static int info_close(int fd, fdinfo_t* info) { int rval = -1; switch( info->type ) { case BOUND: case TRACKED: case EPOLL: if( info->type == BOUND && revive_mode == TRUE ) { /* We don't close bound sockets in revive mode. * This allows the program to exit "cleanly" and * we will preserve the socket for the next run. */ rval = 0; break; } dec_ref(info); fd_delete(fd); rval = libc.close(fd); break; case SAVED: case DUMMY: /* Woah, their program is most likely either messed up, * or it's going through and closing all descriptors * prior to an exec. We're just going to ignore this. */ break; } return rval; }
/* * This function performs a shutdown-write on a stream interface in a connected or * init state (it does nothing for other states). It either shuts the write side * or closes the file descriptor and marks itself as closed. The buffer flags are * updated to reflect the new state. It does also close everything is the SI was * marked as being in error state. */ void stream_sock_shutw(struct stream_interface *si) { si->ob->flags &= ~BF_SHUTW_NOW; if (si->ob->flags & BF_SHUTW) return; si->ob->flags |= BF_SHUTW; si->ob->wex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_DATA; switch (si->state) { case SI_ST_EST: /* we have to shut before closing, otherwise some short messages * may never leave the system, especially when there are remaining * unread data in the socket input buffer, or when nolinger is set. * However, if SI_FL_NOLINGER is explicitly set, we know there is * no risk so we close both sides immediately. */ if (si->flags & SI_FL_ERR) { /* quick close, the socket is already shut. Remove pending flags. */ si->flags &= ~SI_FL_NOLINGER; } else if (si->flags & SI_FL_NOLINGER) { si->flags &= ~SI_FL_NOLINGER; setsockopt(si->fd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); } else { EV_FD_CLR(si->fd, DIR_WR); shutdown(si->fd, SHUT_WR); if (!(si->ib->flags & (BF_SHUTR|BF_DONT_READ))) return; } /* fall through */ case SI_ST_CON: /* we may have to close a pending connection, and mark the * response buffer as shutr */ fd_delete(si->fd); /* fall through */ case SI_ST_CER: case SI_ST_QUE: case SI_ST_TAR: si->state = SI_ST_DIS; default: si->flags &= ~SI_FL_WAIT_ROOM; si->ib->flags |= BF_SHUTR; si->ib->rex = TICK_ETERNITY; si->exp = TICK_ETERNITY; return; } if (si->release) si->release(si); }
/* * This function performs a shutdown-read on a stream interface in a connected or * init state (it does nothing for other states). It either shuts the read side * or closes the file descriptor and marks itself as closed. The buffer flags are * updated to reflect the new state. */ void stream_sock_shutr(struct stream_interface *si) { si->ib->flags &= ~BF_SHUTR_NOW; if (si->ib->flags & BF_SHUTR) return; si->ib->flags |= BF_SHUTR; si->ib->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; if (si->state != SI_ST_EST && si->state != SI_ST_CON) return; if (si->ob->flags & BF_SHUTW) { fd_delete(si->fd); si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; return; } EV_FD_CLR(si->fd, DIR_RD); return; }
/* This function is called from the protocol layer accept() in order to * instanciate a new session on behalf of a given listener and frontend. It * returns a positive value upon success, 0 if the connection can be ignored, * or a negative value upon critical failure. The accepted file descriptor is * closed if we return <= 0. If no handshake is needed, it immediately tries * to instanciate a new stream. The created connection's owner points to the * new session until the upper layers are created. */ int session_accept_fd(struct listener *l, int cfd, struct sockaddr_storage *addr) { struct connection *cli_conn; struct proxy *p = l->bind_conf->frontend; struct session *sess; int ret; ret = -1; /* assume unrecoverable error by default */ if (unlikely((cli_conn = conn_new()) == NULL)) goto out_close; conn_prepare(cli_conn, l->proto, l->bind_conf->xprt); cli_conn->handle.fd = cfd; cli_conn->addr.from = *addr; cli_conn->flags |= CO_FL_ADDR_FROM_SET; cli_conn->target = &l->obj_type; cli_conn->proxy_netns = l->netns; conn_ctrl_init(cli_conn); /* wait for a PROXY protocol header */ if (l->options & LI_O_ACC_PROXY) { cli_conn->flags |= CO_FL_ACCEPT_PROXY; conn_sock_want_recv(cli_conn); } /* wait for a NetScaler client IP insertion protocol header */ if (l->options & LI_O_ACC_CIP) { cli_conn->flags |= CO_FL_ACCEPT_CIP; conn_sock_want_recv(cli_conn); } conn_xprt_want_recv(cli_conn); if (conn_xprt_init(cli_conn) < 0) goto out_free_conn; sess = session_new(p, l, &cli_conn->obj_type); if (!sess) goto out_free_conn; conn_set_owner(cli_conn, sess, NULL); /* now evaluate the tcp-request layer4 rules. We only need a session * and no stream for these rules. */ if ((l->options & LI_O_TCP_L4_RULES) && !tcp_exec_l4_rules(sess)) { /* let's do a no-linger now to close with a single RST. */ setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); ret = 0; /* successful termination */ goto out_free_sess; } /* monitor-net and health mode are processed immediately after TCP * connection rules. This way it's possible to block them, but they * never use the lower data layers, they send directly over the socket, * as they were designed for. We first flush the socket receive buffer * in order to avoid emission of an RST by the system. We ignore any * error. */ if (unlikely((p->mode == PR_MODE_HEALTH) || ((l->options & LI_O_CHK_MONNET) && addr->ss_family == AF_INET && (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) { /* we have 4 possibilities here : * - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK" * - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK" * - HEALTH mode without HTTP check => just send "OK" * - TCP mode from monitoring address => just close */ if (l->proto->drain) l->proto->drain(cfd); if (p->mode == PR_MODE_HTTP || (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK)) send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); else if (p->mode == PR_MODE_HEALTH) send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); ret = 0; goto out_free_sess; } /* Adjust some socket options */ if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) { setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_CLI_KA) setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_NOLING) fdtab[cfd].linger_risk = 1; #if defined(TCP_MAXSEG) if (l->maxseg < 0) { /* we just want to reduce the current MSS by that value */ int mss; socklen_t mss_len = sizeof(mss); if (getsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, &mss_len) == 0) { mss += l->maxseg; /* remember, it's < 0 */ setsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss)); } } #endif } if (global.tune.client_sndbuf) setsockopt(cfd, SOL_SOCKET, SO_SNDBUF, &global.tune.client_sndbuf, sizeof(global.tune.client_sndbuf)); if (global.tune.client_rcvbuf) setsockopt(cfd, SOL_SOCKET, SO_RCVBUF, &global.tune.client_rcvbuf, sizeof(global.tune.client_rcvbuf)); /* OK, now either we have a pending handshake to execute with and then * we must return to the I/O layer, or we can proceed with the end of * the stream initialization. In case of handshake, we also set the I/O * timeout to the frontend's client timeout and register a task in the * session for this purpose. The connection's owner is left to the * session during this period. * * At this point we set the relation between sess/task/conn this way : * * +----------------- task * | | * orig -- sess <-- context | * | ^ | | * v | | | * conn -- owner ---> task <-----+ */ if (cli_conn->flags & (CO_FL_HANDSHAKE | CO_FL_EARLY_SSL_HS)) { if (unlikely((sess->task = task_new(tid_bit)) == NULL)) goto out_free_sess; conn_set_xprt_done_cb(cli_conn, conn_complete_session); sess->task->context = sess; sess->task->nice = l->nice; sess->task->process = session_expire_embryonic; sess->task->expire = tick_add_ifset(now_ms, p->timeout.client); task_queue(sess->task); return 1; } /* OK let's complete stream initialization since there is no handshake */ if (conn_complete_session(cli_conn) >= 0) return 1; /* error unrolling */ out_free_sess: /* prevent call to listener_release during session_free. It will be * done below, for all errors. */ sess->listener = NULL; session_free(sess); out_free_conn: conn_stop_tracking(cli_conn); conn_xprt_close(cli_conn); conn_free(cli_conn); out_close: listener_release(l); if (ret < 0 && l->bind_conf->xprt == xprt_get(XPRT_RAW) && p->mode == PR_MODE_HTTP) { /* critical error, no more memory, try to emit a 500 response */ struct chunk *err_msg = &p->errmsg[HTTP_ERR_500]; if (!err_msg->str) err_msg = &http_err_chunks[HTTP_ERR_500]; send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL); } if (fdtab[cfd].owner) fd_delete(cfd); else close(cfd); return ret; }
/* This function is called from the protocol layer accept() in order to * instanciate a new session on behalf of a given listener and frontend. It * returns a positive value upon success, 0 if the connection can be ignored, * or a negative value upon critical failure. The accepted file descriptor is * closed if we return <= 0. If no handshake is needed, it immediately tries * to instanciate a new stream. */ int session_accept_fd(struct listener *l, int cfd, struct sockaddr_storage *addr) { struct connection *cli_conn; struct proxy *p = l->frontend; struct session *sess; struct stream *strm; struct task *t; int ret; ret = -1; /* assume unrecoverable error by default */ if (unlikely((cli_conn = conn_new()) == NULL)) goto out_close; conn_prepare(cli_conn, l->proto, l->xprt); cli_conn->t.sock.fd = cfd; cli_conn->addr.from = *addr; cli_conn->flags |= CO_FL_ADDR_FROM_SET; cli_conn->target = &l->obj_type; cli_conn->proxy_netns = l->netns; conn_ctrl_init(cli_conn); /* wait for a PROXY protocol header */ if (l->options & LI_O_ACC_PROXY) { cli_conn->flags |= CO_FL_ACCEPT_PROXY; conn_sock_want_recv(cli_conn); } conn_data_want_recv(cli_conn); if (conn_xprt_init(cli_conn) < 0) goto out_free_conn; sess = session_new(p, l, &cli_conn->obj_type); if (!sess) goto out_free_conn; p->feconn++; /* This session was accepted, count it now */ if (p->feconn > p->fe_counters.conn_max) p->fe_counters.conn_max = p->feconn; proxy_inc_fe_conn_ctr(l, p); /* now evaluate the tcp-request layer4 rules. We only need a session * and no stream for these rules. */ if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(sess)) { /* let's do a no-linger now to close with a single RST. */ setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); ret = 0; /* successful termination */ goto out_free_sess; } /* monitor-net and health mode are processed immediately after TCP * connection rules. This way it's possible to block them, but they * never use the lower data layers, they send directly over the socket, * as they were designed for. We first flush the socket receive buffer * in order to avoid emission of an RST by the system. We ignore any * error. */ if (unlikely((p->mode == PR_MODE_HEALTH) || ((l->options & LI_O_CHK_MONNET) && addr->ss_family == AF_INET && (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) { /* we have 4 possibilities here : * - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK" * - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK" * - HEALTH mode without HTTP check => just send "OK" * - TCP mode from monitoring address => just close */ if (l->proto->drain) l->proto->drain(cfd); if (p->mode == PR_MODE_HTTP || (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK)) send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); else if (p->mode == PR_MODE_HEALTH) send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); ret = 0; goto out_free_sess; } /* Adjust some socket options */ if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) { setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_CLI_KA) setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_NOLING) fdtab[cfd].linger_risk = 1; #if defined(TCP_MAXSEG) if (l->maxseg < 0) { /* we just want to reduce the current MSS by that value */ int mss; socklen_t mss_len = sizeof(mss); if (getsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, &mss_len) == 0) { mss += l->maxseg; /* remember, it's < 0 */ setsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss)); } } #endif } if (global.tune.client_sndbuf) setsockopt(cfd, SOL_SOCKET, SO_SNDBUF, &global.tune.client_sndbuf, sizeof(global.tune.client_sndbuf)); if (global.tune.client_rcvbuf) setsockopt(cfd, SOL_SOCKET, SO_RCVBUF, &global.tune.client_rcvbuf, sizeof(global.tune.client_rcvbuf)); if (unlikely((t = task_new()) == NULL)) goto out_free_sess; t->context = sess; t->nice = l->nice; /* OK, now either we have a pending handshake to execute with and * then we must return to the I/O layer, or we can proceed with the * end of the stream initialization. In case of handshake, we also * set the I/O timeout to the frontend's client timeout. * * At this point we set the relation between sess/task/conn this way : * * orig -- sess <-- context * | | * v | * conn -- owner ---> task */ if (cli_conn->flags & CO_FL_HANDSHAKE) { conn_attach(cli_conn, t, &sess_conn_cb); t->process = session_expire_embryonic; t->expire = tick_add_ifset(now_ms, p->timeout.client); task_queue(t); cli_conn->flags |= CO_FL_INIT_DATA | CO_FL_WAKE_DATA; return 1; } /* OK let's complete stream initialization since there is no handshake */ cli_conn->flags |= CO_FL_CONNECTED; /* we want the connection handler to notify the stream interface about updates. */ cli_conn->flags |= CO_FL_WAKE_DATA; /* if logs require transport layer information, note it on the connection */ if (sess->fe->to_log & LW_XPRT) cli_conn->flags |= CO_FL_XPRT_TRACKED; session_count_new(sess); strm = stream_new(sess, t, &cli_conn->obj_type); if (!strm) goto out_free_task; strm->target = sess->listener->default_target; strm->req.analysers = sess->listener->analysers; return 1; out_free_task: task_free(t); out_free_sess: p->feconn--; session_free(sess); out_free_conn: cli_conn->flags &= ~CO_FL_XPRT_TRACKED; conn_xprt_close(cli_conn); conn_free(cli_conn); out_close: if (ret < 0 && l->xprt == &raw_sock && p->mode == PR_MODE_HTTP) { /* critical error, no more memory, try to emit a 500 response */ struct chunk *err_msg = &p->errmsg[HTTP_ERR_500]; if (!err_msg->str) err_msg = &http_err_chunks[HTTP_ERR_500]; send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL); } if (fdtab[cfd].owner) fd_delete(cfd); else close(cfd); return ret; }
void kfclose(FILE file){ fd_flush(file); fd_delete(file); }