/* callback for palette-change choice */ void pal_ch_cb(FL_OBJECT *a, long l) { const char *ch; char **current_xpm; ch = fl_get_choice_text( a ); /* copy the RGB selected by the user to the "current" RGB. */ if( !strcmp(ch,PAL_DOOM) ) CopyRGB( DAC_Reg, doom_rgb); else if( !strcmp(ch,PAL_HERETIC) ) CopyRGB( DAC_Reg, heretic_rgb); else if( !strcmp(ch,PAL_E_HERETIC) ) CopyRGB( DAC_Reg, E_HERETIC_rgb); else if( !strcmp(ch,PAL_HEXEN) ) CopyRGB( DAC_Reg, hexen_rgb); else if( !strcmp(ch,PAL_STRIFE) ) CopyRGB( DAC_Reg, strife_rgb); else if( !strcmp(ch, PAL_USER) && USER_rgb ) CopyRGB( DAC_Reg, USER_rgb); else /* this should not happen */ Abort("unknown palette type!\n"); CreateXpmPalette( DAC_Reg, keep_transparent_color ); /* redraw current image */ if ( ( current_xpm = CreateXpmImage( 0, 0, 0, 1, NULL)) ) { fl_free_pixmap_pixmap( img_pxm ); fl_set_pixmap_data( img_pxm, current_xpm ); } }
void SpinnWheel( int stop ) { #include "wheel.xpm" /* here we find the static char *wheel?[] */ static int state; fl_free_pixmap_pixmap( wheel_pxm ); fl_hide_object( wheel_pxm ); if ( stop ) return; switch ( state ) { default : case 0 : fl_set_pixmap_data( wheel_pxm, wheel0 ); state = 1; break; case 1 : fl_set_pixmap_data( wheel_pxm, wheel1 ); state = 2; break; case 2 : fl_set_pixmap_data( wheel_pxm, wheel2 ); state = 3; break; case 3 : fl_set_pixmap_data( wheel_pxm, wheel3 ); state = 0; break; } /* the hide/show and XFlush seems to be necessary to get the right effect */ fl_show_object( wheel_pxm ); XFlush( fl_get_display() ); }
int main(int argc, char *argv[]) { void lmst_update (FL_OBJECT *, long); int i; void dismiss_psr(); void spectrum_hide(); void tp_hide (); void hide_waterfall(); void hide_interferometer(); void hide_info(); void receiver_leave(); int close_sub (); int close_main (); char *p; char fntstr[128]; char d[128]; int binwidth; /* * Init xforms library */ fl_initialize(&argc, argv, "Ira", 0, 0); fl_get_app_resources (NULL, 0); time (&started_at); /* * Create various windows, including the main one */ fd_receiver_main = create_form_receiver_main(); fl_set_form_atclose(fd_receiver_main->receiver_main, close_main, 0); fd_receiver_pulsar = create_form_receiver_pulsar(); fl_set_form_atclose (fd_receiver_pulsar->receiver_pulsar, close_sub, dismiss_psr); fd_receiver_spectrum = create_form_receiver_spectrum(); fl_set_form_atclose (fd_receiver_spectrum->receiver_spectrum, close_sub, spectrum_hide); fd_receiver_continuum = create_form_receiver_continuum(); fl_set_form_atclose (fd_receiver_continuum->receiver_continuum, close_sub, tp_hide); fd_receiver_waterfall = create_form_receiver_waterfall(); fl_set_form_atclose (fd_receiver_waterfall->receiver_waterfall, close_sub, hide_waterfall); fd_receiver_info = create_form_receiver_info(); fl_set_form_atclose (fd_receiver_info->receiver_info, close_sub, hide_info); fd_receiver_lproblem = create_form_receiver_lproblem (); fd_receiver_error = create_form_receiver_error (); fd_receiver_shutdown = create_form_receiver_shutdown (); flps_init(); fl_free_pixmap_pixmap(fd_receiver_main->ira_xpm_button); fl_set_pixmap_data(fd_receiver_main->ira_xpm_button, Ira_xpm); sprintf (version_info, "Ver: %s (BETA)", VERSION); /* * Stuff lines in info window */ for (i = 0; ; i++) { if (ira_info[i] == NULL) { break; } fl_add_browser_line (fd_receiver_info->info_browser, ira_info[i]); } fl_set_browser_fontsize(fd_receiver_info->info_browser, 14); /* fill-in form initialization code */ fl_set_object_label (fd_receiver_main->startup_text, "PLEASE WAIT........."); /* show the first form */ fl_show_form(fd_receiver_main->receiver_main,FL_PLACE_CENTER,FL_FULLBORDER,"IRA Control Panel"); fl_check_forms(); /* * Now we check a raft of environment variables, and use those to initialize * various settable values */ refmult = 1.0; if ((p = getenv ("RCVR_REF_MULT")) != NULL) { refmult = atof(p); } fl_set_slider_value (fd_receiver_main->refmult_slider, refmult); seti_integ = 15; if ((p = getenv ("RCVR_SETI_INTEG")) != NULL) { seti_integ = (int)atof(p); } fl_set_slider_value (fd_receiver_main->seti_integ_slider, (float)seti_integ); strcpy (datadir, "."); if ((p = getenv ("RCVR_DATA_DIR")) != NULL) { strcpy (datadir, p); } /* * Set the input field for freq, as well as the actual frequency */ if ((p = getenv ("RCVR_INITIAL_FREQ")) != NULL) { fl_set_input (fd_receiver_main->frequency_input, p); frequency = atof(p); sky_freq = frequency; sky_locked = 1; } /* * Start out with sky_freq unavailable for input */ fl_deactivate_object (fd_receiver_main->sky_freq_input); fl_set_input (fd_receiver_main->sky_freq_input, "--------"); /* If there's a sky_freq parameter, use it, and re-activate the * sky_freq_input control */ if ((p = getenv ("RCVR_SKY_FREQ")) != NULL) { if (abs(atof(p) - frequency) > 100.0) { sky_locked = 0; fl_set_input (fd_receiver_main->sky_freq_input, p); sky_freq = atof(p); fl_activate_object (fd_receiver_main->sky_freq_input); fl_set_button (fd_receiver_main->sky_lock_button, 0); } else { sky_freq = atof(p); fl_set_button (fd_receiver_main->sky_lock_button, 1); sky_locked = 1; } } PUSHVAR("ifreq", frequency); PUSHVAR("skyfreq", sky_freq); /* * * And again for RF gain */ if ((p = getenv ("RCVR_RF_GAIN")) != NULL) { rf_gain = atoi(p); } fl_set_slider_value (fd_receiver_main->rf_gain_slider, rf_gain); PUSHVAR("igain", rf_gain); /* * Gain correction values for A and B sides */ if ((p = getenv ("RCVR_COR_A")) != NULL) { gc_a = atof(p); } sprintf (d, "%f", gc_a); fl_set_input (fd_receiver_main->gc_a, d); if ((p = getenv ("RCVR_COR_B")) != NULL) { gc_b = atof(p); } sprintf (d, "%f", gc_b); fl_set_input (fd_receiver_main->gc_b, d); /* * Set bounds/values for DC gain */ if ((p = getenv ("RCVR_DC_GAIN")) != NULL) { dc_gain = atof(p); } fl_set_slider_value (fd_receiver_main->dc_gain_control, dc_gain); /* * And again for DC offset */ if ((p = getenv ("RCVR_DC_OFFSET")) != NULL) { dc_offset = atof(p); } fl_set_slider_value (fd_receiver_main->dc_offset_control, dc_offset); /* * Receiver DC Gain multiplier */ if ((p = getenv ("RCVR_DC_MULT")) != NULL) { int which; dc_mult = (double)atoi(p); which = 1; /* * It's a choice widget, so we need to set 'which' appropriately */ switch ((int)dc_mult) { case 1: which = 1; break; case 5: which = 2; break; case 10: which = 3; break; case 15: which = 4; break; case 20: which = 5; break; case 25: which = 6; break; case 30: which=7; break; case 35: which = 8; break; case 40: which = 9; break; } fl_set_choice (fd_receiver_main->mult_choice, which); } /* * Total power integration value */ tp_integration = 5; if ((p = getenv ("RCVR_TP_INTEG")) != NULL) { tp_integration = atoi(p); } fl_set_slider_value (fd_receiver_main->continuum_int, (double)atof(getenv("RCVR_TP_INTEG")) ); /* * Spectral integration */ spec_integration = 15; if ((p = getenv ("RCVR_SPEC_INTEG")) != NULL) { spec_integration = atoi(p); } fl_set_slider_value (fd_receiver_main->spec_int_slider, (double)atof(getenv("RCVR_SPEC_INTEG")) ); /* * Sigma_K for SETI analysis */ sigma_k = 2.5; if ((p = getenv ("RCVR_SIGMA_K")) != NULL) { sigma_k = atof(p); } fl_set_slider_value (fd_receiver_main->sigma_k_slider, sigma_k); /* * Check desired receiver mode */ if (getenv("RCVR_MODE") != NULL) { strcpy (rcvr_mode, getenv("RCVR_MODE")); } else { strcpy (rcvr_mode, "unknown"); } /* * Interferometer? Create the interferometer window */ if (strcmp (rcvr_mode, "interferometer") == 0) { fd_receiver_interferometer = create_form_receiver_interferometer(); fl_set_form_atclose (fd_receiver_interferometer->receiver_interferometer, close_sub, hide_interferometer); } /* * Otherwise, delete the "show interferograms" control */ else { fl_delete_object (fd_receiver_main->interferometer_button); } /* * Various values */ declination = -28.3; if ((p = getenv ("RCVR_DECLINATION")) != NULL) { declination = atof(p); } fl_set_input (fd_receiver_main->declination_input, getenv("RCVR_DECLINATION")); longitude = 0.0; if ((p = getenv ("RCVR_LONGITUDE")) != NULL) { longitude = atof(p); } seti_size = 500000; if ((p = getenv ("RCVR_SETI_SIZE")) != NULL) { seti_size = atoi (p); } bandwidth = 5000000; if ((p = getenv ("RCVR_BANDWIDTH")) != NULL) { bandwidth = atoi (p); } psr_rate = 10000; if ((p = getenv ("RCVR_PSR_RATE")) != NULL) { psr_rate = atoi (getenv ("RCVR_PSR_RATE")); } for (i = 0; i < NNOTCHES; i++) { notches[i] = -1.0; } if ((p = getenv ("RCVR_NOTCHES")) != NULL) { char *tp; char pcopy[128]; FILE *fp; strcpy (pcopy, p); tp = strtok (pcopy, ","); notches[0] = atof(tp); for (i = 1; i < NNOTCHES; i++) { tp = strtok (NULL, ","); if (tp == NULL) { break; } notches[i] = atof(tp); } } if ((p = getenv ("RCVR_NOTCH_SIZE")) != NULL) { notch_length = atoi(p); fl_set_slider_value (fd_receiver_spectrum->notch_slider, (double)notch_length); } if ((p = getenv ("RCVR_DM")) != NULL) { pulsar_dm = atof(p); fl_set_slider_value (fd_receiver_main->dm_input, (double)pulsar_dm); } PUSHVAR("idm", pulsar_dm); if ((p = getenv ("PULSAR_RATE")) != NULL) { pulsar_rate = atof(p); fl_set_input (fd_receiver_main->pulsar_rate_input, p); } if ((p = getenv ("PULSAR_FOLDING")) != NULL) { pulsar_folding = atoi(p); fl_set_choice (fd_receiver_main->pulsar_choice, pulsar_folding/5); } /* * Set spec_fft_size based on width of spectral plot display */ { FL_Coord x, y, w, h; fl_get_object_bbox (fd_receiver_spectrum->spectral_plot, &x, &y, &w, &h); spec_fft_size = w-130; } tp_maxval = 100000; tp_span = 20000; /* * Establish parameters for TP plot */ if ((p = getenv("RCVR_TP_MAXVAL")) != NULL) { tp_maxval = (double)atoi(p); } if ((p = getenv ("RCVR_TP_SPAN")) != NULL) { tp_span = (double)atoi(p); } tp_minval = tp_maxval - tp_span; fl_set_slider_value (fd_receiver_continuum->tp_max_slider, (double)tp_maxval); fl_set_slider_value (fd_receiver_continuum->tp_span_slider, (double)tp_span); fl_set_xyplot_ybounds(fd_receiver_continuum->tp_chart, (double)tp_minval, (double)tp_maxval); fl_set_xyplot_ytics(fd_receiver_continuum->tp_chart, 10, 1); fl_set_xyplot_xgrid (fd_receiver_continuum->tp_chart, FL_GRID_MINOR); fl_set_xyplot_ygrid (fd_receiver_continuum->tp_chart, FL_GRID_MINOR); fl_set_object_posthandler(fd_receiver_continuum->tp_chart, continuum_plot_post); /* * Set a post handler for inteferometer display */ if (strcmp (rcvr_mode, "interferometer") == 0) { fl_set_object_posthandler(fd_receiver_interferometer->interferometer_chart, continuum_plot_post); if ((p = getenv ("RCVR_INT_GAIN")) != NULL) { interferometer_gain = atof(p); } if ((p = getenv ("RCVR_INT_SPAN")) != NULL) { interferometer_span = atof(p); } if ((p = getenv ("RCVR_PHCORR")) != NULL) { interferometer_phase = atof(p); } if ((p = getenv ("RCVR_DELAY")) != NULL) { interferometer_delay = atof(p); } fl_set_xyplot_ytics (fd_receiver_interferometer->interferometer_chart, 10, 1); fl_set_xyplot_xgrid (fd_receiver_interferometer->interferometer_chart, FL_GRID_MINOR); fl_set_xyplot_ygrid (fd_receiver_interferometer->interferometer_chart, FL_GRID_MINOR); fl_set_slider_value (fd_receiver_interferometer->int_gain_slider, interferometer_gain); fl_set_slider_value (fd_receiver_interferometer->int_span_slider, interferometer_span); fl_set_slider_value (fd_receiver_interferometer->phase_adjust, interferometer_phase); fl_set_slider_value (fd_receiver_interferometer->delay_adjust, interferometer_delay); fl_set_xyplot_ybounds (fd_receiver_interferometer->interferometer_chart, -1*interferometer_span, interferometer_span); } fl_add_timeout (1000.0, (FL_TIMEOUT_CALLBACK)lmst_update, 0); /* * Setup parameters for spectral plot */ if ((p = getenv ("RCVR_SPEC_MAX")) != NULL) { current_smax = atoi(p); } if ((p = getenv ("RCVR_SPEC_SPAN")) != NULL) { current_span = atoi(p); } if ((p = getenv ("RCVR_SPEC_FLAT")) != NULL) { spec_flat_on = atoi(p); fl_set_button (fd_receiver_spectrum->flaten_button, spec_flat_on); } if ((p = getenv ("RCVR_SPEC_METHOD")) != NULL) { spec_method = atoi (p); } fl_set_xyplot_xgrid(fd_receiver_spectrum->spectral_plot, FL_GRID_MINOR); fl_set_xyplot_ygrid(fd_receiver_spectrum->spectral_plot, FL_GRID_MINOR); fl_set_xyplot_ybounds(fd_receiver_spectrum->spectral_plot, (double)(current_smax-current_span), (double) current_smax); fl_set_xyplot_ytics(fd_receiver_spectrum->spectral_plot, 10, 1); fl_set_xyplot_xtics(fd_receiver_spectrum->spectral_plot, 10, 1); fl_set_object_posthandler(fd_receiver_spectrum->spectral_plot, spectral_plot_post); fl_set_choice (fd_receiver_spectrum->spec_method_choice, spec_method); fl_set_choice_fontsize (fd_receiver_spectrum->spec_method_choice, 14); fl_set_slider_value (fd_receiver_spectrum->spec_max_slider, (double)current_smax); fl_set_slider_value (fd_receiver_spectrum->spec_span_slider, (double)current_span); /* * Set post handler for pulsar display */ fl_set_object_posthandler(fd_receiver_pulsar->pulsar_plot, pulsar_plot_post); /* * Set parameters for waterfall (SETI) display */ { FL_Coord x, y; FL_Coord w, h; fl_get_object_bbox(fd_receiver_waterfall->waterfall_display, &x, &y, &w, &h); fl_set_slider_bounds (fd_receiver_waterfall->wfall_seg_slider, 1.0, (float)seti_size/w); fl_set_object_dblbuffer(fd_receiver_waterfall->waterfall_display, 1); if ((p = getenv ("RCVR_WFALL_SEGMENT")) != NULL) { waterfall_segment = atoi(p); fl_set_slider_value (fd_receiver_waterfall->wfall_seg_slider, (double)waterfall_segment); } if ((p = getenv ("RCVR_WFALL_FINE")) != NULL) { waterfall_fine = atoi(p); fl_set_slider_value (fd_receiver_waterfall->fine_segment, waterfall_fine); } if ((p = getenv ("RCVR_WFALL_BRIGHTNESS")) != NULL) { double w; w = atof(p); if (fabsf(w-1.0) < 0.1) { fl_set_choice (fd_receiver_waterfall->wfall_brightness, 1); w = 1.0; } if (fabsf(w-0.75) < 0.1) { fl_set_choice (fd_receiver_waterfall->wfall_brightness, 2); w = 0.75; } if (fabsf(w-0.66) < 0.1) { fl_set_choice (fd_receiver_waterfall->wfall_brightness, 3); w = 0.66; } if (fabsf(w-0.50) < 0.1) { fl_set_choice (fd_receiver_waterfall->wfall_brightness, 4); w = 0.50; } waterfall_brightness = (float)w; } } if ((p = getenv ("RCVR_TRANS_THRESH")) != NULL) { transient_threshold = atof(p); fl_set_slider_value (fd_receiver_main->trans_thr_slider, transient_threshold); } if ((p = getenv ("RCVR_TRANS_DUR")) != NULL) { transient_duration = atof(p); fl_set_slider_value (fd_receiver_main->trans_dur_slider, transient_duration); } /* * Open various FIFOs--that's where we get our data from */ if ((seti_fd = open ("ra_seti_fifo", O_RDONLY|O_NONBLOCK)) > 0) { fcntl (seti_fd, F_SETFL, 0); fl_add_io_callback (seti_fd, FL_READ, (FL_IO_CALLBACK)handle_seti_io, fd_receiver_main); } if ((pulsar_fd = open ("ra_psr_fifo", O_RDONLY|O_NONBLOCK)) > 0) { fcntl (pulsar_fd, F_SETFL, 0); fl_add_io_callback (pulsar_fd, FL_READ, (FL_IO_CALLBACK)handle_pulsar_io, fd_receiver_main); } if ((dicke_fd = open ("ra_switching_fifo", O_RDONLY|O_NONBLOCK)) > 0) { fcntl (dicke_fd, F_SETFL, 0); fl_set_object_label (fd_receiver_main->dicke_mode, "DICKE: ON"); fl_add_io_callback (dicke_fd, FL_READ, (FL_IO_CALLBACK)handle_dicke_io, fd_receiver_main); } if (strcmp (rcvr_mode, "interferometer") == 0) { if ((inter_fd = open ("ra_inter_fifo", O_RDONLY|O_NONBLOCK)) > 0) { fcntl (inter_fd, F_SETFL, 0); fl_add_io_callback (inter_fd, FL_READ, (FL_IO_CALLBACK)handle_inter_io, fd_receiver_main); } } if (strcmp (rcvr_mode, "split") == 0) { if ((validation_fd = open ("ra_validation_fifo", O_RDONLY|O_NONBLOCK)) > 0) { fcntl (validation_fd, F_SETFL, 0); split_mode = 1; fl_add_io_callback (validation_fd, FL_READ, (FL_IO_CALLBACK)handle_validation_io, fd_receiver_main); } } fl_set_oneliner_font (FL_FIXEDBOLDITALIC_STYLE, FL_MEDIUM_FONT); fl_set_oneliner_color (FL_GREEN, FL_BLACK); while(fl_do_forms()) ; return 0; }
/* Handle the entry internally. Make an image or play the sound.... */ static void HandleInternal( Int4 index ) { unsigned char *sndbuf; unsigned char *pImgBuf ; char **xpmbuf=NULL; static char imagetext[50]; int nc; unsigned short samplerate; /* Sound sample size: The specs says a short here, with the next short empty. But some entries are (32 bits) ints, and the game engine accepts it. Examples include entries 164--171 (and many more) in strife0.wad (shareware v. 1.1), and #50 in the "Clint Eastwood DOOM (II?) sfx" pwad.... */ Uint4 nsamples; short w, h, dx, dy; switch ( pEntryTag[index] ) { case TAG_SFX : /* Read sound header */ fseek( WADfp, pDirEnt[index].start + 2, SEEK_SET ); fread( &samplerate, sizeof(short), 1, WADfp ); fread( &nsamples, sizeof(Uint4), 1, WADfp ); if ( nsamples != pDirEnt[index].size - 8) Message("Warning, sample size = %d, while Directory size = %d.\n", nsamples, pDirEnt[index].size); sndbuf = malloc( nsamples ); if ( !sndbuf ) { Message("can't malloc data for snd buf (%d bytes)\n",nsamples); return; } /* read the samples */ fread( sndbuf, 1, nsamples, WADfp ); if ( fl_get_button(rev_but) ) /* reverse ! */ ReverseBuffer( sndbuf, nsamples ); PlayRaw( sndbuf, nsamples, samplerate ); free( sndbuf ); break; case TAG_FLAT : case TAG_FULL : case TAG_IMG : pImgBuf = ParseImgBlock(pDirEnt[index], pEntryTag[index], &w, &h, &dx, &dy, WADfp); /* I planned to use the offsets (dx,dy) for better placement of the image, but I need to find out some useful heuristics for how to do it..... printf("image: %dx%d, ofs left %d, top %d\n",w,h,dx,dy); */ if ( pImgBuf && w <= 320 && h <= 200 && (xpmbuf = CreateXpmImage( pImgBuf, w, h, 0, &nc)) ) { fl_free_pixmap_pixmap( img_pxm ); fl_set_pixmap_data( img_pxm, xpmbuf ); sprintf(imagetext,"#%d, %dx%d, %d colours",index,w,h,nc); fl_set_object_label(img_txt, imagetext); } else { Message("error creating image. (%p, %hdx%hd, %p)\n", pImgBuf, w, h, xpmbuf); return; } break; default : Message("entry %d, Not implemented\n",index); break; } }