예제 #1
0
파일: fc3d_driver.c 프로젝트: xhub/siconos
int fc3d_driver(FrictionContactProblem* problem,
                             double *reaction, double *velocity,
                             SolverOptions* options,
                             NumericsOptions* global_options)
{
  if (options == NULL)
    numericsError("fc3d_driver", "null input for solver and/or global options");

  int setnumericsoptions=0;

  /* Set global options */
  if (global_options)
  {
    setNumericsOptions(global_options);
    options->numericsOptions = (NumericsOptions*) malloc(sizeof(NumericsOptions));
    options->numericsOptions->verboseMode = global_options->verboseMode;
    setnumericsoptions=1;
  }

  int NoDefaultOptions = options->isSet; /* true(1) if the SolverOptions structure has been filled in else false(0) */

  if (!NoDefaultOptions)
    readSolverOptions(3, options);

  if (verbose > 0)
    printSolverOptions(options);

  /* Solver name */
  /*char * name = options->solverName;*/

  int info = -1 ;

  if (problem->dimension != 3)
    numericsError("fc3d_driver", "Dimension of the problem : problem-> dimension is not compatible or is not set");

  /* Check for trivial case */
  info = checkTrivialCase(problem, velocity, reaction, options);


  if (info == 0)
    goto exit;


  switch (options->solverId)
  {
    /* Non Smooth Gauss Seidel (NSGS) */
  case SICONOS_FRICTION_3D_NSGS:
  {
    snPrintf(1, options,
             " ========================== Call NSGS solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSGSV:
  {
    snPrintf(1, options,
             " ========================== Call NSGSV solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs_velocity(problem, reaction , velocity , &info , options);
    break;
  }
  /* Proximal point algorithm */
  case SICONOS_FRICTION_3D_PROX:
  {
    snPrintf(1, options,
             " ========================== Call PROX (Proximal Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_proximal(problem, reaction , velocity , &info , options);
    break;
  }
  /* Tresca Fixed point algorithm */
  case SICONOS_FRICTION_3D_TFP:
  {
    snPrintf(1, options,
             " ========================== Call TFP (Tresca Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_TrescaFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* ACLM Fixed point algorithm */
  case SICONOS_FRICTION_3D_ACLMFP:
  {
    snPrintf(1, options,
             " ========================== Call ACLM (Acary Cadoux Lemarechal Malick Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ACLMFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* SOCLCP Fixed point algorithm */
  case SICONOS_FRICTION_3D_SOCLCP:
  {
    snPrintf(1, options,
             " ========================== Call SOCLCP solver for Friction-Contact 3D problem (Associated one) ==========================\n");
    fc3d_SOCLCP(problem, reaction , velocity , &info , options);
    break;
  }
  /* De Saxce Fixed point algorithm */
  case SICONOS_FRICTION_3D_DSFP:
  {
    snPrintf(1, options,
            " ========================== Call DeSaxce Fixed Point (DSFP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_DeSaxceFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* Fixed point projection algorithm */
  case SICONOS_FRICTION_3D_FPP:
  {
    snPrintf(1, options,
            " ========================== Call Fixed Point Projection (FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_fixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }

  /* Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_EG:
  {
    snPrintf(1, options,
            " ========================== Call ExtraGradient (EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Fixed Point Projection algorithm */
  case SICONOS_FRICTION_3D_VI_FPP:
  {
    snPrintf(1, options,
            " ========================== Call VI_FixedPointProjection (VI_FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_FixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_VI_EG:
  {
    snPrintf(1, options,
            " ========================== Call VI_ExtraGradient (VI_EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* Hyperplane Projection algorithm */
  case SICONOS_FRICTION_3D_HP:
  {
    snPrintf(1, options,
            " ========================== Call Hyperplane Projection (HP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_HyperplaneProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* Alart Curnier in local coordinates */
  case SICONOS_FRICTION_3D_NSN_AC:
  {
    snPrintf(1, options,
            " ========================== Call Alart Curnier solver for Friction-Contact 3D problem ==========================\n");
    if (problem->M->matrix0)
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    else
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    break;
  }
  /* Fischer Burmeister in local coordinates */
  case SICONOS_FRICTION_3D_NSN_FB:
  {
    snPrintf(1, options,
            " ========================== Call Fischer Burmeister solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_FischerBurmeister(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSN_NM:
  {
    snPrintf(1, options,
            " ========================== Call natural map solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_NaturalMap(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC_NU:
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC:
  {
    snPrintf(1, options,
            " ========================== Call Quartic solver for Friction-Contact 3D problem ==========================\n");
    fc3d_unitary_enumerative(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_NSN_AC:
  case SICONOS_FRICTION_3D_ONECONTACT_NSN_AC_GP:
  {
    snPrintf(1, options,
            " ========================== Call Newton-based solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_onecontact_nonsmooth_Newton_solvers_initialize(problem, problem, options);
    info = fc3d_onecontact_nonsmooth_Newton_solvers_solve(problem, reaction , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithLocalIteration:
  {
    snPrintf(1, options,
            " ========================== Call Projection on cone solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_projectionOnConeWithLocalIteration_initialize(problem, problem, options);
    info = fc3d_projectionOnConeWithLocalIteration_solve(problem, reaction , options);
    fc3d_projectionOnConeWithLocalIteration_free(problem, problem, options);

    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATH:
  {
    snPrintf(1, options,
            " ========================== Call PATH solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATHVI:
  {
    snPrintf(1, options,
            " ========================== Call PATHVI solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATH:
  {
    snPrintf(1, options,
            " ========================== Call PATH solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATHVI:
  {
    snPrintf(1, options,
            " ========================== Call PATHVI solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  default:
  {
    fprintf(stderr, "Numerics, fc3d_driver failed. Unknown solver.\n");
    exit(EXIT_FAILURE);

  }
  }

exit:

  if (setnumericsoptions)
  {
      free(options->numericsOptions);
      options->numericsOptions = NULL;
  }

  return info;

}
예제 #2
0
int fc3d_driver(FrictionContactProblem* problem,
		double *reaction, double *velocity,
		SolverOptions* options)
{
  if (options == NULL)
    numerics_error("fc3d_driver", "null input for solver options");

  assert(options->isSet); /* true(1) if the SolverOptions structure has been filled in else false(0) */

  if (verbose > 1)
    solver_options_print(options);

  int info = -1 ;

  if (problem->dimension != 3)
    numerics_error("fc3d_driver", "Dimension of the problem : problem-> dimension is not compatible or is not set");

  /* Check for trivial case */
  info = checkTrivialCase(problem, velocity, reaction, options);
  if (info == 0)
  {
    /* If a trivial solution is found, we set the number of iterations to 0
       and the reached acuracy to 0.0 .
       Since the indexing of parameters is non uniform, this may have side 
       effects for some solvers. The two main return parameters iparam[7] and 
       dparam[1] have to be defined and protected by means of enum*/ 
    options->iparam[7] = 0;
    options->dparam[1] = 0.0;
    goto exit;
  }


  switch (options->solverId)
  {
    /* Non Smooth Gauss Seidel (NSGS) */
  case SICONOS_FRICTION_3D_NSGS:
  {
    numerics_printf(" ========================== Call NSGS solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSGSV:
  {
    numerics_printf(" ========================== Call NSGSV solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs_velocity(problem, reaction , velocity , &info , options);
    break;
  }
  /* Proximal point algorithm */
  case SICONOS_FRICTION_3D_PROX:
  {
    numerics_printf(" ========================== Call PROX (Proximal Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_proximal(problem, reaction , velocity , &info , options);
    break;
  }
  /* Tresca Fixed point algorithm */
  case SICONOS_FRICTION_3D_TFP:
  {
    numerics_printf(" ========================== Call TFP (Tresca Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_TrescaFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* ACLM Fixed point algorithm */
  case SICONOS_FRICTION_3D_ACLMFP:
  {
    numerics_printf(" ========================== Call ACLM (Acary Cadoux Lemarechal Malick Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ACLMFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* SOCLCP Fixed point algorithm */
  case SICONOS_FRICTION_3D_SOCLCP:
  {
    numerics_printf(" ========================== Call SOCLCP solver for Friction-Contact 3D problem (Associated one) ==========================\n");
    fc3d_SOCLCP(problem, reaction , velocity , &info , options);
    break;
  }
  /* De Saxce Fixed point algorithm */
  case SICONOS_FRICTION_3D_DSFP:
  {
    numerics_printf(" ========================== Call DeSaxce Fixed Point (DSFP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_DeSaxceFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* Fixed point projection algorithm */
  case SICONOS_FRICTION_3D_FPP:
  {
    numerics_printf(" ========================== Call Fixed Point Projection (FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_fixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }

  /* Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_EG:
  {
    numerics_printf(" ========================== Call ExtraGradient (EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Fixed Point Projection algorithm */
  case SICONOS_FRICTION_3D_VI_FPP:
  {
    numerics_printf(" ========================== Call VI_FixedPointProjection (VI_FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_FixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_VI_EG:
  {
    numerics_printf(" ========================== Call VI_ExtraGradient (VI_EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* Hyperplane Projection algorithm */
  case SICONOS_FRICTION_3D_HP:
  {
    numerics_printf(" ========================== Call Hyperplane Projection (HP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_HyperplaneProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* Alart Curnier in local coordinates */
  case SICONOS_FRICTION_3D_NSN_AC:
  {
    numerics_printf(" ========================== Call Alart Curnier solver for Friction-Contact 3D problem ==========================\n");
    if (problem->M->matrix0)
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    else
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    break;
  }
  /* Fischer Burmeister in local coordinates */
  case SICONOS_FRICTION_3D_NSN_FB:
  {
    numerics_printf(" ========================== Call Fischer Burmeister solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_FischerBurmeister(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSN_NM:
  {
    numerics_printf(" ========================== Call natural map solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_NaturalMap(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC_NU:
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC:
  {
    numerics_printf(" ========================== Call Quartic solver for Friction-Contact 3D problem ==========================\n");
    fc3d_unitary_enumerative(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_NSN:
  case SICONOS_FRICTION_3D_ONECONTACT_NSN_GP:
  {
    numerics_printf(" ========================== Call Newton-based solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_onecontact_nonsmooth_Newton_solvers_initialize(problem, problem, options);
    info = fc3d_onecontact_nonsmooth_Newton_solvers_solve(problem, reaction , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithLocalIteration:
  {
    numerics_printf(" ========================== Call Projection on cone solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_projectionOnConeWithLocalIteration_initialize(problem, problem, options);
    info = fc3d_projectionOnConeWithLocalIteration_solve(problem, reaction , options);
    fc3d_projectionOnConeWithLocalIteration_free(problem, problem, options);

    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATH:
  {
    numerics_printf(" ========================== Call PATH solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATHVI:
  {
    numerics_printf(" ========================== Call PATHVI solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATH:
  {
    numerics_printf(" ========================== Call PATH solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATHVI:
  {
    numerics_printf(" ========================== Call PATHVI solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  default:
  {
    fprintf(stderr, "Numerics, fc3d_driver failed. Unknown solver.\n");
    exit(EXIT_FAILURE);

  }
  }

exit:

  return info;

}
void fc3d_nonsmooth_Newton_AlartCurnier2(
  FrictionContactProblem* problem,
  double *reaction,
  double *velocity,
  int *info,
  SolverOptions *options)
{
  assert(problem);
  assert(reaction);
  assert(velocity);
  assert(info);
  assert(options);

  assert(problem->dimension == 3);

  assert(options->iparam);
  assert(options->dparam);

  assert(problem->q);
  assert(problem->mu);
  assert(problem->M);

  assert(!options->iparam[4]); // only host

  AlartCurnierParams acparams;

  switch (options->iparam[10])
  {
  case 0:
  {
    acparams.computeACFun3x3 = &computeAlartCurnierSTD;
    break;
  }
  case 1:
  {
    acparams.computeACFun3x3 = &computeAlartCurnierJeanMoreau;
    break;
  };
  case 2:
  {
    acparams.computeACFun3x3 = &fc3d_AlartCurnierFunctionGenerated;
    break;
  }
  case 3:
  {
    acparams.computeACFun3x3 = &fc3d_AlartCurnierJeanMoreauFunctionGenerated;
    break;
  }
  }

  fc3d_nonsmooth_Newton_solvers equation;

  equation.problem = problem;
  equation.data = (void *) &acparams;
  equation.function = &nonsmoothEqnAlartCurnierFun;

  /*************************************************************************
   * START NEW STUFF
   */
  size_t problemSize = problem->M->size0;
  size_t _3problemSize = problemSize + problemSize + problemSize;
  FC3D_Newton_data opaque_data;
  opaque_data.problem = problem;
  opaque_data.equation = &equation;
  opaque_data.rho = (double*)calloc(problemSize, sizeof(double));
  for (size_t i = 0; i < problemSize; ++i) opaque_data.rho[i] = 1.;
  opaque_data.Ax = (double*)calloc(_3problemSize, sizeof(double));
  opaque_data.Bx = (double*)calloc(_3problemSize, sizeof(double));
  opaque_data.normq = cblas_dnrm2(problemSize, problem->q, 1);
  opaque_data.AwpB_data_computed = false;

  functions_LSA functions_AC;
  init_lsa_functions(&functions_AC, &FC3D_compute_F, &FC3D_compute_F_merit);
  functions_AC.compute_H = &FC3D_compute_AWpB;
  functions_AC.compute_error = &FC3D_compute_error;
  functions_AC.get_set_from_problem_data = NULL;

  set_lsa_params_data(options, problem->M);
  newton_LSA_param* params = (newton_LSA_param*) options->solverParameters;
  params->check_dir_quality = false;

  options->iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_GOLDSTEIN;
//  options->iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_ARMIJO;
  /*************************************************************************
   * END NEW STUFF
   */

  if(options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] ==  SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN)
  {
    SolverOptions * options_vi_eg =(SolverOptions *)malloc(sizeof(SolverOptions));
    fc3d_VI_ExtraGradient_setDefaultSolverOptions(options_vi_eg);
    options_vi_eg->iparam[0] = 50;
    options_vi_eg->dparam[0] = sqrt(options->dparam[0]);
    options_vi_eg->iparam[SICONOS_VI_IPARAM_ERROR_EVALUATION] = SICONOS_VI_ERROR_EVALUATION_LIGHT;
    fc3d_VI_ExtraGradient(problem, reaction , velocity , info , options_vi_eg);
    solver_options_delete(options_vi_eg);
    free(options_vi_eg);

    newton_LSA(problemSize, reaction, velocity, info, (void *)&opaque_data, options, &functions_AC);
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] ==  SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO)
  {
    newton_LSA(problemSize, reaction, velocity, info, (void *)&opaque_data, options, &functions_AC);
  }
  else
  {
    numerics_error("fc3d_nonsmooth_Newton_AlartCurnier","Unknown nsn hybrid solver");
  }

  free(opaque_data.rho);
  free(opaque_data.Ax);
  free(opaque_data.Bx);
}
void fc3d_nonsmooth_Newton_AlartCurnier(
  FrictionContactProblem* problem,
  double *reaction,
  double *velocity,
  int *info,
  SolverOptions *options)
{
  /* verbose=1; */
  assert(problem);
  assert(reaction);
  assert(velocity);
  assert(info);
  assert(options);

  assert(problem->dimension == 3);

  assert(options->iparam);
  assert(options->dparam);

  assert(problem->q);
  assert(problem->mu);
  assert(problem->M);

  assert(!options->iparam[4]); // only host

  AlartCurnierParams acparams;

  switch (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION])
  {
  case 0:
  {
    acparams.computeACFun3x3 = &computeAlartCurnierSTD;
    break;
  }
  case 1:
  {
    acparams.computeACFun3x3 = &computeAlartCurnierJeanMoreau;
    break;
  };
  case 2:
  {
    acparams.computeACFun3x3 = &fc3d_AlartCurnierFunctionGenerated;
    break;
  }
  case 3:
  {
    acparams.computeACFun3x3 = &fc3d_AlartCurnierJeanMoreauFunctionGenerated;
    break;
  }
  }

  fc3d_nonsmooth_Newton_solvers equation;

  equation.problem = problem;
  equation.data = (void *) &acparams;
  equation.function = &nonsmoothEqnAlartCurnierFun;

  if(options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] ==  SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN)
  {
    SolverOptions * options_vi_eg =(SolverOptions *)malloc(sizeof(SolverOptions));
    fc3d_VI_ExtraGradient_setDefaultSolverOptions(options_vi_eg);
    options_vi_eg->iparam[SICONOS_IPARAM_MAX_ITER] = 50;
    options_vi_eg->dparam[SICONOS_DPARAM_TOL] = sqrt(options->dparam[0]);
    options_vi_eg->iparam[SICONOS_VI_IPARAM_ERROR_EVALUATION] = SICONOS_VI_ERROR_EVALUATION_LIGHT;
    fc3d_VI_ExtraGradient(problem, reaction , velocity , info , options_vi_eg);

    fc3d_nonsmooth_Newton_solvers_solve(&equation, reaction, velocity, info, options);
    solver_options_delete(options_vi_eg);
    free(options_vi_eg);
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] ==  SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO)
  {
    fc3d_nonsmooth_Newton_solvers_solve(&equation, reaction, velocity, info, options);
  }
  else
  {
    numerics_error("fc3d_nonsmooth_Newton_AlartCurnier","Unknown nsn hybrid solver");
  }
}