEL, sensors(SENSOR_ACC)); setTaskEnabled(TASK_SERIAL, true); #ifdef BEEPER setTaskEnabled(TASK_BEEPER, true); #endif setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER)); setTaskEnabled(TASK_RX, true); #ifdef GPS setTaskEnabled(TASK_GPS, feature(FEATURE_GPS)); #endif #ifdef MAG setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG)); #endif #ifdef BARO setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO)); #endif #ifdef SONAR setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR)); #endif #if defined(BARO) || defined(SONAR) setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)); #endif #ifdef DISPLAY setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY)); #endif #ifdef TELEMETRY setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY)); #endif #ifdef LED_STRIP setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP)); #endif #ifdef TRANSPONDER setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER)); #endif while (1) { scheduler(); processLoopback(); } } void HardFault_Handler(void) { // fall out of the sky uint8_t requiredStateForMotors = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY; if ((systemState & requiredStateForMotors) == requiredStateForMotors) { stopMotors(); } #ifdef TRANSPONDER // prevent IR LEDs from burning out. uint8_t requiredStateForTransponder = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_TRANSPONDER_ENABLED; if ((systemState & requiredStateForTransponder) == requiredStateForTransponder) { transponderIrDisable(); } #endif while (1); }
bool mpu6050Detect(sensor_t * acc, sensor_t * gyro) { bool ack; uint8_t sig, rev; uint8_t tmp[6]; delay(35); // datasheet page 13 says 30ms. other stuff could have been running meanwhile. but we'll be safe ack = i2cRead(MPU6050_ADDRESS, MPU_RA_WHO_AM_I, 1, &sig); if (!ack) return false; // So like, MPU6xxx has a "WHO_AM_I" register, that is used to verify the identity of the device. // The contents of WHO_AM_I are the upper 6 bits of the MPU-60X0’s 7-bit I2C address. // The least significant bit of the MPU-60X0’s I2C address is determined by the value of the AD0 pin. (we know that already). // But here's the best part: The value of the AD0 pin is not reflected in this register. if (sig != (MPU6050_ADDRESS & 0x7e)) return false; // determine product ID and accel revision i2cRead(MPU6050_ADDRESS, MPU_RA_XA_OFFS_H, 6, tmp); rev = ((tmp[5] & 0x01) << 2) | ((tmp[3] & 0x01) << 1) | (tmp[1] & 0x01); if (rev) { /* Congrats, these parts are better. */ if (rev == 1) { mpuAccelHalf = 1; } else if (rev == 2) { mpuAccelHalf = 0; } else { failureMode(5); } } else { i2cRead(MPU6050_ADDRESS, MPU_RA_PRODUCT_ID, 1, &sig); rev = sig & 0x0F; if (!rev) { failureMode(5); } else if (rev == 4) { mpuAccelHalf = 1; } else { mpuAccelHalf = 0; } } acc->init = mpu6050AccInit; acc->read = mpu6050AccRead; acc->align = mpu6050AccAlign; gyro->init = mpu6050GyroInit; gyro->read = mpu6050GyroRead; gyro->align = mpu6050GyroAlign; gyro->temperature = mpu6050TempRead; return true; }
void init(void) { uint8_t i; drv_pwm_config_t pwm_params; printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); #endif #ifdef STM32F40_41xxx SetSysClock(); #endif #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif systemInit(); // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); ledInit(); #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL)); #ifdef USE_SERVOS mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer); #else mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #endif memset(&pwm_params, 0, sizeof(pwm_params)); #ifdef SONAR const sonarHardware_t *sonarHardware = NULL; if (feature(FEATURE_SONAR)) { sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig); sonarGPIOConfig_t sonarGPIOConfig = { .gpio = SONAR_GPIO, .triggerPin = sonarHardware->echo_pin, .echoPin = sonarHardware->trigger_pin, }; pwm_params.sonarGPIOConfig = &sonarGPIOConfig; } #endif // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_USART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #ifdef STM32F303xC pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3); #endif #if defined(USE_USART2) && defined(STM32F40_41xxx) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #if defined(USE_USART6) && defined(STM32F40_41xxx) pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef SONAR pwm_params.useSonar = feature(FEATURE_SONAR); #endif #ifdef USE_SERVOS pwm_params.useServos = isMixerUsingServos(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; #endif pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwmRxInit(masterConfig.inputFilteringMode); pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); mixerUsePWMOutputConfiguration(pwmOutputConfiguration); if (!feature(FEATURE_ONESHOT125)) motorControlEnable = true; systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperConfig_t beeperConfig = { .gpioPeripheral = BEEP_PERIPHERAL, .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, #ifdef BEEPER_INVERTED .gpioMode = Mode_Out_PP, .isInverted = true #else .gpioMode = Mode_Out_OD, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.gpioMode = Mode_Out_PP; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); spiInit(SPI3); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_USART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE_INT); #if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(SPARKY2) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { #ifdef I2C_DEVICE_EXT i2cInit(I2C_DEVICE_EXT); #endif } #endif #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; for (i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspInit(&masterConfig.serialConfig); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( ¤tProfile->gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(sonarHardware); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors); if (feature(FEATURE_LED_STRIP)) { #ifdef COLIBRI if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) { ledStripEnable(); } #else ledStripEnable(); #endif } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(); } #elif defined(USE_FLASH_M25P16) m25p16_init(); #endif flashfsInit(); #endif #ifdef BLACKBOX initBlackbox(); #endif previousTime = micros(); if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif int main(void) { init(); while (1) { loop(); processLoopback(); } } void HardFault_Handler(void) { // fall out of the sky uint8_t requiredState = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY; if ((systemState & requiredState) == requiredState) { stopMotors(); } while (1); }
int main(void) { uint8_t i; drv_pwm_config_t pwm_params; drv_adc_config_t adc_params; bool sensorsOK = false; #ifdef SOFTSERIAL_LOOPBACK serialPort_t* loopbackPort1 = NULL; serialPort_t* loopbackPort2 = NULL; #endif initEEPROM(); checkFirstTime(false); readEEPROM(); systemInit(mcfg.emf_avoidance); #ifdef USE_LAME_PRINTF init_printf(NULL, _putc); #endif activateConfig(); // configure power ADC if (mcfg.power_adc_channel > 0 && (mcfg.power_adc_channel == 1 || mcfg.power_adc_channel == 9)) adc_params.powerAdcChannel = mcfg.power_adc_channel; else { adc_params.powerAdcChannel = 0; mcfg.power_adc_channel = 0; } adcInit(&adc_params); // Check battery type/voltage if (feature(FEATURE_VBAT)) batteryInit(); initBoardAlignment(); // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform sensorsSet(SENSORS_SET); // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead. sensorsOK = sensorsAutodetect(); // production debug output #ifdef PROD_DEBUG productionDebug(); #endif // if gyro was not detected due to whatever reason, we give up now. if (!sensorsOK) failureMode(3); LED1_ON; LED0_OFF; for (i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; imuInit(); // Mag is initialized inside imuInit mixerInit(); // this will set core.useServo var depending on mixer type serialInit(mcfg.serial_baudrate); // when using airplane/wing mixer, servo/motor outputs are remapped if (mcfg.mixerConfiguration == MULTITYPE_AIRPLANE || mcfg.mixerConfiguration == MULTITYPE_FLYING_WING) pwm_params.airplane = true; else pwm_params.airplane = false; pwm_params.useUART = feature(FEATURE_GPS) || feature(FEATURE_SERIALRX); // spektrum/sbus support uses UART too pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.usePPM = feature(FEATURE_PPM); pwm_params.enableInput = !feature(FEATURE_SERIALRX); // disable inputs if using spektrum pwm_params.useServos = core.useServo; pwm_params.extraServos = cfg.gimbal_flags & GIMBAL_FORWARDAUX; pwm_params.motorPwmRate = mcfg.motor_pwm_rate; pwm_params.servoPwmRate = mcfg.servo_pwm_rate; pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below) if (feature(FEATURE_3D)) pwm_params.idlePulse = mcfg.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwm_params.servoCenterPulse = mcfg.midrc; pwm_params.failsafeThreshold = cfg.failsafe_detect_threshold; switch (mcfg.power_adc_channel) { case 1: pwm_params.adcChannel = PWM2; break; case 9: pwm_params.adcChannel = PWM8; break; default: pwm_params.adcChannel = 0; break; } pwmInit(&pwm_params); core.numServos = pwm_params.numServos; // configure PWM/CPPM read function and max number of channels. spektrum or sbus below will override both of these, if enabled for (i = 0; i < RC_CHANS; i++) rcData[i] = 1502; rcReadRawFunc = pwmReadRawRC; core.numRCChannels = MAX_INPUTS; if (feature(FEATURE_SERIALRX)) { switch (mcfg.serialrx_type) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: spektrumInit(&rcReadRawFunc); break; case SERIALRX_SBUS: sbusInit(&rcReadRawFunc); break; case SERIALRX_SUMD: sumdInit(&rcReadRawFunc); break; case SERIALRX_MSP: mspInit(&rcReadRawFunc); break; } } else { // spektrum and GPS are mutually exclusive // Optional GPS - available in both PPM and PWM input mode, in PWM input, reduces number of available channels by 2. // gpsInit will return if FEATURE_GPS is not enabled. gpsInit(mcfg.gps_baudrate); } #ifdef SONAR // sonar stuff only works with PPM if (feature(FEATURE_PPM)) { if (feature(FEATURE_SONAR)) Sonar_init(); } #endif if (feature(FEATURE_SOFTSERIAL)) { //mcfg.softserial_baudrate = 19200; // Uncomment to override config value setupSoftSerialPrimary(mcfg.softserial_baudrate, mcfg.softserial_1_inverted); setupSoftSerialSecondary(mcfg.softserial_2_inverted); #ifdef SOFTSERIAL_LOOPBACK loopbackPort1 = (serialPort_t*)&(softSerialPorts[0]); serialPrint(loopbackPort1, "SOFTSERIAL 1 - LOOPBACK ENABLED\r\n"); loopbackPort2 = (serialPort_t*)&(softSerialPorts[1]); serialPrint(loopbackPort2, "SOFTSERIAL 2 - LOOPBACK ENABLED\r\n"); #endif //core.mainport = (serialPort_t*)&(softSerialPorts[0]); // Uncomment to switch the main port to use softserial. } if (feature(FEATURE_TELEMETRY)) initTelemetry(); previousTime = micros(); if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL) calibratingA = CALIBRATING_ACC_CYCLES; calibratingG = CALIBRATING_GYRO_CYCLES; calibratingB = CALIBRATING_BARO_CYCLES; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles f.SMALL_ANGLE = 1; // loopy while (1) { loop(); #ifdef SOFTSERIAL_LOOPBACK if (loopbackPort1) { while (serialTotalBytesWaiting(loopbackPort1)) { uint8_t b = serialRead(loopbackPort1); serialWrite(loopbackPort1, b); //serialWrite(core.mainport, 0x01); //serialWrite(core.mainport, b); }; } if (loopbackPort2) { while (serialTotalBytesWaiting(loopbackPort2)) { #ifndef OLIMEXINO // PB0/D27 and PB1/D28 internally connected so this would result in a continuous stream of data serialRead(loopbackPort2); #else uint8_t b = serialRead(loopbackPort2); serialWrite(loopbackPort2, b); //serialWrite(core.mainport, 0x02); //serialWrite(core.mainport, b); #endif // OLIMEXINO }; } #endif } }
void init(void) { printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; // initialize IO (needed for all IO operations) IOInitGlobal(); #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); #endif i2cSetOverclock(masterConfig.i2c_overclock); #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif systemInit(); // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); #ifdef ALIENFLIGHTF3 ledInit(hardwareRevision == AFF3_REV_1 ? false : true); #else ledInit(false); #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(500); timerInit(); // timer must be initialized before any channel is allocated serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL)); #ifdef USE_SERVOS mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer); #else mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #endif drv_pwm_config_t pwm_params; memset(&pwm_params, 0, sizeof(pwm_params)); #ifdef SONAR if (feature(FEATURE_SONAR)) { const sonarHcsr04Hardware_t *sonarHardware = sonarGetHardwareConfiguration(masterConfig.batteryConfig.currentMeterType); if (sonarHardware) { pwm_params.useSonar = true; pwm_params.sonarIOConfig.triggerTag = sonarHardware->triggerTag; pwm_params.sonarIOConfig.echoTag = sonarHardware->echoTag; } } #endif // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_USART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #ifdef STM32F303xC pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef USE_SERVOS pwm_params.useServos = isServoOutputEnabled(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; #endif pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors #ifndef SKIP_RX_PWM_PPM pwmRxInit(masterConfig.inputFilteringMode); #endif // pwmInit() needs to be called as soon as possible for ESC compatibility reasons pwmInit(&pwm_params); mixerUsePWMIOConfiguration(); if (!feature(FEATURE_ONESHOT125)) motorControlEnable = true; systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperConfig_t beeperConfig = { .ioTag = IO_TAG(BEEPER), #ifdef BEEPER_INVERTED .isOD = false, .isInverted = true #else .isOD = true, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.isOD = false; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_USART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(FURYF3) && defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif #ifdef GPS if (feature(FEATURE_GPS)) { gpsPreInit(&masterConfig.gpsConfig); } #endif // Set gyro sampling rate divider before initialization gyroSetSampleRate(masterConfig.looptime, masterConfig.gyro_lpf, masterConfig.gyroSync, masterConfig.gyroSyncDenominator); if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; for (int i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspInit(&masterConfig.serialConfig); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig, currentProfile->modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); } #endif #ifdef NAV navigationInit( &masterConfig.navConfig, ¤tProfile->pidProfile, ¤tProfile->rcControlsConfig, &masterConfig.rxConfig, &masterConfig.flight3DConfig, &masterConfig.escAndServoConfig ); #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(); } #elif defined(USE_FLASH_M25P16) m25p16_init(); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif #ifdef BLACKBOX initBlackbox(); #endif gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif int main(void) { init(); /* Setup scheduler */ schedulerInit(); rescheduleTask(TASK_GYROPID, targetLooptime); setTaskEnabled(TASK_GYROPID, true); setTaskEnabled(TASK_SERIAL, true); #ifdef BEEPER setTaskEnabled(TASK_BEEPER, true); #endif setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER)); setTaskEnabled(TASK_RX, true); #ifdef GPS setTaskEnabled(TASK_GPS, feature(FEATURE_GPS)); #endif #ifdef MAG setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG)); #if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963) // fixme temporary solution for AK6983 via slave I2C on MPU9250 rescheduleTask(TASK_COMPASS, 1000000 / 40); #endif #endif #ifdef BARO setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO)); #endif #ifdef SONAR setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR)); #endif #ifdef DISPLAY setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY)); #endif #ifdef TELEMETRY setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY)); #endif #ifdef LED_STRIP setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP)); #endif while (true) { scheduler(); processLoopback(); } }
bool mpu6050Detect(sensor_t *acc, sensor_t *gyro, uint16_t lpf, uint8_t *scale) { bool ack; uint8_t sig, rev; uint8_t tmp[6]; delay(35); // datasheet page 13 says 30ms. other stuff could have been running meanwhile. but we'll be safe ack = i2cRead(MPU6050_ADDRESS, MPU_RA_WHO_AM_I, 1, &sig); if (!ack) return false; // So like, MPU6xxx has a "WHO_AM_I" register, that is used to verify the identity of the device. // The contents of WHO_AM_I are the upper 6 bits of the MPU-60X0’s 7-bit I2C address. // The least significant bit of the MPU-60X0’s I2C address is determined by the value of the AD0 pin. (we know that already). // But here's the best part: The value of the AD0 pin is not reflected in this register. if (sig != (MPU6050_ADDRESS & 0x7e)) return false; // determine product ID and accel revision i2cRead(MPU6050_ADDRESS, MPU_RA_XA_OFFS_H, 6, tmp); rev = ((tmp[5] & 0x01) << 2) | ((tmp[3] & 0x01) << 1) | (tmp[1] & 0x01); if (rev) { /* Congrats, these parts are better. */ if (rev == 1) { mpuAccelHalf = 1; } else if (rev == 2) { mpuAccelHalf = 0; } else { failureMode(5); } } else { i2cRead(MPU6050_ADDRESS, MPU_RA_PRODUCT_ID, 1, &sig); rev = sig & 0x0F; if (!rev) { failureMode(5); } else if (rev == 4) { mpuAccelHalf = 1; } else { mpuAccelHalf = 0; } } acc->init = mpu6050AccInit; acc->read = mpu6050AccRead; gyro->init = mpu6050GyroInit; gyro->read = mpu6050GyroRead; // 16.4 dps/lsb scalefactor gyro->scale = (4.0f / 16.4f) * (M_PI / 180.0f) * 0.000001f; // give halfacc (old revision) back to system if (scale) *scale = mpuAccelHalf; // default lpf is 42Hz switch (lpf) { case 256: mpuLowPassFilter = MPU6050_LPF_256HZ; break; case 188: mpuLowPassFilter = MPU6050_LPF_188HZ; break; case 98: mpuLowPassFilter = MPU6050_LPF_98HZ; break; default: case 42: mpuLowPassFilter = MPU6050_LPF_42HZ; break; case 20: mpuLowPassFilter = MPU6050_LPF_20HZ; break; case 10: mpuLowPassFilter = MPU6050_LPF_10HZ; break; case 5: mpuLowPassFilter = MPU6050_LPF_5HZ; break; } return true; }
void writeEEPROM(void) { // Generate compile time error if the config does not fit in the reserved area of flash. BUILD_BUG_ON(sizeof(master_t) > FLASH_TO_RESERVE_FOR_CONFIG); FLASH_Status status = 0; uint32_t wordOffset; int8_t attemptsRemaining = 3; suspendRxSignal(); // prepare checksum/version constants masterConfig.version = EEPROM_CONF_VERSION; masterConfig.size = sizeof(master_t); masterConfig.magic_be = 0xBE; masterConfig.magic_ef = 0xEF; masterConfig.chk = 0; // erase checksum before recalculating masterConfig.chk = calculateChecksum((const uint8_t *) &masterConfig, sizeof(master_t)); // write it FLASH_Unlock(); while (attemptsRemaining--) { #ifdef STM32F40_41xxx FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); #endif #ifdef STM32F303 FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPERR); #endif #ifdef STM32F10X FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR); #endif for (wordOffset = 0; wordOffset < sizeof(master_t); wordOffset += 4) { if (wordOffset % FLASH_PAGE_SIZE == 0) { #if defined(STM32F40_41xxx) status = FLASH_EraseSector(FLASH_Sector_8, VoltageRange_3); //0x08080000 to 0x080A0000 #elif defined (STM32F411xE) status = FLASH_EraseSector(FLASH_Sector_7, VoltageRange_3); //0x08060000 to 0x08080000 #else status = FLASH_ErasePage(CONFIG_START_FLASH_ADDRESS + wordOffset); #endif if (status != FLASH_COMPLETE) { break; } } status = FLASH_ProgramWord(CONFIG_START_FLASH_ADDRESS + wordOffset, *(uint32_t *) ((char *) &masterConfig + wordOffset)); if (status != FLASH_COMPLETE) { break; } } if (status == FLASH_COMPLETE) { break; } } FLASH_Lock(); // Flash write failed - just die now if (status != FLASH_COMPLETE || !isEEPROMContentValid()) { failureMode(FAILURE_FLASH_WRITE_FAILED); } resumeRxSignal(); }
// FIXME: HAL for now this will only work for F4/F7 as flash layout is different void writeEEPROM(void) { // Generate compile time error if the config does not fit in the reserved area of flash. BUILD_BUG_ON(sizeof(master_t) > FLASH_TO_RESERVE_FOR_CONFIG); HAL_StatusTypeDef status; uint32_t wordOffset; int8_t attemptsRemaining = 3; suspendRxSignal(); // prepare checksum/version constants masterConfig.version = EEPROM_CONF_VERSION; masterConfig.size = sizeof(master_t); masterConfig.magic_be = 0xBE; masterConfig.magic_ef = 0xEF; masterConfig.chk = 0; // erase checksum before recalculating masterConfig.chk = calculateChecksum((const uint8_t *) &masterConfig, sizeof(master_t)); // write it /* Unlock the Flash to enable the flash control register access *************/ HAL_FLASH_Unlock(); while (attemptsRemaining--) { /* Fill EraseInit structure*/ FLASH_EraseInitTypeDef EraseInitStruct = {0}; EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3; // 2.7-3.6V EraseInitStruct.Sector = CONFIG_START_FLASH_SECTOR; EraseInitStruct.NbSectors = 1; uint32_t SECTORError; status = HAL_FLASHEx_Erase(&EraseInitStruct, &SECTORError); if (status != HAL_OK) { continue; } else { for (wordOffset = 0; wordOffset < sizeof(master_t); wordOffset += 4) { status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, CONFIG_START_FLASH_ADDRESS + wordOffset, *(uint32_t *) ((char *) &masterConfig + wordOffset)); if(status != HAL_OK) { break; } } } if (status == HAL_OK) { break; } } HAL_FLASH_Lock(); // Flash write failed - just die now if (status != HAL_OK || !isEEPROMContentValid()) { failureMode(FAILURE_FLASH_WRITE_FAILED); } resumeRxSignal(); }
void init(void) { uint8_t i; drv_pwm_config_t pwm_params; printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); detectHardwareRevision(); systemInit(); // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); ledInit(); if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } delay(100); timerInit(); // timer must be initialized before any channel is allocated serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL)); mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer); memset(&pwm_params, 0, sizeof(pwm_params)); const sonarHardware_t *sonarHardware = NULL; if (feature(FEATURE_SONAR)) { sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig); sonarGPIOConfig_t sonarGPIOConfig = { .gpio = SONAR_GPIO, .triggerPin = sonarHardware->echo_pin, .echoPin = sonarHardware->trigger_pin, }; pwm_params.sonarGPIOConfig = &sonarGPIOConfig; } // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); pwm_params.useSonar = feature(FEATURE_SONAR); pwm_params.useServos = isMixerUsingServos(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwmRxInit(masterConfig.inputFilteringMode); pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); mixerUsePWMOutputConfiguration(pwmOutputConfiguration); if (!feature(FEATURE_ONESHOT125)) motorControlEnable = true; systemState |= SYSTEM_STATE_MOTORS_READY; beeperConfig_t beeperConfig = { .gpioPeripheral = BEEP_PERIPHERAL, .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, .gpioMode = Mode_Out_PP, .isInverted = true }; beeperInit(&beeperConfig); initInverter(); spiInit(SPI1); spiInit(SPI2); updateHardwareRevision(); serialRemovePort(SERIAL_PORT_USART3); i2cInit(I2C_DEVICE); drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = true; // optional ADC5 input on rev.5 hardware adcInit(&adc_params); initBoardAlignment(&masterConfig.boardAlignment); if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; for (i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; if (sensors(SENSOR_MAG)) compassInit(); imuInit(); mspInit(&masterConfig.serialConfig); cliInit(&masterConfig.serialConfig); failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig); if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( ¤tProfile->gpsProfile, ¤tProfile->pidProfile ); } if (feature(FEATURE_SONAR)) { sonarInit(sonarHardware); } ledStripInit(masterConfig.ledConfigs, masterConfig.colors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } m25p16_init(); flashfsInit(); initBlackbox(); previousTime = micros(); if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); if (feature(FEATURE_DISPLAY)) { displayResetPageCycling(); displayEnablePageCycling(); } // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } int main(void) { init(); //Mine printf("\r\n"); printf("Init Finished!\r\n"); printf("System Init need %d ms\r\n", millis()); printf("############# Begin Test ###############\r\n"); printf("############# End Test ###############\r\n"); while (1) { loop(); } } void HardFault_Handler(void) { // fall out of the sky uint8_t requiredState = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY; if ((systemState & requiredState) == requiredState) { stopMotors(); } while (1); }
static bool writeSettingsToEEPROM(void) { config_streamer_t streamer; config_streamer_init(&streamer); config_streamer_start(&streamer, (uintptr_t)&__config_start, &__config_end - &__config_start); uint8_t chk = 0; configHeader_t header = { .eepromConfigVersion = EEPROM_CONF_VERSION, .boardIdentifier = TARGET_BOARD_IDENTIFIER, }; config_streamer_write(&streamer, (uint8_t *)&header, sizeof(header)); chk = updateChecksum(chk, (uint8_t *)&header, sizeof(header)); // write the transitional masterConfig record config_streamer_write(&streamer, (uint8_t *)&masterConfig, sizeof(masterConfig)); chk = updateChecksum(chk, (uint8_t *)&masterConfig, sizeof(masterConfig)); PG_FOREACH(reg) { const uint16_t regSize = pgSize(reg); configRecord_t record = { .size = sizeof(configRecord_t) + regSize, .pgn = pgN(reg), .version = pgVersion(reg), .flags = 0 }; if (pgIsSystem(reg)) { // write the only instance record.flags |= CR_CLASSICATION_SYSTEM; config_streamer_write(&streamer, (uint8_t *)&record, sizeof(record)); chk = updateChecksum(chk, (uint8_t *)&record, sizeof(record)); config_streamer_write(&streamer, reg->address, regSize); chk = updateChecksum(chk, reg->address, regSize); } else { // write one instance for each profile for (uint8_t profileIndex = 0; profileIndex < MAX_PROFILE_COUNT; profileIndex++) { record.flags = 0; record.flags |= ((profileIndex + 1) & CR_CLASSIFICATION_MASK); config_streamer_write(&streamer, (uint8_t *)&record, sizeof(record)); chk = updateChecksum(chk, (uint8_t *)&record, sizeof(record)); const uint8_t *address = reg->address + (regSize * profileIndex); config_streamer_write(&streamer, address, regSize); chk = updateChecksum(chk, address, regSize); } } } configFooter_t footer = { .terminator = 0, }; config_streamer_write(&streamer, (uint8_t *)&footer, sizeof(footer)); chk = updateChecksum(chk, (uint8_t *)&footer, sizeof(footer)); // append checksum now chk = ~chk; config_streamer_write(&streamer, &chk, sizeof(chk)); config_streamer_flush(&streamer); bool success = config_streamer_finish(&streamer) == 0; return success; } void writeConfigToEEPROM(void) { bool success = false; // write it for (int attempt = 0; attempt < 3 && !success; attempt++) { if (writeSettingsToEEPROM()) { success = true; } } if (success && isEEPROMContentValid()) { return; } // Flash write failed - just die now failureMode(FAILURE_FLASH_WRITE_FAILED); }
void init(void) { printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; systemInit(); //i2cSetOverclock(masterConfig.i2c_overclock); // initialize IO (needed for all IO operations) IOInitGlobal(); debugMode = masterConfig.debug_mode; #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); #ifdef ALIENFLIGHTF3 ledInit(hardwareRevision == AFF3_REV_1 ? false : true); #else ledInit(false); #endif LED2_ON; #ifdef USE_EXTI EXTIInit(); #endif #if defined(BUTTONS) gpio_config_t buttonAGpioConfig = { BUTTON_A_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_A_PORT, &buttonAGpioConfig); gpio_config_t buttonBGpioConfig = { BUTTON_B_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_B_PORT, &buttonBGpioConfig); // Check status of bind plug and exit if not active delayMicroseconds(10); // allow GPIO configuration to settle if (!isMPUSoftReset()) { uint8_t secondsRemaining = 5; bool bothButtonsHeld; do { bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN); if (bothButtonsHeld) { if (--secondsRemaining == 0) { resetEEPROM(); systemReset(); } delay(1000); LED0_TOGGLE; } } while (bothButtonsHeld); } #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated dmaInit(); #if defined(AVOID_UART1_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE); #elif defined(AVOID_UART2_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE); #elif defined(AVOID_UART3_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE); #else serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE); #endif #ifdef USE_SERVOS mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer); #else mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #endif drv_pwm_config_t pwm_params; memset(&pwm_params, 0, sizeof(pwm_params)); #ifdef SONAR if (feature(FEATURE_SONAR)) { const sonarHardware_t *sonarHardware = sonarGetHardwareConfiguration(masterConfig.batteryConfig.currentMeterType); if (sonarHardware) { pwm_params.useSonar = true; pwm_params.sonarIOConfig.triggerTag = sonarHardware->triggerTag; pwm_params.sonarIOConfig.echoTag = sonarHardware->echoTag; } } #endif // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_UART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #ifdef STM32F303xC pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3); #endif #if defined(USE_UART2) && defined(STM32F40_41xxx) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #if defined(USE_UART6) && defined(STM32F40_41xxx) pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef USE_SERVOS pwm_params.useServos = isMixerUsingServos(); pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; #endif bool use_unsyncedPwm = masterConfig.use_unsyncedPwm || masterConfig.motor_pwm_protocol == PWM_TYPE_CONVENTIONAL || masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED; // Configurator feature abused for enabling Fast PWM pwm_params.useFastPwm = (masterConfig.motor_pwm_protocol != PWM_TYPE_CONVENTIONAL && masterConfig.motor_pwm_protocol != PWM_TYPE_BRUSHED); pwm_params.pwmProtocolType = masterConfig.motor_pwm_protocol; pwm_params.motorPwmRate = use_unsyncedPwm ? masterConfig.motor_pwm_rate : 0; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED) { featureClear(FEATURE_3D); pwm_params.idlePulse = 0; // brushed motors } #ifdef CC3D pwm_params.useBuzzerP6 = masterConfig.use_buzzer_p6 ? true : false; #endif #ifndef SKIP_RX_PWM_PPM pwmRxInit(masterConfig.inputFilteringMode); #endif // pwmInit() needs to be called as soon as possible for ESC compatibility reasons pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); mixerUsePWMOutputConfiguration(pwmOutputConfiguration, use_unsyncedPwm); systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperConfig_t beeperConfig = { .ioTag = IO_TAG(BEEPER), #ifdef BEEPER_INVERTED .isOD = false, .isInverted = true #else .isOD = true, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.isOD = false; beeperConfig.isInverted = true; } #endif /* temp until PGs are implemented. */ #ifdef BLUEJAYF4 if (hardwareRevision <= BJF4_REV2) { beeperConfig.ioTag = IO_TAG(BEEPER_OPT); } #endif #ifdef CC3D if (masterConfig.use_buzzer_p6 == 1) beeperConfig.ioTag = IO_TAG(BEEPER_OPT); #endif beeperInit(&beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_BST bstInit(BST_DEVICE); #endif #ifdef USE_SPI #ifdef USE_SPI_DEVICE_1 spiInit(SPIDEV_1); #endif #ifdef USE_SPI_DEVICE_2 spiInit(SPIDEV_2); #endif #ifdef USE_SPI_DEVICE_3 #ifdef ALIENFLIGHTF3 if (hardwareRevision == AFF3_REV_2) { spiInit(SPIDEV_3); } #else spiInit(SPIDEV_3); #endif #endif #endif #ifdef VTX vtxInit(); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_USART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI) #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif #ifdef USE_RTC6705 if (feature(FEATURE_VTX)) { rtc6705_soft_spi_init(); current_vtx_channel = masterConfig.vtx_channel; rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]); rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power); } #endif #ifdef OSD if (feature(FEATURE_OSD)) { osdInit(); } #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, masterConfig.mag_declination, masterConfig.gyro_lpf, masterConfig.gyro_sync_denom)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; LED2_OFF; for (int i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspInit(&masterConfig.serialConfig); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( &masterConfig.gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USB_CABLE_DETECTION usbCableDetectInit(); #endif #ifdef TRANSPONDER if (feature(FEATURE_TRANSPONDER)) { transponderInit(masterConfig.transponderData); transponderEnable(); transponderStartRepeating(); systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED; } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(IOTAG_NONE); } #elif defined(USE_FLASH_M25P16) m25p16_init(IOTAG_NONE); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip #ifdef STM32F4 sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM; #else sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #endif #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) { masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed masterConfig.gyro_sync_denom = 1; } setTargetPidLooptime(gyro.targetLooptime * masterConfig.pid_process_denom); // Initialize pid looptime #ifdef BLACKBOX initBlackbox(); #endif if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif void main_init(void) { init(); /* Setup scheduler */ schedulerInit(); rescheduleTask(TASK_GYROPID, gyro.targetLooptime); setTaskEnabled(TASK_GYROPID, true); if (sensors(SENSOR_ACC)) { setTaskEnabled(TASK_ACCEL, true); switch (gyro.targetLooptime) { // Switch statement kept in place to change acc rates in the future case 500: case 375: case 250: case 125: accTargetLooptime = 1000; break; default: case 1000: #ifdef STM32F10X accTargetLooptime = 1000; #else accTargetLooptime = 1000; #endif } rescheduleTask(TASK_ACCEL, accTargetLooptime); } setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC)); setTaskEnabled(TASK_SERIAL, true); #ifdef BEEPER setTaskEnabled(TASK_BEEPER, true); #endif setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER)); setTaskEnabled(TASK_RX, true); #ifdef GPS setTaskEnabled(TASK_GPS, feature(FEATURE_GPS)); #endif #ifdef MAG setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG)); #if defined(USE_SPI) && defined(USE_MAG_AK8963) // fixme temporary solution for AK6983 via slave I2C on MPU9250 rescheduleTask(TASK_COMPASS, 1000000 / 40); #endif #endif #ifdef BARO setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO)); #endif #ifdef SONAR setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR)); #endif #if defined(BARO) || defined(SONAR) setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)); #endif #ifdef DISPLAY setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY)); #endif #ifdef TELEMETRY setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY)); // Reschedule telemetry to 500hz for Jeti Exbus if (feature(FEATURE_TELEMETRY) || masterConfig.rxConfig.serialrx_provider == SERIALRX_JETIEXBUS) rescheduleTask(TASK_TELEMETRY, 2000); #endif #ifdef LED_STRIP setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP)); #endif #ifdef TRANSPONDER setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER)); #endif #ifdef OSD setTaskEnabled(TASK_OSD, feature(FEATURE_OSD)); #endif #ifdef USE_BST setTaskEnabled(TASK_BST_MASTER_PROCESS, true); #endif }
void init(void) { uint8_t i; drv_pwm_config_t pwm_params; printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); #endif #ifdef STM32F40_41xxx SetSysClock(); #endif #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif systemInit(); ledInit(); #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL)); mixerInit(masterConfig.mixerMode, masterConfig.customMixer); memset(&pwm_params, 0, sizeof(pwm_params)); // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(USE_USART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #ifdef STM32F303xC pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3); #endif #if defined(USE_USART2) && defined(STM32F40_41xxx) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif #if defined(USE_USART6) && defined(STM32F40_41xxx) pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER) && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC; pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL); #ifdef SONAR pwm_params.useSonar = feature(FEATURE_SONAR); #endif #ifdef USE_SERVOS pwm_params.useServos = isMixerUsingServos(); pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX; pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; #endif pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below) if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwmRxInit(masterConfig.inputFilteringMode); pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); mixerUsePWMOutputConfiguration(pwmOutputConfiguration); systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperConfig_t beeperConfig = { .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, .gpioPeripheral = BEEP_PERIPHERAL, #ifdef BEEPER_INVERTED .gpioMode = Mode_Out_PP, .isInverted = true #else .gpioMode = Mode_Out_OD, .isInverted = false #endif }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.gpioMode = Mode_Out_PP; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); spiInit(SPI3); spiInit(SPI4); spiInit(SPI5); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else #if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(STM32F4DISCOVERY) i2cInit(I2C_DEVICE_INT); if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { #ifdef I2C_DEVICE_EXT i2cInit(I2C_DEVICE_EXT); #endif } #endif #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(3); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; for (i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspInit(&masterConfig.serialConfig); cliInit(&masterConfig.serialConfig); failsafeInit(&masterConfig.rxConfig); rxInit(&masterConfig.rxConfig); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( ¤tProfile->gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(&masterConfig.batteryConfig); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors); if (feature(FEATURE_LED_STRIP)) { #ifdef COLIBRI if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) { ledStripEnable(); } #else ledStripEnable(); #endif } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(); } #endif #if defined(SPRACINGF3) || defined(CC3D) || defined(COLIBRI) || defined(REVO) m25p16_init(); #endif flashfsInit(); #endif #ifdef BLACKBOX //initBlackbox(); #endif previousTime = micros(); if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } //gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet //timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif #include <stdio.h> #include "stm32f4xx_rcc.h" #include "stm32f4xx_gpio.h" GPIO_InitTypeDef GPIO_InitStruct; int main(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15 | GPIO_Pin_14 | GPIO_Pin_13 | GPIO_Pin_12; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOD, &GPIO_InitStruct); printf("Hello World!\r\n"); hello(); while (1) { static int count = 0; static int i; for (i = 0; i < 10000000; ++i) ; GPIO_ToggleBits(GPIOD, GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15); printf("%d\r\n", ++count); } //init(); /* while (1) { //loop(); int x = 1;//processLoopback(); }*/ }
mpuDetectionResult_t *detectMpu(const extiConfig_t *configToUse) { memset(&mpuDetectionResult, 0, sizeof(mpuDetectionResult)); memset(&mpuConfiguration, 0, sizeof(mpuConfiguration)); mpuIntExtiConfig = configToUse; bool ack; uint8_t sig; uint8_t inquiryResult; // MPU datasheet specifies 30ms. delay(35); #ifdef USE_I2C ack = mpuReadRegisterI2C(MPU_RA_WHO_AM_I, 1, &sig); if (ack) { mpuConfiguration.read = mpuReadRegisterI2C; mpuConfiguration.write = mpuWriteRegisterI2C; } else { #else { #endif #ifdef USE_SPI bool detectedSpiSensor = detectSPISensorsAndUpdateDetectionResult(); UNUSED(detectedSpiSensor); #endif return &mpuDetectionResult; } mpuConfiguration.gyroReadXRegister = MPU_RA_GYRO_XOUT_H; // If an MPU3050 is connected sig will contain 0. ack = mpuReadRegisterI2C(MPU_RA_WHO_AM_I_LEGACY, 1, &inquiryResult); inquiryResult &= MPU_INQUIRY_MASK; if (ack && inquiryResult == MPUx0x0_WHO_AM_I_CONST) { mpuDetectionResult.sensor = MPU_3050; mpuConfiguration.gyroReadXRegister = MPU3050_GYRO_OUT; return &mpuDetectionResult; } sig &= MPU_INQUIRY_MASK; if (sig == MPUx0x0_WHO_AM_I_CONST) { mpuDetectionResult.sensor = MPU_60x0; mpu6050FindRevision(); } else if (sig == MPU6500_WHO_AM_I_CONST) { mpuDetectionResult.sensor = MPU_65xx_I2C; } return &mpuDetectionResult; } #ifdef USE_SPI static bool detectSPISensorsAndUpdateDetectionResult(void) { #ifdef USE_GYRO_SPI_MPU6500 if (mpu6500SpiDetect()) { mpuDetectionResult.sensor = MPU_65xx_SPI; mpuConfiguration.gyroReadXRegister = MPU_RA_GYRO_XOUT_H; mpuConfiguration.read = mpu6500ReadRegister; mpuConfiguration.write = mpu6500WriteRegister; return true; } #endif #ifdef USE_GYRO_SPI_MPU6000 if (mpu6000SpiDetect()) { mpuDetectionResult.sensor = MPU_60x0_SPI; mpuConfiguration.gyroReadXRegister = MPU_RA_GYRO_XOUT_H; mpuConfiguration.read = mpu6000ReadRegister; mpuConfiguration.write = mpu6000WriteRegister; return true; } #endif return false; } #endif static void mpu6050FindRevision(void) { bool ack; UNUSED(ack); uint8_t readBuffer[6]; uint8_t revision; uint8_t productId; // There is a map of revision contained in the android source tree which is quite comprehensive and may help to understand this code // See https://android.googlesource.com/kernel/msm.git/+/eaf36994a3992b8f918c18e4f7411e8b2320a35f/drivers/misc/mpu6050/mldl_cfg.c // determine product ID and accel revision ack = mpuConfiguration.read(MPU_RA_XA_OFFS_H, 6, readBuffer); revision = ((readBuffer[5] & 0x01) << 2) | ((readBuffer[3] & 0x01) << 1) | (readBuffer[1] & 0x01); if (revision) { /* Congrats, these parts are better. */ if (revision == 1) { mpuDetectionResult.resolution = MPU_HALF_RESOLUTION; } else if (revision == 2) { mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } else if ((revision == 3) || (revision == 7)) { mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } else { failureMode(FAILURE_ACC_INCOMPATIBLE); } } else { ack = mpuConfiguration.read(MPU_RA_PRODUCT_ID, 1, &productId); revision = productId & 0x0F; if (!revision) { failureMode(FAILURE_ACC_INCOMPATIBLE); } else if (revision == 4) { mpuDetectionResult.resolution = MPU_HALF_RESOLUTION; } else { mpuDetectionResult.resolution = MPU_FULL_RESOLUTION; } } }
void init(void) { uint8_t i; drv_pwm_config_t pwm_params; bool sensorsOK = false; initPrintfSupport(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); #ifdef STM32F303 // start fpu SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2)); #endif #ifdef STM32F303xC SetSysClock(); #endif #ifdef STM32F10X // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers // Configure the Flash Latency cycles and enable prefetch buffer SetSysClock(masterConfig.emf_avoidance); #endif #ifdef NAZE detectHardwareRevision(); #endif systemInit(); #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated ledInit(); #ifdef BEEPER beeperConfig_t beeperConfig = { .gpioMode = Mode_Out_OD, .gpioPin = BEEP_PIN, .gpioPort = BEEP_GPIO, .gpioPeripheral = BEEP_PERIPHERAL, .isInverted = false }; #ifdef NAZE if (hardwareRevision >= NAZE32_REV5) { // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN. beeperConfig.gpioMode = Mode_Out_PP; beeperConfig.isInverted = true; } #endif beeperInit(&beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_SPI spiInit(SPI1); spiInit(SPI2); #endif #ifdef NAZE updateHardwareRevision(); #endif #ifdef USE_I2C #ifdef NAZE if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } #else // Configure the rest of the stuff i2cInit(I2C_DEVICE); #endif #endif #if !defined(SPARKY) drv_adc_config_t adc_params; adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform sensorsSet(SENSORS_SET); // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead. sensorsOK = sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination); // if gyro was not detected due to whatever reason, we give up now. if (!sensorsOK) failureMode(3); LED1_ON; LED0_OFF; for (i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; imuInit(); mixerInit(masterConfig.mixerMode, masterConfig.customMixer); #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif serialInit(&masterConfig.serialConfig); memset(&pwm_params, 0, sizeof(pwm_params)); // when using airplane/wing mixer, servo/motor outputs are remapped if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING) pwm_params.airplane = true; else pwm_params.airplane = false; #if defined(SERIAL_PORT_USART2) && defined(STM32F10X) pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2); #endif pwm_params.useVbat = feature(FEATURE_VBAT); pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL); pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM); pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC); pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER); pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP); pwm_params.usePPM = feature(FEATURE_RX_PPM); pwm_params.useOneshot = feature(FEATURE_ONESHOT125); pwm_params.useServos = isMixerUsingServos(); pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX; pwm_params.motorPwmRate = masterConfig.motor_pwm_rate; pwm_params.servoPwmRate = masterConfig.servo_pwm_rate; pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below) if (feature(FEATURE_3D)) pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; if (pwm_params.motorPwmRate > 500) pwm_params.idlePulse = 0; // brushed motors pwm_params.servoCenterPulse = masterConfig.rxConfig.midrc; pwmRxInit(masterConfig.inputFilteringMode); pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); mixerUsePWMOutputConfiguration(pwmOutputConfiguration); failsafe = failsafeInit(&masterConfig.rxConfig); beepcodeInit(failsafe); rxInit(&masterConfig.rxConfig, failsafe); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( ¤tProfile->gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { Sonar_init(); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors, failsafe); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) initTelemetry(); #endif previousTime = micros(); if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. // Check battery type/voltage if (feature(FEATURE_VBAT)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayEnablePageCycling(); #endif } #endif } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif int main(void) { init(); while (1) { loop(); processLoopback(); } }
static void mpu6000AccAndGyroInit(gyroDev_t *gyro) { busDevice_t * busDev = gyro->busDev; const gyroFilterAndRateConfig_t * config = mpuChooseGyroConfig(gyro->lpf, 1000000 / gyro->requestedSampleIntervalUs); gyro->sampleRateIntervalUs = 1000000 / config->gyroRateHz; gyroIntExtiInit(gyro); busSetSpeed(busDev, BUS_SPEED_INITIALIZATION); // Device Reset busWrite(busDev, MPU_RA_PWR_MGMT_1, BIT_H_RESET); delay(150); busWrite(busDev, MPU_RA_SIGNAL_PATH_RESET, BIT_GYRO | BIT_ACC | BIT_TEMP); delay(150); // Clock Source PPL with Z axis gyro reference busWrite(busDev, MPU_RA_PWR_MGMT_1, MPU_CLK_SEL_PLLGYROZ); delayMicroseconds(15); // Disable Primary I2C Interface busWrite(busDev, MPU_RA_USER_CTRL, BIT_I2C_IF_DIS); delayMicroseconds(15); busWrite(busDev, MPU_RA_PWR_MGMT_2, 0x00); delayMicroseconds(15); // Accel Sample Rate 1kHz // Gyroscope Output Rate = 1kHz when the DLPF is enabled busWrite(busDev, MPU_RA_SMPLRT_DIV, config->gyroConfigValues[1]); delayMicroseconds(15); // Gyro +/- 1000 DPS Full Scale busWrite(busDev, MPU_RA_GYRO_CONFIG, INV_FSR_2000DPS << 3); delayMicroseconds(15); // Accel +/- 8 G Full Scale busWrite(busDev, MPU_RA_ACCEL_CONFIG, INV_FSR_16G << 3); delayMicroseconds(15); busWrite(busDev, MPU_RA_INT_PIN_CFG, 0 << 7 | 0 << 6 | 0 << 5 | 1 << 4 | 0 << 3 | 0 << 2 | 0 << 1 | 0 << 0); // INT_ANYRD_2CLEAR delayMicroseconds(15); #ifdef USE_MPU_DATA_READY_SIGNAL busWrite(busDev, MPU_RA_INT_ENABLE, MPU_RF_DATA_RDY_EN); delayMicroseconds(15); #endif // Accel and Gyro DLPF Setting busWrite(busDev, MPU_RA_CONFIG, config->gyroConfigValues[0]); delayMicroseconds(1); busSetSpeed(busDev, BUS_SPEED_FAST); mpuGyroRead(gyro); if (((int8_t)gyro->gyroADCRaw[1]) == -1 && ((int8_t)gyro->gyroADCRaw[0]) == -1) { failureMode(FAILURE_GYRO_INIT_FAILED); } }
void init(void) { #ifdef USE_HAL_DRIVER HAL_Init(); #endif printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; systemInit(); //i2cSetOverclock(masterConfig.i2c_overclock); // initialize IO (needed for all IO operations) IOInitGlobal(); debugMode = masterConfig.debug_mode; #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); #ifdef ALIENFLIGHTF3 ledInit(hardwareRevision == AFF3_REV_1 ? false : true); #else ledInit(false); #endif LED2_ON; #ifdef USE_EXTI EXTIInit(); #endif #if defined(BUTTONS) gpio_config_t buttonAGpioConfig = { BUTTON_A_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_A_PORT, &buttonAGpioConfig); gpio_config_t buttonBGpioConfig = { BUTTON_B_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_B_PORT, &buttonBGpioConfig); // Check status of bind plug and exit if not active delayMicroseconds(10); // allow GPIO configuration to settle if (!isMPUSoftReset()) { uint8_t secondsRemaining = 5; bool bothButtonsHeld; do { bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN); if (bothButtonsHeld) { if (--secondsRemaining == 0) { resetEEPROM(); systemReset(); } delay(1000); LED0_TOGGLE; } } while (bothButtonsHeld); } #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated #if !defined(USE_HAL_DRIVER) dmaInit(); #endif #if defined(AVOID_UART1_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE); #elif defined(AVOID_UART2_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE); #elif defined(AVOID_UART3_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE); #else serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE); #endif mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #ifdef USE_SERVOS servoMixerInit(masterConfig.customServoMixer); #endif uint16_t idlePulse = masterConfig.motorConfig.mincommand; if (feature(FEATURE_3D)) { idlePulse = masterConfig.flight3DConfig.neutral3d; } if (masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_BRUSHED) { featureClear(FEATURE_3D); idlePulse = 0; // brushed motors } #ifdef USE_QUAD_MIXER_ONLY motorInit(&masterConfig.motorConfig, idlePulse, QUAD_MOTOR_COUNT); #else motorInit(&masterConfig.motorConfig, idlePulse, mixers[masterConfig.mixerMode].motorCount); #endif #ifdef USE_SERVOS if (isMixerUsingServos()) { //pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); servoInit(&masterConfig.servoConfig); } #endif #ifndef SKIP_RX_PWM_PPM if (feature(FEATURE_RX_PPM)) { ppmRxInit(&masterConfig.ppmConfig, masterConfig.motorConfig.motorPwmProtocol); } else if (feature(FEATURE_RX_PARALLEL_PWM)) { pwmRxInit(&masterConfig.pwmConfig); } pwmRxSetInputFilteringMode(masterConfig.inputFilteringMode); #endif mixerConfigureOutput(); #ifdef USE_SERVOS servoConfigureOutput(); #endif systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperInit(&masterConfig.beeperConfig); #endif /* temp until PGs are implemented. */ #ifdef INVERTER initInverter(); #endif #ifdef USE_BST bstInit(BST_DEVICE); #endif #ifdef USE_SPI #ifdef USE_SPI_DEVICE_1 spiInit(SPIDEV_1); #endif #ifdef USE_SPI_DEVICE_2 spiInit(SPIDEV_2); #endif #ifdef USE_SPI_DEVICE_3 #ifdef ALIENFLIGHTF3 if (hardwareRevision == AFF3_REV_2) { spiInit(SPIDEV_3); } #else spiInit(SPIDEV_3); #endif #endif #ifdef USE_SPI_DEVICE_4 spiInit(SPIDEV_4); #endif #endif #ifdef VTX vtxInit(); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_USART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI) #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif #ifdef USE_RTC6705 if (feature(FEATURE_VTX)) { rtc6705_soft_spi_init(); current_vtx_channel = masterConfig.vtx_channel; rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]); rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power); } #endif #ifdef OSD if (feature(FEATURE_OSD)) { osdInit(); } #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, masterConfig.mag_declination, masterConfig.gyro_lpf, masterConfig.gyro_sync_denom)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; LED2_OFF; for (int i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspFcInit(); mspSerialInit(); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( &masterConfig.gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(&masterConfig.sonarConfig); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USB_CABLE_DETECTION usbCableDetectInit(); #endif #ifdef TRANSPONDER if (feature(FEATURE_TRANSPONDER)) { transponderInit(masterConfig.transponderData); transponderEnable(); transponderStartRepeating(); systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED; } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(IO_TAG_NONE); } #elif defined(USE_FLASH_M25P16) m25p16_init(IO_TAG_NONE); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip #if defined(STM32F4) || defined(STM32F7) sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM; #else sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #endif #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) { masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed masterConfig.gyro_sync_denom = 1; } setTargetPidLooptime((gyro.targetLooptime + LOOPTIME_SUSPEND_TIME) * masterConfig.pid_process_denom); // Initialize pid looptime #ifdef BLACKBOX initBlackbox(); #endif if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; fcTasksInit(); systemState |= SYSTEM_STATE_READY; }
// AfroFlight32 i2c sensors void sensorsAutodetect(void) { int16_t deg, min; drv_adxl345_config_t acc_params; bool haveMpu6k = false; // Autodetect gyro hardware. We have MPU3050 or MPU6050. if (mpu6050Detect(&acc, &gyro, mcfg.gyro_lpf, &core.mpu6050_scale)) { // this filled up acc.* struct with init values haveMpu6k = true; } else if (l3g4200dDetect(&gyro, mcfg.gyro_lpf)) { // well, we found our gyro ; } else if (!mpu3050Detect(&gyro, mcfg.gyro_lpf)) { // if this fails, we get a beep + blink pattern. we're doomed, no gyro or i2c error. failureMode(3); } // Accelerometer. F**k it. Let user break shit. retry: switch (mcfg.acc_hardware) { case ACC_NONE: // disable ACC sensorsClear(SENSOR_ACC); break; case ACC_DEFAULT: // autodetect case ACC_ADXL345: // ADXL345 acc_params.useFifo = false; acc_params.dataRate = 800; // unused currently if (adxl345Detect(&acc_params, &acc)) accHardware = ACC_ADXL345; if (mcfg.acc_hardware == ACC_ADXL345) break; ; // fallthrough case ACC_MPU6050: // MPU6050 if (haveMpu6k) { mpu6050Detect(&acc, &gyro, mcfg.gyro_lpf, &core.mpu6050_scale); // yes, i'm rerunning it again. re-fill acc struct accHardware = ACC_MPU6050; if (mcfg.acc_hardware == ACC_MPU6050) break; } ; // fallthrough #ifndef OLIMEXINO case ACC_MMA8452: // MMA8452 if (mma8452Detect(&acc)) { accHardware = ACC_MMA8452; if (mcfg.acc_hardware == ACC_MMA8452) break; } ; // fallthrough case ACC_BMA280: // BMA280 if (bma280Detect(&acc)) { accHardware = ACC_BMA280; if (mcfg.acc_hardware == ACC_BMA280) break; } #endif } // Found anything? Check if user f****d up or ACC is really missing. if (accHardware == ACC_DEFAULT) { if (mcfg.acc_hardware > ACC_DEFAULT) { // Nothing was found and we have a forced sensor type. Stupid user probably chose a sensor that isn't present. mcfg.acc_hardware = ACC_DEFAULT; goto retry; } else { // We're really screwed sensorsClear(SENSOR_ACC); } } #ifdef BARO // Detect what pressure sensors are available. baro->update() is set to sensor-specific update function if (!ms5611Detect(&baro)) { // ms5611 disables BMP085, and tries to initialize + check PROM crc. if this works, we have a baro if (!bmp085Detect(&baro)) { // if both failed, we don't have anything sensorsClear(SENSOR_BARO); } } #endif // Now time to init things, acc first if (sensors(SENSOR_ACC)) acc.init(mcfg.acc_align); // this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here. gyro.init(mcfg.gyro_align); #ifdef MAG if (!hmc5883lDetect(mcfg.mag_align)) sensorsClear(SENSOR_MAG); #endif // calculate magnetic declination deg = cfg.mag_declination / 100; min = cfg.mag_declination % 100; if (sensors(SENSOR_MAG)) magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units else magneticDeclination = 0.0f; }