void fb_slv_basic(fb_t c, const fb_t a) { int i; fb_t t0; fb_null(t0); TRY { fb_new(t0); fb_copy(t0, a); fb_copy(c, a); for (i = 0; i < (FB_BITS - 1) / 2; i++) { fb_sqr(c, c); fb_sqr(c, c); fb_add(c, c, t0); } fb_add_dig(c, c, fb_trc(c)); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); } }
/** * Precomputes half-traces for z^i with odd i. * * @throw ERR_NO_MEMORY if there is no available memory. */ static void find_solve() { int i, j, k, l; fb_t t0; fb_null(t0); TRY { fb_new(t0); l = 0; for (i = 0; i < FB_BITS; i += 8, l++) { for (j = 0; j < 16; j++) { fb_zero(t0); for (k = 0; k < 4; k++) { if (j & (1 << k)) { fb_set_bit(t0, i + 2 * k + 1, 1); } } fb_copy(fb_half[l][j], t0); for (k = 0; k < (FB_BITS - 1) / 2; k++) { fb_sqr(fb_half[l][j], fb_half[l][j]); fb_sqr(fb_half[l][j], fb_half[l][j]); fb_add(fb_half[l][j], fb_half[l][j], t0); } } fb_rsh(fb_half[l][j], fb_half[l][j], 1); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); } }
int eb_upk(eb_t r, const eb_t p) { fb_t t0, t1; int res = 0; fb_null(t0); fb_null(t1); TRY { fb_new(t0); fb_new(t1); eb_rhs(t1, p); if (eb_curve_is_super()) { /* t0 = c^2. */ fb_sqr(t0, eb_curve_get_c()); /* t0 = 1/c^2. */ fb_inv(t0, t0); /* t0 = t1/c^2. */ fb_mul(t0, t0, t1); res = (fb_trc(t0) == 0); /* Solve t1^2 + t1 = t0. */ fb_slv(t1, t0); /* If this is not the correct solution, try the other. */ if (fb_get_bit(t1, 0) != fb_get_bit(p->y, 0)) { fb_add_dig(t1, t1, 1); } /* x3 = x1, y3 = t1 * c, z3 = 1. */ fb_mul(r->y, t1, eb_curve_get_c()); } else { fb_sqr(t0, p->x); /* t0 = 1/x1^2. */ fb_inv(t0, t0); /* t0 = t1/x1^2. */ fb_mul(t0, t0, t1); res = (fb_trc(t0) == 0); /* Solve t1^2 + t1 = t0. */ fb_slv(t1, t0); /* If this is not the correct solution, try the other. */ if (fb_get_bit(t1, 0) != fb_get_bit(p->y, 0)) { fb_add_dig(t1, t1, 1); } /* x3 = x1, y3 = t1 * x1, z3 = 1. */ fb_mul(r->y, t1, p->x); } fb_copy(r->x, p->x); fb_set_dig(r->z, 1); r->norm = 1; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } return res; }
void fb_invn_low(dig_t *c, dig_t *a) { int i, j, x, y, u[11]; fb_t table[11]; int len, *chain = fb_poly_get_chain(&len); u[0] = 1; u[1] = 2; fb_copy(table[0], a); fb_sqr(table[1], table[0]); fb_mul(table[1], table[1], table[0]); u[2] = u[1] + u[0]; fb_sqr(table[2], table[1]); fb_mul(table[2], table[2], table[0]); u[3] = u[2] + u[1]; fb_sqr(table[3], table[2]); for (j = 1; j < u[1]; j++) { fb_sqr(table[3], table[3]); } fb_mul(table[3], table[3], table[1]); u[4] = 2 * u[3]; fb_sqr(table[4], table[3]); for (j = 1; j < u[3]; j++) { fb_sqr(table[4], table[4]); } fb_mul(table[4], table[4], table[3]); u[5] = u[4] + u[3]; fb_sqr(table[5], table[4]); for (j = 1; j < u[3]; j++) { fb_sqr(table[5], table[5]); } fb_mul(table[5], table[5], table[3]); u[6] = u[5] + u[4]; fb_itr(table[6], table[5], u[4], inv_tab[4]); fb_mul(table[6], table[6], table[4]); u[7] = 2 * u[6]; fb_itr(table[7], table[6], u[6], inv_tab[6]); fb_mul(table[7], table[7], table[6]); u[8] = u[7] + u[6]; fb_itr(table[8], table[7], u[6], inv_tab[6]); fb_mul(table[8], table[8], table[6]); u[9] = u[8] + u[7]; fb_itr(table[9], table[8], u[8], inv_tab[7]); fb_mul(table[9], table[9], table[7]); u[10] = 2 * u[9]; fb_itr(table[10], table[9], u[9], inv_tab[9]); fb_mul(table[10], table[10], table[9]); fb_sqr(c, table[10]); }
int eb_is_valid(const eb_t p) { eb_t t; fb_t lhs; int r = 0; eb_null(t); fb_null(lhs); TRY { eb_new(t); fb_new(lhs); eb_norm(t, p); fb_mul(lhs, t->x, t->y); eb_rhs(t->x, t); fb_sqr(t->y, t->y); fb_add(lhs, lhs, t->y); r = (fb_cmp(lhs, t->x) == CMP_EQ) || eb_is_infty(p); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { eb_free(t); fb_free(lhs); } return r; }
void fb2_inv(fb2_t c, fb2_t a) { fb_t a0, a1, m0, m1; fb_null(a0); fb_null(a1); fb_null(m0); fb_null(m1); TRY { fb_new(a0); fb_new(a1); fb_new(m0); fb_new(m1); fb_add(a0, a[0], a[1]); fb_sqr(m0, a[0]); fb_mul(m1, a0, a[1]); fb_add(a1, m0, m1); fb_inv(a1, a1); fb_mul(c[0], a0, a1); fb_mul(c[1], a[1], a1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(a0); fb_free(a1); fb_free(m0); fb_free(m1); } }
void fb_srt_basic(fb_t c, const fb_t a) { if (c != a) { fb_copy(c, a); } for (int i = 1; i < FB_BITS; i++) { fb_sqr(c, c); } }
void eb_rhs(fb_t rhs, const eb_t p) { fb_t t0, t1; fb_null(t0); fb_null(t1); TRY { fb_new(t0); fb_new(t1); /* t0 = x1^2. */ fb_sqr(t0, p->x); /* t1 = x1^3. */ fb_mul(t1, t0, p->x); /* t1 = x1^3 + a * x1^2 + b. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(t1, t1, t0); break; case OPT_DIGIT: fb_mul_dig(t0, t0, eb_curve_get_a()[0]); fb_add(t1, t1, t0); break; default: fb_mul(t0, t0, eb_curve_get_a()); fb_add(t1, t1, t0); break; } switch (eb_curve_opt_b()) { case OPT_ZERO: break; case OPT_ONE: fb_add_dig(t1, t1, 1); break; case OPT_DIGIT: fb_add_dig(t1, t1, eb_curve_get_b()[0]); break; default: fb_add(t1, t1, eb_curve_get_b()); break; } fb_copy(rhs, t1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Find non-zero bits for fast trace computation. * * @throw ERR_NO_MEMORY if there is no available memory. * @throw ERR_NO_VALID if the polynomial is invalid. */ static void find_trace() { fb_t t0, t1; int counter; ctx_t *ctx = core_get(); fb_null(t0); fb_null(t1); ctx->fb_ta = ctx->fb_tb = ctx->fb_tc = -1; TRY { fb_new(t0); fb_new(t1); counter = 0; for (int i = 0; i < FB_BITS; i++) { fb_zero(t0); fb_set_bit(t0, i, 1); fb_copy(t1, t0); for (int j = 1; j < FB_BITS; j++) { fb_sqr(t1, t1); fb_add(t0, t0, t1); } if (!fb_is_zero(t0)) { switch (counter) { case 0: ctx->fb_ta = i; ctx->fb_tb = ctx->fb_tc = -1; break; case 1: ctx->fb_tb = i; ctx->fb_tc = -1; break; case 2: ctx->fb_tc = i; break; default: THROW(ERR_NO_VALID); break; } counter++; } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Find non-zero bits for fast trace computation. * * @throw ERR_NO_MEMORY if there is no available memory. * @throw ERR_INVALID if the polynomial is invalid. */ static void find_trace() { fb_t t0, t1; int i, j, counter; fb_null(t0); fb_null(t1); trc_a = trc_b = trc_c = -1; TRY { fb_new(t0); fb_new(t1); counter = 0; for (i = 0; i < FB_BITS; i++) { fb_zero(t0); fb_set_bit(t0, i, 1); fb_copy(t1, t0); for (j = 1; j < FB_BITS; j++) { fb_sqr(t1, t1); fb_add(t0, t0, t1); } if (!fb_is_zero(t0)) { switch (counter) { case 0: trc_a = i; trc_b = trc_c = -1; break; case 1: trc_b = i; trc_c = -1; break; case 2: trc_c = i; break; default: THROW(ERR_INVALID); break; } counter++; } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Normalizes a point represented in projective coordinates. * * @param[out] r - the result. * @param[in] p - the point to normalize. * @param[in] flag - if the Z coordinate is already inverted. */ static void eb_norm_ordin(eb_t r, const eb_t p, int flag) { if (!p->norm) { if (flag) { fb_copy(r->z, p->z); } else { fb_inv(r->z, p->z); } fb_mul(r->x, p->x, r->z); fb_sqr(r->z, r->z); fb_mul(r->y, p->y, r->z); fb_set_dig(r->z, 1); } r->norm = 1; }
/** * Precomputes the square root of z. */ static void find_srz() { int i; fb_set_dig(fb_srz, 2); for (i = 1; i < FB_BITS; i++) { fb_sqr(fb_srz, fb_srz); } #ifdef FB_PRECO for (i = 0; i <= 255; i++) { fb_mul_dig(fb_tab_srz[i], fb_srz, i); } #endif }
/** * Precomputes the square root of z. */ static void find_srz() { ctx_t *ctx = core_get(); fb_set_dig(ctx->fb_srz, 2); for (int i = 1; i < FB_BITS; i++) { fb_sqr(ctx->fb_srz, ctx->fb_srz); } #ifdef FB_PRECO for (int i = 0; i <= 255; i++) { fb_mul_dig(ctx->fb_tab_srz[i], ctx->fb_srz, i); } #endif }
void fb2_sqr(fb2_t c, fb2_t a) { fb_sqr(c[1], a[1]); fb_sqr(c[0], a[0]); fb_add(c[0], c[0], c[1]); }
/** * Adds two points represented in affine coordinates on an ordinary binary * elliptic curve. * * @param[out] r - the result. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void eb_add_basic_imp(eb_t r, const eb_t p, const eb_t q) { fb_t t0, t1, t2; fb_null(t0); fb_null(t1); fb_null(t2); TRY { fb_new(t0); fb_new(t1); fb_new(t2); /* t0 = (y1 + y2). */ fb_add(t0, p->y, q->y); /* t1 = (x1 + x2). */ fb_add(t1, p->x, q->x); if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t1 is zero and t0 is zero, p = q, should have doubled. */ eb_dbl_basic(r, p); } else { /* If t0 is not zero and t1 is zero, q = -p and r = infinity. */ eb_set_infty(r); } } else { /* t2 = 1/(x1 + x2). */ fb_inv(t2, t1); /* t0 = lambda = (y1 + y2)/(x1 + x2). */ fb_mul(t0, t0, t2); /* t2 = lambda^2. */ fb_sqr(t2, t0); /* t2 = lambda^2 + lambda + x1 + x2 + a. */ fb_add(t2, t2, t0); fb_add(t2, t2, t1); switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add_dig(t2, t2, (dig_t)1); break; case OPT_DIGIT: fb_add_dig(t2, t2, eb_curve_get_a()[0]); break; default: fb_add(t2, t2, eb_curve_get_a()); break; } /* y3 = lambda*(x3 + x1) + x3 + y1. */ fb_add(t1, t2, p->x); fb_mul(t1, t1, t0); fb_add(t1, t1, t2); fb_add(r->y, p->y, t1); /* x3 = lambda^2 + lambda + x1 + x2 + a. */ fb_copy(r->x, t2); fb_copy(r->z, p->z); r->norm = 1; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); } }
/** * Doubles a point represented in projective coordinates on an ordinary binary * elliptic curve. * * @param[out] r - the result. * @param[in] p - the point to double. */ static void eb_dbl_projc_imp(eb_t r, const eb_t p) { fb_t t0, t1; fb_null(t0); fb_null(t1); TRY { fb_new(t0); fb_new(t1); /* t0 = B = x1^2. */ fb_sqr(t0, p->x); /* C = B + y1. */ fb_add(r->y, t0, p->y); if (!p->norm) { /* A = x1 * z1. */ fb_mul(t1, p->x, p->z); /* z3 = A^2. */ fb_sqr(r->z, t1); } else { /* if z1 = 1, A = x1. */ fb_copy(t1, p->x); /* if z1 = 1, z3 = x1^2. */ fb_copy(r->z, t0); } /* t1 = D = A * C. */ fb_mul(t1, t1, r->y); /* C^2 + D. */ fb_sqr(r->y, r->y); fb_add(r->x, t1, r->y); /* C^2 + D + a2 * z3. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(r->x, r->z, r->x); break; case OPT_DIGIT: fb_mul_dig(r->y, r->z, eb_curve_get_a()[0]); fb_add(r->x, r->y, r->x); break; default: fb_mul(r->y, r->z, eb_curve_get_a()); fb_add(r->x, r->y, r->x); break; } /* t1 = (D + z3). */ fb_add(t1, t1, r->z); /* t0 = B^2. */ fb_sqr(t0, t0); /* t0 = B^2 * z3. */ fb_mul(t0, t0, r->z); /* y3 = (D + z3) * r3 + B^2 * z3. */ fb_mul(r->y, t1, r->x); fb_add(r->y, r->y, t0); r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Doubles a point represented in affine coordinates on an ordinary binary * elliptic curve. * * @param[out] r - the result. * @param[in] p - the point to double. */ static void eb_dbl_basic_imp(eb_t r, const eb_t p) { fb_t t0, t1, t2; fb_null(t0); fb_null(t1); fb_null(t2); TRY { fb_new(t0); fb_new(t1); fb_new(t2); /* t0 = 1/x1. */ fb_inv(t0, p->x); /* t0 = y1/x1. */ fb_mul(t0, t0, p->y); /* t0 = lambda = x1 + y1/x1. */ fb_add(t0, t0, p->x); /* t1 = lambda^2. */ fb_sqr(t1, t0); /* t2 = lambda^2 + lambda. */ fb_add(t2, t1, t0); /* t2 = lambda^2 + lambda + a2. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add_dig(t2, t2, (dig_t)1); break; case OPT_DIGIT: fb_add_dig(t2, t2, eb_curve_get_a()[0]); break; default: fb_add(t2, t2, eb_curve_get_a()); break; } /* t1 = x1 + x3. */ fb_add(t1, t2, p->x); /* t1 = lambda * (x1 + x3). */ fb_mul(t1, t0, t1); fb_copy(r->x, t2); /* y3 = lambda * (x1 + x3) + x3 + y1. */ fb_add(t1, t1, r->x); fb_add(r->y, t1, p->y); fb_copy(r->z, p->z); r->norm = 1; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); } }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param r - the result. * @param p - the affine point. * @param q - the projective point. */ static void eb_add_projc_ordin_mix(eb_t r, eb_t p, eb_t q) { fb_t t0, t1, t2, t3, t4, t5; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); if (!p->norm) { /* A = y1 + y2 * z1^2. */ fb_sqr(t0, p->z); fb_mul(t0, t0, q->y); fb_add(t0, t0, p->y); /* B = x1 + x2 * z1. */ fb_mul(t1, p->z, q->x); fb_add(t1, t1, p->x); } else { /* t0 = A = y1 + y2. */ fb_add(t0, p->y, q->y); /* t1 = B = x1 + x2. */ fb_add(t1, p->x, q->x); } if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t0 = 0 and t1 = 0, p = q, should have doubled! */ eb_dbl_projc(r, p); } else { /* If t0 = 0, r is infinity. */ eb_set_infty(r); } } else { if (!p->norm) { /* t2 = C = B * z1. */ fb_mul(t2, p->z, t1); /* z3 = C^2. */ fb_sqr(r->z, t2); /* t1 = B^2. */ fb_sqr(t1, t1); /* t1 = A + B^2. */ fb_add(t1, t0, t1); } else { /* If z1 = 0, t2 = C = B. */ fb_copy(t2, t1); /* z3 = B^2. */ fb_sqr(r->z, t1); /* t1 = A + z3. */ fb_add(t1, t0, r->z); } /* t3 = D = x2 * z3. */ fb_mul(t3, r->z, q->x); /* t4 = (y2 + x2). */ fb_add(t4, q->x, q->y); /* z3 = A^2. */ fb_sqr(r->x, t0); /* t1 = A + B^2 + a2 * C. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(t1, t1, t2); break; case OPT_DIGIT: /* t5 = a2 * C. */ fb_mul_dig(t5, t2, eb_curve_get_a()[0]); fb_add(t1, t1, t5); break; default: /* t5 = a2 * C. */ fb_mul(t5, eb_curve_get_a(), t2); fb_add(t1, t1, t5); break; } /* t1 = C * (A + B^2 + a2 * C). */ fb_mul(t1, t1, t2); /* x3 = A^2 + C * (A + B^2 + a2 * C). */ fb_add(r->x, r->x, t1); /* t3 = D + x3. */ fb_add(t3, t3, r->x); /* t2 = A * B. */ fb_mul(t2, t0, t2); /* y3 = (D + x3) * (A * B + z3). */ fb_add(r->y, t2, r->z); fb_mul(r->y, r->y, t3); /* t0 = z3^2. */ fb_sqr(t0, r->z); /* t0 = (y2 + x2) * z3^2. */ fb_mul(t0, t0, t4); /* y3 = (D + x3) * (A * B + z3) + (y2 + x2) * z3^2. */ fb_add(r->y, r->y, t0); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); } }
/** * Adds two points represented in projective coordinates on an ordinary binary * elliptic curve. * * @param r - the result. * @param p - the first point to add. * @param q - the second point to add. */ static void eb_add_projc_ordin(eb_t r, eb_t p, eb_t q) { #if defined(EB_MIXED) && defined(STRIP) eb_add_projc_ordin_mix(r, p, q); #else /* General addition. */ fb_t t0, t1, t2, t3, t4, t5, t6, t7; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); fb_null(t6); fb_null(t7); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); fb_new(t6); fb_new(t7); if (q->norm) { eb_add_projc_ordin_mix(r, p, q); } else { /* t0 = B = x2 * z1. */ fb_mul(t0, q->x, p->z); /* A = x1 * z2 */ fb_mul(t1, p->x, q->z); /* t2 = E = A + B. */ fb_add(t2, t1, t0); /* t3 = D = B^2. */ fb_sqr(t3, t0); /* t4 = C = A^2. */ fb_sqr(t4, t1); /* t5 = F = C + D. */ fb_add(t5, t3, t4); /* t6 = H = y2 * z1^2. */ fb_sqr(t6, p->z); fb_mul(t6, t6, q->y); /* t7 = G = y1 * z2^2. */ fb_sqr(t7, q->z); fb_mul(t7, t7, p->y); /* t3 = D + H. */ fb_add(t3, t3, t6); /* t4 = C + G. */ fb_add(t4, t4, t7); /* t6 = I = G + H. */ fb_add(t6, t7, t6); /* If E is zero. */ if (fb_is_zero(t2)) { if (fb_is_zero(t6)) { /* If I is zero, p = q, should have doubled. */ eb_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ eb_set_infty(r); } } else { /* t6 = J = I * E. */ fb_mul(t6, t6, t2); /* z3 = F * z1 * z2. */ fb_mul(r->z, p->z, q->z); fb_mul(r->z, t5, r->z); /* t4 = B * (C + G). */ fb_mul(t4, t0, t4); /* t2 = A * J. */ fb_mul(t2, t1, t6); /* x3 = A * (D + H) + B * (C + G). */ fb_mul(r->x, t1, t3); fb_add(r->x, r->x, t4); /* t7 = F * G. */ fb_mul(t7, t7, t5); /* Y3 = (A * J + F * G) * F + (J + z3) * x3. */ fb_add(r->y, t2, t7); fb_mul(r->y, r->y, t5); /* t7 = (J + z3) * x3. */ fb_add(t7, t6, r->z); fb_mul(t7, t7, r->x); fb_add(r->y, r->y, t7); } } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); fb_free(t6); fb_free(t7); } #endif }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param[out] r - the result. * @param[in] p - the affine point. * @param[in] q - the projective point. */ static void eb_add_projc_mix(eb_t r, const eb_t p, const eb_t q) { fb_t t0, t1, t2, t3, t4, t5; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); /* madd-2005-dl formulas: 7M + 4S + 9add + 1*4 + 3*2. */ /* http://www.hyperelliptic.org/EFD/g12o/auto-shortw-lopezdahab-1.html#addition-madd-2005-dl */ if (!p->norm) { /* A = y1 + y2 * z1^2. */ fb_sqr(t0, p->z); fb_mul(t0, t0, q->y); fb_add(t0, t0, p->y); /* B = x1 + x2 * z1. */ fb_mul(t1, p->z, q->x); fb_add(t1, t1, p->x); } else { /* t0 = A = y1 + y2. */ fb_add(t0, p->y, q->y); /* t1 = B = x1 + x2. */ fb_add(t1, p->x, q->x); } if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t0 = 0 and t1 = 0, p = q, should have doubled! */ eb_dbl_projc(r, p); } else { /* If t0 = 0, r is infinity. */ eb_set_infty(r); } } else { if (!p->norm) { /* t2 = C = B * z1. */ fb_mul(t2, p->z, t1); /* z3 = C^2. */ fb_sqr(r->z, t2); /* t1 = B^2. */ fb_sqr(t1, t1); /* t1 = A + B^2. */ fb_add(t1, t0, t1); } else { /* If z1 = 0, t2 = C = B. */ fb_copy(t2, t1); /* z3 = B^2. */ fb_sqr(r->z, t1); /* t1 = A + z3. */ fb_add(t1, t0, r->z); } /* t3 = D = x2 * z3. */ fb_mul(t3, r->z, q->x); /* t4 = (y2 + x2). */ fb_add(t4, q->x, q->y); /* z3 = A^2. */ fb_sqr(r->x, t0); /* t1 = A + B^2 + a2 * C. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(t1, t1, t2); break; case OPT_DIGIT: /* t5 = a2 * C. */ fb_mul_dig(t5, t2, eb_curve_get_a()[0]); fb_add(t1, t1, t5); break; default: /* t5 = a2 * C. */ fb_mul(t5, eb_curve_get_a(), t2); fb_add(t1, t1, t5); break; } /* t1 = C * (A + B^2 + a2 * C). */ fb_mul(t1, t1, t2); /* x3 = A^2 + C * (A + B^2 + a2 * C). */ fb_add(r->x, r->x, t1); /* t3 = D + x3. */ fb_add(t3, t3, r->x); /* t2 = A * B. */ fb_mul(t2, t0, t2); /* y3 = (D + x3) * (A * B + z3). */ fb_add(r->y, t2, r->z); fb_mul(r->y, r->y, t3); /* t0 = z3^2. */ fb_sqr(t0, r->z); /* t0 = (y2 + x2) * z3^2. */ fb_mul(t0, t0, t4); /* y3 = (D + x3) * (A * B + z3) + (y2 + x2) * z3^2. */ fb_add(r->y, r->y, t0); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); } }