/** * @method rspamd_fann:train(inputs, outputs) * Trains neural network with samples. Inputs and outputs should be tables of * equal size, each row in table should be N inputs and M outputs, e.g. * {0, 1, 1} -> {0} * @param {table} inputs input samples * @param {table} outputs output samples * @return {number} number of samples learned */ static gint lua_fann_train (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint ninputs, noutputs, j; fann_type *cur_input, *cur_output; gboolean ret = FALSE; if (f != NULL) { /* First check sanity, call for table.getn for that */ ninputs = rspamd_lua_table_size (L, 2); noutputs = rspamd_lua_table_size (L, 3); if (ninputs != fann_get_num_input (f) || noutputs != fann_get_num_output (f)) { msg_err ("bad number of inputs(%d, expected %d) and " "output(%d, expected %d) args for train", ninputs, fann_get_num_input (f), noutputs, fann_get_num_output (f)); } else { cur_input = g_malloc (ninputs * sizeof (fann_type)); for (j = 0; j < ninputs; j ++) { lua_rawgeti (L, 2, j + 1); cur_input[j] = lua_tonumber (L, -1); lua_pop (L, 1); } cur_output = g_malloc (noutputs * sizeof (fann_type)); for (j = 0; j < noutputs; j++) { lua_rawgeti (L, 3, j + 1); cur_output[j] = lua_tonumber (L, -1); lua_pop (L, 1); } fann_train (f, cur_input, cur_output); g_free (cur_input); g_free (cur_output); ret = TRUE; } } lua_pushboolean (L, ret); return 1; #endif }
template<bool msg> AnnDef *Ann_GetAnnDef( int i, unsigned int inc, unsigned int outc ) { AnnDef *def = getAnnDef(i); if(!def) { if(msg) Print("Could not get ANN at index %i\n", i); return 0; } struct fann *ann = def->_ann; if( inc != fann_get_num_input(ann) ) { if(msg) Print( "Error: Input count mismatch ugen: %i / ann: %i\n", inc, fann_get_num_input(ann) ); return 0; } if( outc != fann_get_num_output(ann) ) { if(msg) Print( "Error: Output count mismatch ugen: %i / ann: %i\n", outc, fann_get_num_output(ann) ); return 0; } return def; }
/*! ann:__tostring() *# Converts a neural net to a string for Lua's virtual machine *x print(ann) *- */ static int ann_tostring(lua_State *L) { struct fann **ann; ann = luaL_checkudata(L, 1, FANN_METATABLE); luaL_argcheck(L, ann != NULL, 1, "'neural net' expected"); lua_pushfstring(L, "[[FANN neural network: %d %d %d]]", fann_get_num_input(*ann), fann_get_num_output(*ann), fann_get_total_neurons(*ann)); return 1; }
/*! ann:run(input1, input2, ..., inputn) *# Evaluates the neural network for the given inputs. *x xor = ann:run(-1, 1) *- */ static int ann_run(lua_State *L) { struct fann **ann; int nin, nout, i; fann_type *input, *output; ann = luaL_checkudata(L, 1, FANN_METATABLE); luaL_argcheck(L, ann != NULL, 1, "'neural net' expected"); nin = lua_gettop(L) - 1; if(nin != fann_get_num_input(*ann)) luaL_error(L, "wrong number of inputs: expected %d, got %d", fann_get_num_input(*ann), nin); nout = fann_get_num_output(*ann); #ifdef FANN_VERBOSE printf("Evaluating neural net: %d inputs, %d outputs\n", nin, nout); #endif input = lua_newuserdata(L, nin*(sizeof *input)); for(i = 0; i < nin; i++) { input[i] = luaL_checknumber(L, i + 2); #ifdef FANN_VERBOSE printf("Input %d's value is %f\n", i, input[i]); #endif } output = fann_run(*ann, input); for(i = 0; i < nout; i++) { #ifdef FANN_VERBOSE printf("Output %d's value is %f\n", i, output[i]); #endif lua_pushnumber(L, output[i]); } return nout; }
void vTrainThread::run(){ results.clear(); const unsigned int num_input = fann_get_num_input(neural); //Готовим выборку для шага обучения float *data =new float[num_input]; for(int i = 0;i<steps; i++ ){ struct train_result step; memset(&step, 0, sizeof(train_result)); signal->logMessage(DEBUG, QString("Step%1").arg(i)); memset(data, 0, num_input*sizeof(float)); float desired_output = 0.0; QByteArray input = buffer->getBuffer(num_input); QByteArray diff = buffer->getDiff(num_input); for(int i = 0; i<input.size(); i++){ data[i] = static_cast<float>(input.at(i)); desired_output += abs(static_cast<float>(diff.at(i))); } signal->logMessage(DEBUG, QString(" Diff Sum: %1").arg(desired_output)); desired_output /=255; step.need_result = desired_output; signal->logMessage(DEBUG, QString(" need output: %1").arg(desired_output)); float* var = fann_run(neural, data); step.output_before_train = *var; signal->logMessage(DEBUG, QString(" value before: %1").arg(*var)); fann_train(neural, data, &desired_output); var = fann_run(neural, data); step.output_after_train = desired_output; signal->logMessage(DEBUG, QString(" value after: %1").arg(*var)); step.error1 = (step.need_result == 0 && step.output_before_train != 0) ? true : false; step.error2 = (step.need_result != 0 && step.output_before_train == 0) ? 1 : 0; results.append(step); } }
/*** * @method rspamd_fann:get_inputs() * Returns number of inputs for neural network * @return {number} number of inputs */ static gint lua_fann_get_inputs (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); if (f != NULL) { lua_pushnumber (L, fann_get_num_input (f)); } else { lua_pushnil (L); } return 1; #endif }
/** * @method rspamd_fann:train_threaded(inputs, outputs, callback, event_base, {params}) * Trains neural network with batch of samples. Inputs and outputs should be tables of * equal size, each row in table should be N inputs and M outputs, e.g. * {{0, 1, 1}, ...} -> {{0}, {1} ...} * @param {table} inputs input samples * @param {table} outputs output samples * @param {callback} function that is called when train is completed */ static gint lua_fann_train_threaded (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint ninputs, noutputs, ndata, i, j; struct lua_fann_train_cbdata *cbdata; struct event_base *ev_base = lua_check_ev_base (L, 5); GError *err = NULL; const guint max_epochs_default = 1000; const gdouble desired_mse_default = 0.0001; if (f != NULL && lua_type (L, 2) == LUA_TTABLE && lua_type (L, 3) == LUA_TTABLE && lua_type (L, 4) == LUA_TFUNCTION && ev_base != NULL) { /* First check sanity, call for table.getn for that */ ndata = rspamd_lua_table_size (L, 2); ninputs = fann_get_num_input (f); noutputs = fann_get_num_output (f); cbdata = g_malloc0 (sizeof (*cbdata)); cbdata->L = L; cbdata->f = f; cbdata->train = rspamd_fann_create_train (ndata, ninputs, noutputs); lua_pushvalue (L, 4); cbdata->cbref = luaL_ref (L, LUA_REGISTRYINDEX); if (rspamd_socketpair (cbdata->pair, 0) == -1) { msg_err ("cannot open socketpair: %s", strerror (errno)); cbdata->pair[0] = -1; cbdata->pair[1] = -1; goto err; } for (i = 0; i < ndata; i ++) { lua_rawgeti (L, 2, i + 1); if (rspamd_lua_table_size (L, -1) != ninputs) { msg_err ("invalid number of inputs: %d, %d expected", rspamd_lua_table_size (L, -1), ninputs); goto err; } for (j = 0; j < ninputs; j ++) { lua_rawgeti (L, -1, j + 1); cbdata->train->input[i][j] = lua_tonumber (L, -1); lua_pop (L, 1); } lua_pop (L, 1); lua_rawgeti (L, 3, i + 1); if (rspamd_lua_table_size (L, -1) != noutputs) { msg_err ("invalid number of outputs: %d, %d expected", rspamd_lua_table_size (L, -1), noutputs); goto err; } for (j = 0; j < noutputs; j++) { lua_rawgeti (L, -1, j + 1); cbdata->train->output[i][j] = lua_tonumber (L, -1); lua_pop (L, 1); } } cbdata->max_epochs = max_epochs_default; cbdata->desired_mse = desired_mse_default; if (lua_type (L, 5) == LUA_TTABLE) { rspamd_lua_parse_table_arguments (L, 5, NULL, "max_epochs=I;desired_mse=N", &cbdata->max_epochs, &cbdata->desired_mse); } /* Now we can call training in a separate thread */ rspamd_socket_nonblocking (cbdata->pair[0]); event_set (&cbdata->io, cbdata->pair[0], EV_READ, lua_fann_thread_notify, cbdata); event_base_set (ev_base, &cbdata->io); /* TODO: add timeout */ event_add (&cbdata->io, NULL); cbdata->t = rspamd_create_thread ("fann train", lua_fann_train_thread, cbdata, &err); if (cbdata->t == NULL) { msg_err ("cannot create training thread: %e", err); if (err) { g_error_free (err); } goto err; } } else { return luaL_error (L, "invalid arguments"); } return 0; err: if (cbdata->pair[0] != -1) { close (cbdata->pair[0]); } if (cbdata->pair[1] != -1) { close (cbdata->pair[1]); } fann_destroy_train (cbdata->train); luaL_unref (L, LUA_REGISTRYINDEX, cbdata->cbref); g_free (cbdata); return luaL_error (L, "invalid arguments"); #endif }