예제 #1
0
static void
releaseobjects(FL_FORM *form)
{
	int i, n;
	genericobject *g;
	
	if (allgenerics == NULL)
		return; /* No objects known yet */
	n = PyList_Size(allgenerics);
	for (i = 0; i < n; i++) {
		g = (genericobject *)PyList_GetItem(allgenerics, i);
		if (g != NULL && g->ob_generic->form == form) {
			fl_delete_object(g->ob_generic);
			/* The object is now unreachable for
			   do_forms and check_forms, so
			   delete it from the list of known objects */
			Py_XDECREF(g->ob_callback);
			g->ob_callback = NULL;
			Py_XDECREF(g->ob_callback_arg);
			g->ob_callback_arg = NULL;
			PyList_SetItem(allgenerics, i, (PyObject *)NULL);
			nfreeslots++;
		}
	}
}
예제 #2
0
파일: child.c 프로젝트: OrangeTide/xforms
void
fli_delete_composite( FL_OBJECT * obj )
{
    for ( obj = obj->child; obj; obj = obj->nc )
        if ( obj->form )
            fl_delete_object( obj );
}
예제 #3
0
파일: child.c 프로젝트: OrangeTide/xforms
void
fl_add_child( FL_OBJECT * parent,
              FL_OBJECT * child )
{
    FL_OBJECT *t;

    /* If the child is already linked to a form that is not the one of the
       parent unlink it from that form and then add it to the parents
       form (if the parent already belongs to one) */

    if ( child->form && child->form != parent->form )
        fl_delete_object( child );

    if ( ! child->form && parent->form )
        fl_add_object( parent->form, child );

    /* Now set up the parent-child relationship */

    child->parent = parent;

    /* Child gets same gravity and resize attributes as the parent */

    child->nwgravity = parent->nwgravity;
    child->segravity = parent->segravity;
    child->resize    = parent->resize;

    /* Append the new child to the linked list of objects that are
       children of the parent */

    if ( parent->child == NULL )
        parent->child = child;
    else
    {
        for ( t = parent->child; t->nc; t = t->nc )
            /* empty */ ;
        t->nc = child;
    }

    /* If the child itself has children set their gravity and resizing
       behaviour to that of the parent */

    if ( ! child->child )
    {
        parent = child;

        for ( child = child->child; child; child = child->nc )
        {
            fli_set_composite_gravity( child, parent->nwgravity,
                                       parent->segravity );
            fli_set_composite_resize( child, parent->resize );
        }
    }
}
int main(int argc, char *argv[])
{
	void lmst_update (FL_OBJECT *, long);
	int i;
	void dismiss_psr();
	void spectrum_hide();
	void tp_hide ();
	void hide_waterfall();
	void hide_interferometer();
	void hide_info();
	void receiver_leave();
	int close_sub ();
	int close_main ();
	char *p;
	char fntstr[128];
	char d[128];
	int binwidth;
	
	/*
	 * Init xforms library
	 */
   fl_initialize(&argc, argv, "Ira", 0, 0);
   fl_get_app_resources (NULL, 0);
   
   time (&started_at);
   
   /*
    * Create various windows, including the main one
	*/
   fd_receiver_main = create_form_receiver_main();
	fl_set_form_atclose(fd_receiver_main->receiver_main, close_main, 0);
	
   fd_receiver_pulsar = create_form_receiver_pulsar();
   fl_set_form_atclose (fd_receiver_pulsar->receiver_pulsar, close_sub, dismiss_psr);
   
   fd_receiver_spectrum = create_form_receiver_spectrum();
   fl_set_form_atclose (fd_receiver_spectrum->receiver_spectrum, close_sub, spectrum_hide);
   
   fd_receiver_continuum = create_form_receiver_continuum();
   fl_set_form_atclose (fd_receiver_continuum->receiver_continuum, close_sub, tp_hide);
   
   fd_receiver_waterfall = create_form_receiver_waterfall();
   fl_set_form_atclose (fd_receiver_waterfall->receiver_waterfall, close_sub, hide_waterfall);
   
   fd_receiver_info = create_form_receiver_info();
   fl_set_form_atclose (fd_receiver_info->receiver_info, close_sub, hide_info);
   
   fd_receiver_lproblem = create_form_receiver_lproblem ();
   fd_receiver_error = create_form_receiver_error ();
   
   fd_receiver_shutdown = create_form_receiver_shutdown ();
   
   
   flps_init();
   fl_free_pixmap_pixmap(fd_receiver_main->ira_xpm_button);
   fl_set_pixmap_data(fd_receiver_main->ira_xpm_button, Ira_xpm);
   
	sprintf (version_info, "Ver: %s  (BETA)", VERSION);
   
   /*
    * Stuff lines in info window
	*/
   for (i = 0; ; i++)
   {
	   if (ira_info[i] == NULL)
	   {
		   break;
	   }
	   fl_add_browser_line (fd_receiver_info->info_browser, ira_info[i]);
   }
   fl_set_browser_fontsize(fd_receiver_info->info_browser, 14);
   
   /* fill-in form initialization code */
   fl_set_object_label (fd_receiver_main->startup_text, "PLEASE WAIT.........");
   
   /* show the first form */
   fl_show_form(fd_receiver_main->receiver_main,FL_PLACE_CENTER,FL_FULLBORDER,"IRA Control Panel");
   fl_check_forms();
   
   /*
    * Now we check a raft of environment variables, and use those to initialize
	*   various settable values
	*/
	
	refmult = 1.0;
	if ((p = getenv ("RCVR_REF_MULT")) != NULL)
	{
   		refmult = atof(p);
	}
   fl_set_slider_value (fd_receiver_main->refmult_slider, refmult);
   
   seti_integ = 15;
   if ((p = getenv ("RCVR_SETI_INTEG")) != NULL)
   {
   		seti_integ = (int)atof(p);
	}
   fl_set_slider_value (fd_receiver_main->seti_integ_slider, (float)seti_integ);
   
   strcpy (datadir, ".");
   if ((p = getenv ("RCVR_DATA_DIR")) != NULL)
   {
   		strcpy (datadir, p);
	}
  
  	/*
	 * Set the input field for freq, as well as the actual frequency
	 */
   if ((p = getenv ("RCVR_INITIAL_FREQ")) != NULL)
   {
	   fl_set_input (fd_receiver_main->frequency_input, p); 
	   frequency = atof(p);
	   sky_freq = frequency;
	   sky_locked = 1;
   }
   
   /*
    * Start out with sky_freq unavailable for input
	*/
   fl_deactivate_object (fd_receiver_main->sky_freq_input);
   fl_set_input (fd_receiver_main->sky_freq_input, "--------");
   
   /* If there's a sky_freq parameter, use it, and re-activate the
    *  sky_freq_input control
	*/
   if ((p = getenv ("RCVR_SKY_FREQ")) != NULL)
   {
	   if (abs(atof(p) - frequency) > 100.0)
	   {
			   
		   sky_locked = 0;
		   fl_set_input (fd_receiver_main->sky_freq_input, p);
			sky_freq = atof(p);
			fl_activate_object (fd_receiver_main->sky_freq_input);
			fl_set_button (fd_receiver_main->sky_lock_button, 0);
		}
		else
		{
			sky_freq = atof(p);
			fl_set_button (fd_receiver_main->sky_lock_button, 1);
			sky_locked = 1;
		}
	}
	PUSHVAR("ifreq", frequency);
	PUSHVAR("skyfreq", sky_freq);
   /*
    * 
    * And again for RF gain
	*/
	if ((p = getenv ("RCVR_RF_GAIN")) != NULL)
	{
   		rf_gain = atoi(p);
	}
   fl_set_slider_value (fd_receiver_main->rf_gain_slider, rf_gain);
	PUSHVAR("igain", rf_gain);
   /*
    * Gain correction values for A and B sides
	*/
   if ((p = getenv ("RCVR_COR_A")) != NULL)
   {
	   gc_a = atof(p);
	  
   }
   sprintf (d, "%f", gc_a);
   fl_set_input (fd_receiver_main->gc_a, d);
   
   if ((p = getenv ("RCVR_COR_B")) != NULL)
   {
	   gc_b = atof(p);
   }
   sprintf (d, "%f", gc_b);
   fl_set_input (fd_receiver_main->gc_b, d);
   
	/*
	 * Set bounds/values for DC gain
	 */
	if ((p = getenv ("RCVR_DC_GAIN")) != NULL)
	{
		dc_gain = atof(p);
	}
   fl_set_slider_value (fd_receiver_main->dc_gain_control, dc_gain);

   
   /*
    * And again for DC offset
	*/
	if ((p = getenv ("RCVR_DC_OFFSET")) != NULL)
	{
		dc_offset = atof(p);
	}
   fl_set_slider_value (fd_receiver_main->dc_offset_control, dc_offset);
   /*
    * Receiver DC Gain multiplier
	*/
   if ((p = getenv ("RCVR_DC_MULT")) != NULL)
   {
	   int which;
	   
	   dc_mult = (double)atoi(p);
	   which = 1;
	   /*
	    * It's a choice widget, so we need to set 'which' appropriately
		*/
	   switch ((int)dc_mult)
	   {
		case 1:
			which = 1;
			break;
		case 5:
			which = 2;
			break;
		case 10:
			which = 3;
			break;
		case 15:
			which = 4;
			break;
		case 20:
			which = 5;
			break;
		case 25:
			which = 6;
			break;
		case 30:
			which=7;
			break;
		case 35:
			which = 8;
			break;
		case 40:
			which = 9;
			break;
		}
		fl_set_choice (fd_receiver_main->mult_choice, which);
   } 
   
   /*
    * Total power integration value
	*/
	tp_integration = 5;
	if ((p = getenv ("RCVR_TP_INTEG")) != NULL)
	{
		tp_integration = atoi(p);
	}
   fl_set_slider_value (fd_receiver_main->continuum_int, (double)atof(getenv("RCVR_TP_INTEG")) );
   
   /*
    * Spectral integration
	*/
	spec_integration = 15;
	if ((p = getenv ("RCVR_SPEC_INTEG")) != NULL)
	{
		spec_integration = atoi(p);
	}
   fl_set_slider_value (fd_receiver_main->spec_int_slider, (double)atof(getenv("RCVR_SPEC_INTEG")) );
   
   /*
    * Sigma_K for SETI analysis
	*/
	sigma_k = 2.5;
	if ((p = getenv ("RCVR_SIGMA_K")) != NULL)
	{
   		sigma_k = atof(p);
	}
   fl_set_slider_value (fd_receiver_main->sigma_k_slider, sigma_k);
   
   /*
    * Check desired receiver mode
	*/
   if (getenv("RCVR_MODE") != NULL)
   {
   	strcpy (rcvr_mode, getenv("RCVR_MODE"));
	}
	else
	{
		strcpy (rcvr_mode, "unknown");
	}
	
	/*
	 * Interferometer?  Create the interferometer window
	 */
   if (strcmp (rcvr_mode, "interferometer") == 0)
   {
	   fd_receiver_interferometer = create_form_receiver_interferometer();
	   fl_set_form_atclose (fd_receiver_interferometer->receiver_interferometer, close_sub, 
	   	hide_interferometer);
   }
   /*
    * Otherwise, delete the "show interferograms" control
	*/
   else
   {
	   fl_delete_object  (fd_receiver_main->interferometer_button);
   }
   
   /*
    * Various values
	*/
	declination = -28.3;
	if ((p = getenv ("RCVR_DECLINATION")) != NULL)
	{
		declination = atof(p);
	}
	fl_set_input (fd_receiver_main->declination_input, getenv("RCVR_DECLINATION"));
	
	longitude = 0.0;
	if ((p = getenv ("RCVR_LONGITUDE")) != NULL)
	{
		longitude = atof(p);
	}
	seti_size = 500000;
	if ((p = getenv ("RCVR_SETI_SIZE")) != NULL)
	{
   		seti_size = atoi (p);
	}

    bandwidth = 5000000;
    if ((p = getenv ("RCVR_BANDWIDTH")) != NULL)
    {
		bandwidth = atoi (p);
	}

   psr_rate = 10000;
   if ((p = getenv ("RCVR_PSR_RATE")) != NULL)
   {
   		psr_rate = atoi (getenv ("RCVR_PSR_RATE"));
	}
   for (i = 0; i < NNOTCHES; i++)
   {
	   notches[i] = -1.0;
   }
   if ((p = getenv ("RCVR_NOTCHES")) != NULL)
   {
	   char *tp;
	   char pcopy[128];
	   FILE *fp;
	   
	   strcpy (pcopy, p);
	   
	   tp = strtok (pcopy, ",");
	   notches[0] = atof(tp);
	   for (i = 1; i < NNOTCHES; i++)
	   {
		   tp = strtok (NULL, ",");
		   if (tp == NULL)
		   {
			   break;
		   }
		   notches[i] = atof(tp);
	   }
   }
   if ((p = getenv ("RCVR_NOTCH_SIZE")) != NULL)
   {
	   notch_length = atoi(p);
   		fl_set_slider_value (fd_receiver_spectrum->notch_slider, (double)notch_length);
	}
	if ((p = getenv ("RCVR_DM")) != NULL)
	{
		pulsar_dm = atof(p);
		fl_set_slider_value (fd_receiver_main->dm_input, (double)pulsar_dm);
	}
	PUSHVAR("idm", pulsar_dm);
	
	if ((p = getenv ("PULSAR_RATE")) != NULL)
	{
		pulsar_rate = atof(p);
		fl_set_input (fd_receiver_main->pulsar_rate_input, p);
	}
	if ((p = getenv ("PULSAR_FOLDING")) != NULL)
	{
		pulsar_folding = atoi(p);
		fl_set_choice (fd_receiver_main->pulsar_choice, pulsar_folding/5);
	}
	/*
	 * Set spec_fft_size based on width of spectral plot display
	 */
   {
	   FL_Coord x, y, w, h;
	   
   		fl_get_object_bbox (fd_receiver_spectrum->spectral_plot, &x, &y, &w, &h);
   		spec_fft_size = w-130;
	}
	
	tp_maxval = 100000;
	tp_span = 20000;
	
	/*
	 * Establish parameters for TP plot
	 */
	if ((p = getenv("RCVR_TP_MAXVAL")) != NULL)
	{
		tp_maxval = (double)atoi(p);
	}
	if ((p = getenv ("RCVR_TP_SPAN")) != NULL)
	{
		tp_span = (double)atoi(p);
	}
	tp_minval = tp_maxval - tp_span;
	fl_set_slider_value (fd_receiver_continuum->tp_max_slider, (double)tp_maxval);
	fl_set_slider_value (fd_receiver_continuum->tp_span_slider, (double)tp_span);  
	fl_set_xyplot_ybounds(fd_receiver_continuum->tp_chart, (double)tp_minval, (double)tp_maxval);
   fl_set_xyplot_ytics(fd_receiver_continuum->tp_chart, 10, 1);
   fl_set_xyplot_xgrid (fd_receiver_continuum->tp_chart, FL_GRID_MINOR);
   fl_set_xyplot_ygrid (fd_receiver_continuum->tp_chart, FL_GRID_MINOR);
   fl_set_object_posthandler(fd_receiver_continuum->tp_chart, continuum_plot_post);
   
   /*
    * Set a post handler for inteferometer display
	*/
   if (strcmp (rcvr_mode, "interferometer") == 0)
   {
   		fl_set_object_posthandler(fd_receiver_interferometer->interferometer_chart, continuum_plot_post);
		if ((p = getenv ("RCVR_INT_GAIN")) != NULL)
		{
			interferometer_gain = atof(p);
		}
		if ((p = getenv ("RCVR_INT_SPAN")) != NULL)
		{
			interferometer_span = atof(p);
		}
		if ((p = getenv ("RCVR_PHCORR")) != NULL)
		{
			interferometer_phase = atof(p);
		}
		if ((p = getenv ("RCVR_DELAY")) != NULL)
		{
			interferometer_delay = atof(p);
		}
		fl_set_xyplot_ytics (fd_receiver_interferometer->interferometer_chart, 10, 1);
		fl_set_xyplot_xgrid (fd_receiver_interferometer->interferometer_chart, FL_GRID_MINOR);
		fl_set_xyplot_ygrid (fd_receiver_interferometer->interferometer_chart, FL_GRID_MINOR);
		fl_set_slider_value (fd_receiver_interferometer->int_gain_slider, interferometer_gain);
		fl_set_slider_value (fd_receiver_interferometer->int_span_slider, interferometer_span);
		fl_set_slider_value (fd_receiver_interferometer->phase_adjust, interferometer_phase);
		fl_set_slider_value (fd_receiver_interferometer->delay_adjust, interferometer_delay);
		fl_set_xyplot_ybounds (fd_receiver_interferometer->interferometer_chart, -1*interferometer_span,
			interferometer_span);
	}
   
   fl_add_timeout (1000.0, (FL_TIMEOUT_CALLBACK)lmst_update, 0);
   
   /*
    * Setup parameters for spectral plot
	*/
	if ((p = getenv ("RCVR_SPEC_MAX")) != NULL)
	{
		current_smax = atoi(p);
	}
	if ((p = getenv ("RCVR_SPEC_SPAN")) != NULL)
	{
		current_span = atoi(p);
	}
	if ((p = getenv ("RCVR_SPEC_FLAT")) != NULL)
	{
		spec_flat_on = atoi(p);
		fl_set_button (fd_receiver_spectrum->flaten_button, spec_flat_on);
	}
	if ((p = getenv ("RCVR_SPEC_METHOD")) != NULL)
	{
		spec_method = atoi (p);
	}
	fl_set_xyplot_xgrid(fd_receiver_spectrum->spectral_plot, FL_GRID_MINOR);
	fl_set_xyplot_ygrid(fd_receiver_spectrum->spectral_plot, FL_GRID_MINOR);
	fl_set_xyplot_ybounds(fd_receiver_spectrum->spectral_plot, (double)(current_smax-current_span), (double)
		current_smax);
	fl_set_xyplot_ytics(fd_receiver_spectrum->spectral_plot, 10, 1);
	fl_set_xyplot_xtics(fd_receiver_spectrum->spectral_plot, 10, 1);
	
	fl_set_object_posthandler(fd_receiver_spectrum->spectral_plot, spectral_plot_post);
	fl_set_choice (fd_receiver_spectrum->spec_method_choice, spec_method);
	fl_set_choice_fontsize (fd_receiver_spectrum->spec_method_choice, 14);
	
	fl_set_slider_value (fd_receiver_spectrum->spec_max_slider, (double)current_smax);
	fl_set_slider_value (fd_receiver_spectrum->spec_span_slider, (double)current_span);
	
	/*
	 * Set post handler for pulsar display
	 */
	fl_set_object_posthandler(fd_receiver_pulsar->pulsar_plot, pulsar_plot_post);
	
	/*
	 * Set parameters for waterfall (SETI) display
	 */
	{
		FL_Coord x, y;
		FL_Coord w, h;
		fl_get_object_bbox(fd_receiver_waterfall->waterfall_display, &x, &y, &w, &h);
		fl_set_slider_bounds (fd_receiver_waterfall->wfall_seg_slider, 1.0, (float)seti_size/w);
		fl_set_object_dblbuffer(fd_receiver_waterfall->waterfall_display, 1);
		
		if ((p = getenv ("RCVR_WFALL_SEGMENT")) != NULL)
		{
			waterfall_segment = atoi(p);
			fl_set_slider_value (fd_receiver_waterfall->wfall_seg_slider, (double)waterfall_segment);
		}
		if ((p = getenv ("RCVR_WFALL_FINE")) != NULL)
		{
			waterfall_fine = atoi(p);
			fl_set_slider_value (fd_receiver_waterfall->fine_segment, waterfall_fine);
		}
		if ((p = getenv ("RCVR_WFALL_BRIGHTNESS")) != NULL)
		{
			double w;
			
			w = atof(p);
			if (fabsf(w-1.0) < 0.1)
			{
				fl_set_choice (fd_receiver_waterfall->wfall_brightness, 1);
				w = 1.0;
			}
			if (fabsf(w-0.75) < 0.1)
			{
				fl_set_choice (fd_receiver_waterfall->wfall_brightness, 2);
				w = 0.75;
			}
			if (fabsf(w-0.66) < 0.1)
			{
				fl_set_choice (fd_receiver_waterfall->wfall_brightness, 3);
				w = 0.66;
			}
			if (fabsf(w-0.50) < 0.1)
			{
				fl_set_choice (fd_receiver_waterfall->wfall_brightness, 4);
				w = 0.50;
			}
			waterfall_brightness = (float)w;
		}
	}
	if ((p = getenv ("RCVR_TRANS_THRESH")) != NULL)
	{
		transient_threshold = atof(p);
		fl_set_slider_value (fd_receiver_main->trans_thr_slider, transient_threshold);
	}
	if ((p = getenv ("RCVR_TRANS_DUR")) != NULL)
	{
		transient_duration = atof(p);
		fl_set_slider_value (fd_receiver_main->trans_dur_slider, transient_duration);
	}
	/*
	 * Open various FIFOs--that's where we get our data from
	 */
	if ((seti_fd = open ("ra_seti_fifo", O_RDONLY|O_NONBLOCK)) > 0)
   {
	   fcntl (seti_fd, F_SETFL, 0);
	   fl_add_io_callback (seti_fd, FL_READ, (FL_IO_CALLBACK)handle_seti_io, fd_receiver_main);
   }
   if ((pulsar_fd = open ("ra_psr_fifo", O_RDONLY|O_NONBLOCK)) > 0)
   {
	    fcntl (pulsar_fd, F_SETFL, 0);
		fl_add_io_callback (pulsar_fd, FL_READ, (FL_IO_CALLBACK)handle_pulsar_io, fd_receiver_main);
   }
   if ((dicke_fd = open ("ra_switching_fifo", O_RDONLY|O_NONBLOCK)) > 0)
   {
	    fcntl (dicke_fd, F_SETFL, 0);
	    fl_set_object_label (fd_receiver_main->dicke_mode, "DICKE: ON");
		fl_add_io_callback (dicke_fd, FL_READ, (FL_IO_CALLBACK)handle_dicke_io, fd_receiver_main);
   }
   if (strcmp (rcvr_mode, "interferometer") == 0)
   {
	   if ((inter_fd = open ("ra_inter_fifo", O_RDONLY|O_NONBLOCK)) > 0)
	   {
		    fcntl (inter_fd, F_SETFL, 0);
	    	fl_add_io_callback (inter_fd, FL_READ, (FL_IO_CALLBACK)handle_inter_io, fd_receiver_main);
		}
	}
	if (strcmp (rcvr_mode, "split") == 0)
	{
		if ((validation_fd = open ("ra_validation_fifo", O_RDONLY|O_NONBLOCK)) > 0)
		{
			fcntl (validation_fd, F_SETFL, 0);
			split_mode = 1;
			fl_add_io_callback (validation_fd, FL_READ, (FL_IO_CALLBACK)handle_validation_io, fd_receiver_main);
		}
	}
	fl_set_oneliner_font (FL_FIXEDBOLDITALIC_STYLE, FL_MEDIUM_FONT);
	fl_set_oneliner_color (FL_GREEN, FL_BLACK);

   while(fl_do_forms())
         ;
   return 0;
}