예제 #1
0
int main(int argc, char **argv)
{
    //init and PVD
    bool initialized = false;
    NxPhysicsSDK *physicsSDK = NxCreatePhysicsSDK(NX_PHYSICS_SDK_VERSION);
    if (!physicsSDK)
        return 0;
    else
        physicsSDK->getFoundationSDK().getRemoteDebugger()->connect("localhost", 5425);
    physicsSDK->setParameter(NX_CONTINUOUS_CD, true);

    initialized = true;

    //create a scene
    bool sceneInit = false;
    NxSceneDesc sceneDesc;
    sceneDesc.gravity.set(0, -9.81f, 0);
    gScene = physicsSDK->createScene(sceneDesc);

    if (gScene != NULL)
        sceneInit = true;

    //create a plane
    {
        NxActorDesc actorDesc;
        NxPlaneShapeDesc planeDesc;
        //planeDesc.normal = NxVec3(0, 0, 1);
        //planeDesc.d = -10.0f;

        actorDesc.shapes.pushBack(&planeDesc);
        gScene->createActor(actorDesc);
    }

    //create material
    NxMaterial *defaultMaterial = gScene->getMaterialFromIndex(0);
    defaultMaterial->setRestitution(0.3f);
    defaultMaterial->setStaticFriction(0.5f);
    defaultMaterial->setDynamicFriction(0.5f);



    //create a box
    {
        NxActorDesc actorDesc;
        NxBodyDesc bodyDesc;
        bodyDesc.angularDamping = 0.5;
        bodyDesc.linearVelocity = NxVec3(1, 0, 0);
        actorDesc.body = &bodyDesc;

        NxBoxShapeDesc boxDesc;
        boxDesc.dimensions = NxVec3(2.0f, 3.0f, 4.0f);
        actorDesc.shapes.pushBack(&boxDesc);
        actorDesc.density = 10.0f;
        actorDesc.globalPose.t = NxVec3(10.0f, 10.0f, 10.0f);
        gScene->createActor(actorDesc)->userData = NULL;
    }

    //create a cloth
    {
        // Create the objects in the scene
        NxActor* sphere1 = CreateSphere(NxVec3(-1, 0, -0.5), 1, 10);
        NxActor* box1 = CreateBox(NxVec3(1, 0, -1), NxVec3(1, 1, 1), 10);
        NxActor* box2 = CreateBox(NxVec3(0, 6.5, 0), NxVec3(5, 0.5, 0.5), 10);
        NxActor* box3 = CreateBox(NxVec3(0, 6.5, -7), NxVec3(5, 0.5, 0.5), 10);

        box2->setLinearDamping(5);
        box3->setLinearDamping(5);
        NxD6JointDesc d6Desc;
        d6Desc.actor[0] = NULL;
        d6Desc.actor[1] = box2;
        NxVec3 globalAnchor(0, 7, 0);
        d6Desc.localAnchor[0] = globalAnchor;
        box2->getGlobalPose().multiplyByInverseRT(globalAnchor, d6Desc.localAnchor[1]);
        box2->raiseBodyFlag(NX_BF_DISABLE_GRAVITY);

        box3->getGlobalPose().multiplyByInverseRT(globalAnchor, d6Desc.localAnchor[1]);
        box3->raiseBodyFlag(NX_BF_DISABLE_GRAVITY);

        d6Desc.localAxis[0] = NxVec3(1, 0, 0);
        d6Desc.localNormal[0] = NxVec3(0, 1, 0);
        d6Desc.localAxis[1] = NxVec3(1, 0, 0);
        d6Desc.localNormal[1] = NxVec3(0, 1, 0);

        d6Desc.twistMotion = NX_D6JOINT_MOTION_LOCKED;
        d6Desc.swing1Motion = NX_D6JOINT_MOTION_LOCKED;
        d6Desc.swing2Motion = NX_D6JOINT_MOTION_LOCKED;
        d6Desc.xMotion = NX_D6JOINT_MOTION_FREE;
        d6Desc.yMotion = NX_D6JOINT_MOTION_FREE;
        d6Desc.zMotion = NX_D6JOINT_MOTION_FREE;

        NxJoint* d6Joint = gScene->createJoint(d6Desc);

        NxClothDesc clothDesc;
        clothDesc.globalPose.t = NxVec3(4, 7, 0);
        clothDesc.thickness = 0.2;
        //clothDesc.density = 1;
        clothDesc.bendingStiffness = 0.5;
        clothDesc.stretchingStiffness = 1;
        //clothDesc.dampingCoefficient = 0.5;
        clothDesc.friction = 0.5;
        //clothDesc.collisionResponseCoefficient = 1;
        //clothDesc.attachmentResponseCoefficient = 1;
        //clothDesc.solverIterations = 5;
        //clothDesc.flags |= NX_CLF_STATIC;
        //clothDesc.flags |= NX_CLF_DISABLE_COLLISION;
        //clothDesc.flags |= NX_CLF_VISUALIZATION;
        //clothDesc.flags |= NX_CLF_GRAVITY;
        clothDesc.flags |= NX_CLF_BENDING;
        //clothDesc.flags |= NX_CLF_BENDING_ORTHO;
        clothDesc.flags |= NX_CLF_DAMPING;
        //clothDesc.flags |= NX_CLF_COMDAMPING;
        clothDesc.flags |= NX_CLF_COLLISION_TWOWAY;

        clothDesc.flags &= ~NX_CLF_HARDWARE;
        clothDesc.flags |= NX_CLF_FLUID_COLLISION;
        clothDesc.selfCollisionThickness = 10.0f;


        NxReal w = 8;
        NxReal h = 7;
        NxReal d = 0.05;
        NxClothMeshDesc meshDesc;
        bool mInitDone = false;

        int numX = (int)(w / d) + 1;
        int numY = (int)(h / d) + 1;


        meshDesc.numVertices = (numX + 1) * (numY + 1);
        meshDesc.numTriangles = numX*numY * 2;
        meshDesc.pointStrideBytes = sizeof(NxVec3);
        meshDesc.triangleStrideBytes = 3 * sizeof(NxU32);
        meshDesc.vertexMassStrideBytes = sizeof(NxReal);
        meshDesc.vertexFlagStrideBytes = sizeof(NxU32);
        meshDesc.points = (NxVec3*)malloc(sizeof(NxVec3)*meshDesc.numVertices);
        meshDesc.triangles = (NxU32*)malloc(sizeof(NxU32)*meshDesc.numTriangles * 3);
        meshDesc.vertexMasses = 0;
        meshDesc.vertexFlags = 0;
        meshDesc.flags = 0;

        int i, j;
        NxVec3 *p = (NxVec3*)meshDesc.points;
        for (i = 0; i <= numY; i++) {
            for (j = 0; j <= numX; j++) {
                p->set(-d*j, 0.0f, -d*i);
                p++;
            }
        }

        NxU32 *id = (NxU32*)meshDesc.triangles;
        for (i = 0; i < numY; i++) {
            for (j = 0; j < numX; j++) {
                NxU32 i0 = i * (numX + 1) + j;
                NxU32 i1 = i0 + 1;
                NxU32 i2 = i0 + (numX + 1);
                NxU32 i3 = i2 + 1;
                if ((j + i) % 2) {
                    *id++ = i0;
                    *id++ = i2;
                    *id++ = i1;
                    *id++ = i1;
                    *id++ = i2;
                    *id++ = i3;
                }
                else {
                    *id++ = i0;
                    *id++ = i2;
                    *id++ = i3;
                    *id++ = i0;
                    *id++ = i3;
                    *id++ = i1;
                }
            }
        }
        // if we want tearing we must tell the cooker
        // this way it will generate some space for particles that will be generated during tearing
        if (meshDesc.flags & NX_CLF_TEARABLE)
            meshDesc.flags |= NX_CLOTH_MESH_TEARABLE;


        //cooking
        static NxCookingInterface *gCooking = 0;
        gCooking = NxGetCookingLib(NX_PHYSICS_SDK_VERSION);
        gCooking->NxInitCooking();

        gCooking->NxCookClothMesh(meshDesc, UserStream("e:\\cooked.bin", false));

        //Meshdata Buffers
        NxMeshData mReceiveBuffers;
        // here we setup the buffers through which the SDK returns the dynamic cloth data
        // we reserve more memory for vertices than the initial mesh takes
        // because tearing creates new vertices
        // the SDK only tears cloth as long as there is room in these buffers
        NxU32 numVertices = meshDesc.numVertices;
        NxU32 numTriangles = meshDesc.numTriangles;

        NxU32 maxVertices = 2 * numVertices;
        mReceiveBuffers.verticesPosBegin = (NxVec3*)malloc(sizeof(NxVec3)*maxVertices);
        mReceiveBuffers.verticesNormalBegin = (NxVec3*)malloc(sizeof(NxVec3)*maxVertices);
        mReceiveBuffers.verticesPosByteStride = sizeof(NxVec3);
        mReceiveBuffers.verticesNormalByteStride = sizeof(NxVec3);
        mReceiveBuffers.maxVertices = maxVertices;
        mReceiveBuffers.numVerticesPtr = (NxU32*)malloc(sizeof(NxU32));

        // the number of triangles is constant, even if the cloth is torn
        NxU32 maxIndices = 3 * numTriangles;
        mReceiveBuffers.indicesBegin = (NxU32*)malloc(sizeof(NxU32)*maxIndices);
        mReceiveBuffers.indicesByteStride = sizeof(NxU32);
        mReceiveBuffers.maxIndices = maxIndices;
        mReceiveBuffers.numIndicesPtr = (NxU32*)malloc(sizeof(NxU32));

        // the parent index information would be needed if we used textured cloth
        NxU32 maxParentIndices = maxVertices;
        mReceiveBuffers.parentIndicesBegin = (NxU32*)malloc(sizeof(NxU32)*maxParentIndices);
        mReceiveBuffers.parentIndicesByteStride = sizeof(NxU32);
        mReceiveBuffers.maxParentIndices = maxParentIndices;
        mReceiveBuffers.numParentIndicesPtr = (NxU32*)malloc(sizeof(NxU32));

        // init the buffers in case we want to draw the mesh
        // before the SDK as filled in the correct values
        *mReceiveBuffers.numVerticesPtr = 0;
        *mReceiveBuffers.numIndicesPtr = 0;



        clothDesc.clothMesh = physicsSDK->createClothMesh(UserStream("e:\\cooked.bin", true));
        clothDesc.meshData = mReceiveBuffers;

        NxCloth *mCloth;
        mCloth = gScene->createCloth(clothDesc);
        mCloth->attachToShape(*box2->getShapes(), NX_CLOTH_ATTACHMENT_TWOWAY);
        mCloth->attachToShape(*box3->getShapes(), NX_CLOTH_ATTACHMENT_TWOWAY);
    }

    //create fluid 1
    {
        //fluid = CreateFluid(NxVec3(0, 12, -3.5), 15, 0.1, gScene);
    }
    //create fluid 2
    {
        //Create a set of initial particles
        ParticleSDK*	initParticles = new ParticleSDK[max_particles];
        unsigned initParticlesNum = 0;

        //Create particle filled sphere in buffer.
        NxVec3 fluidPos(0, 2, 0);
        NxVec3 offsetPos(0, 12, -3.5);
        float distance = 0.1f;
        //#ifdef __PPCGEKKO__
        //	unsigned sideNum = 12;
        //#else
        unsigned sideNum = 16;
        //#endif

        //Setup structure to pass initial particles.
        NxParticleData initParticleData;
        initParticlesNum = 0;
        initParticleData.numParticlesPtr = &initParticlesNum;
        initParticleData.bufferPos = &initParticles[0].position.x;
        initParticleData.bufferPosByteStride = sizeof(ParticleSDK);
        initParticleData.bufferVel = &initParticles[0].velocity.x;
        initParticleData.bufferVelByteStride = sizeof(ParticleSDK);

        CreateParticleSphere(initParticleData, max_particles, false, offsetPos, NxVec3(0, 0, 0), 0.0f, distance, sideNum);

        //Setup fluid descriptor
        NxFluidDesc fluidDesc;
        fluidDesc.maxParticles = max_particles;
        fluidDesc.kernelRadiusMultiplier = 2.0f;
        fluidDesc.restParticlesPerMeter = 10.0f;
        fluidDesc.motionLimitMultiplier = 3.0f;
        fluidDesc.packetSizeMultiplier = 8;
        fluidDesc.collisionDistanceMultiplier = 0.1;
        fluidDesc.stiffness = 50.0f;
        fluidDesc.viscosity = 40.0f;
        fluidDesc.restDensity = 1000.0f;
        fluidDesc.damping = 0.0f;
        fluidDesc.restitutionForStaticShapes = 0.0f;
        fluidDesc.dynamicFrictionForStaticShapes = 0.05f;
        fluidDesc.simulationMethod = NX_F_SPH;
        fluidDesc.flags &= ~NX_FF_HARDWARE;

        //Add initial particles to fluid creation.
        fluidDesc.initialParticleData = initParticleData;

        //Create user fluid.
        //- create NxFluid in NxScene
        //- setup the buffers to read from data from the SDK
        //- set NxFluid::userData field to MyFluid instance
        bool trackUserData = false;
        bool provideCollisionNormals = false;
        MyFluid* fluid = new MyFluid(gScene, fluidDesc, trackUserData, provideCollisionNormals, NxVec3(0.4f, 0.5f, 0.9f), 0.03f);
        assert(fluid);
        gMyFluids.pushBack(fluid);
    }
    //simulate
    for (int i = 0; i < 3000; i++)
    {
        gScene->simulate(1.0f / 60.f);
        gScene->flushStream();
        //GetPhysicsResults
        gScene->fetchResults(NX_RIGID_BODY_FINISHED, true);

        // update fluid status
        if (i == 400)
        {
            MyFluid* fluid = gMyFluids[0];
            const ParticleSDK* particles = fluid->getParticles();
            unsigned particlesNum = fluid->getParticlesNum();
            if (!gUpdates)
            {
                gUpdates = new ParticleUpdateSDK[max_particles];
            }
            for (unsigned i = 0; i < particlesNum; i++)
            {
                ParticleUpdateSDK& update = gUpdates[i];
                NxVec3& force = update.force;
                force.set(0, 0, 0);
                NxU32& flags = update.flags;
                if (i >= particlesNum/2)
                {
                    flags = 0;
                    flags |= NX_FP_DELETE;
                }
                else
                {
                    flags = 0;
                }

            }
            //在这里更改粒子的属性
            NxParticleUpdateData updateData;
            updateData.bufferFlag = &gUpdates[0].flags;
            updateData.bufferFlagByteStride = sizeof(ParticleUpdateSDK);
            fluid->getNxFluid()->updateParticles(updateData);
        }
    }


    //release
    if (physicsSDK != NULL)
    {
        if (gScene != NULL)
            physicsSDK->releaseScene(*gScene);
        gScene = NULL;
        NxReleasePhysicsSDK(physicsSDK);
        physicsSDK = NULL;
    }
    return 1;
}
void SampleCollision::setup()
{

	SetTitleString(getName());
#ifdef __PPCGEKKO__
	SetHelpString("    a: create rigid bodies");
#else	
	SetHelpString("    b: create rigid bodies");
#endif	

	gShadows = false;

	// Create objects in the scene

	if (!InitCooking(gAllocator, &gErrorStream)) 
	{
		printf("\nError: Unable to initialize the cooking library, exiting the sample.\n\n");
		return;
	}

	// Load ASE file
	CookASE("fluidSample.ase", gScene, NxVec3(1,10,0));
	CookASE("coolFlow.ase", gScene, NxVec3(1,6,-0), NxVec3(1,0.2,1));
	CloseCooking();

	// Add a box shaped drain.
	NxActorDesc boxDrainActor;
	NxBoxShapeDesc boxDrainShape;
	boxDrainActor.shapes.pushBack(&boxDrainShape);
	boxDrainShape.dimensions.set(40,1,40);
	boxDrainShape.shapeFlags |= NX_SF_FLUID_DRAIN;
	boxDrainActor.globalPose.t.set(0, 0, 0);
	gScene->createActor(boxDrainActor);

	//Pre cook hotspots
	NxBounds3 precookAABB;
	precookAABB.set(NxVec3(-20,-20,-20), NxVec3(20,20,20));
//	gScene->cookFluidMeshHotspot(precookAABB, PACKET_SIZE_MULTIPLIER, REST_PARTICLES_PER_METER, KERNEL_RADIUS_MULTIPLIER, MOTION_LIMIT_MULTIPLIER, COLLISION_DISTANCE_MULTIPLIER );


	//Create a set of initial particles
	ParticleSDK*	initParticles = new ParticleSDK[MAX_PARTICLES];
	unsigned initParticlesNum = 0;

	NxVec3 fluidPos(0, 11.6, 0);
	float distance = 0.1f;
	unsigned sideNum = 16;	
	float rad = sideNum*distance*0.5f;
	for (unsigned i=0; i<sideNum; i++)
		for (unsigned j=0; j<sideNum; j++)
			for (unsigned k=0; k<sideNum; k++)
			{
				NxVec3 p = NxVec3(i*distance,j*distance,k*distance);
				if (p.distance(NxVec3(rad,rad,rad)) < rad)
				{
					p += fluidPos;
					ParticleSDK& newParticle = initParticles[initParticlesNum++];
					newParticle.position = p;
					newParticle.velocity = NxVec3(0,0,0);
				}
			}
	//Setup structure to pass initial particles.
	NxParticleData initParticleData;
	initParticleData.numParticlesPtr		= &initParticlesNum;
	initParticleData.bufferPos				= &initParticles[0].position.x;
	initParticleData.bufferPosByteStride	= sizeof(ParticleSDK);
	initParticleData.bufferVel				= &initParticles[0].velocity.x;
	initParticleData.bufferVelByteStride	= sizeof(ParticleSDK);

	//Setup fluid descriptor
	NxFluidDesc fluidDesc;
	fluidDesc.maxParticles                  	= initParticlesNum;
	fluidDesc.kernelRadiusMultiplier			= KERNEL_RADIUS_MULTIPLIER;
	fluidDesc.restParticlesPerMeter				= REST_PARTICLES_PER_METER;
	fluidDesc.collisionDistanceMultiplier   	= COLLISION_DISTANCE_MULTIPLIER;
	fluidDesc.stiffness							= 50.0f;
	fluidDesc.viscosity							= 22.0f;
	fluidDesc.damping							= 0.0f;
	fluidDesc.restitutionForStaticShapes		= 0.4f;
	fluidDesc.dynamicFrictionForStaticShapes	= 0.03f;
	fluidDesc.simulationMethod					= NX_F_SPH; //NX_F_NO_PARTICLE_INTERACTION;

	if (!gHardwareSimulation)
		fluidDesc.flags &= ~NX_FF_HARDWARE;

	fluidDesc.initialParticleData			= initParticleData;

	//Create user fluid.
	//- create NxFluid in NxScene
	//- setup the buffers to read from data from the SDK
	//- set NxFluid::userData field to MyFluid instance
	bool trackUserData = false;
	bool provideCollisionNormals = false;
	MyFluid* fluid = new MyFluid(gScene, fluidDesc, trackUserData, provideCollisionNormals, NxVec3(0.2f,0.3f,0.7f), 0.03f);
	assert(fluid);
	gMyFluids.pushBack(fluid);

	delete[] initParticles;

	gCameraPos.set(23, 14, 23);
	gCameraForward = fluidPos - NxVec3(0, 3, 0) - gCameraPos;
	gCameraForward.normalize();

}
예제 #3
0
파일: GR_Fluid.C 프로젝트: UIKit0/cudaFluid
void GR_Fluid::renderWire(GU_Detail *gdp, RE_Render &ren, const GR_AttribOffset & /*ptinfo*/,
		    const GR_DisplayOption *dopt, float /*lod*/, const GU_PrimGroupClosure * /*hidden_geometry*/)
{

	GEO_AttributeHandle fluidAh= gdp->getDetailAttribute("cudaFluidPreview");
	fluidAh.setElement(gdp);

	GEO_AttributeHandle fluid3DAh= gdp->getDetailAttribute("cudaFluid3DPreview");
	fluid3DAh.setElement(gdp);

	GEO_AttributeHandle fluid3DSliceAh= gdp->getDetailAttribute("sliceDisplay");
	fluid3DSliceAh.setElement(gdp);

	GEO_AttributeHandle fluidAh= gdp->getDetailAttribute("cudaFluidPreview");
	fluidAh.setElement(gdp);

	GEO_AttributeHandle fluidIdAh= gdp->getDetailAttribute("solverId");
	fluidIdAh.setElement(gdp);

	if (fluidAh.getI()== 1) {

		VHFluidSolver* currSolver = VHFluidSolver::solverList[fluidIdAh.getI()];

		UT_Vector4 fluidPos(0,0,0);
		UT_Vector3D fluidRot(0,0,0);

		if(gdp->volumeCount() == 1) {
			GEO_Primitive* pprim = gdp->primitives().head();
			GU_PrimVolume* volume = (GU_PrimVolume *)pprim;
			UT_Matrix4 fluidRotMat;
			volume->getTransform4(fluidRotMat);

			UT_XformOrder rotOrder;
			UT_Vector3D scale, trans;
			fluidRotMat.explode(rotOrder, fluidRot, scale, trans);
			fluidRot.radToDeg();
			fluidPos = volume->getVertex().getPt()->getPos();
		}

		float sizeX = currSolver->fluidSize.x*0.5;
		float sizeY = currSolver->fluidSize.y*0.5;

		int newResX = currSolver->res.x;
		int newResY = currSolver->res.y;


		if(displayX != newResX || displayY != newResY) {
			displayX = newResX;
			displayY = newResY;
			initPixelBuffer(true);
		}
					
		cu::cutilSafeCall(cu::cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
		cu::float4 *d_output;
		size_t num_bytes; 
		cu::cutilSafeCall(cu::cudaGraphicsResourceGetMappedPointer((void **)&d_output, &num_bytes,  cuda_pbo_resource));
		cu::cudaMemset(d_output, 0, displayX*displayY*sizeof(cu::float4));

		currSolver->renderFluid(d_output);

		cu::cutilSafeCall(cu::cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));

		//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

		glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
		glBindTexture(GL_TEXTURE_2D, gl_Tex);
		glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, displayX, displayY, GL_RGBA, GL_FLOAT, 0);
		glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

		glEnable(GL_TEXTURE_2D);

		glPushMatrix();
		glTranslatef(fluidPos.x(),fluidPos.y(),fluidPos.z());
		glRotatef(fluidRot.z(),0,0,1);
		glRotatef(fluidRot.y(),0,1,0);
		glRotatef(fluidRot.x(),1,0,0);

		//glColor3f(1.0,1.0,1.0);
		//glDisable(GL_BLEND);
		//glDisable(GL_LIGHTING);

		//glBegin( GL_QUADS );
		//glTexCoord2f(0.0f, 0.0f); glVertex3f(-sizeX,-sizeY,0.0f);
		//glTexCoord2f(0.0f, 1.0f); glVertex3f(-sizeX,sizeY,0.0f);
		//glTexCoord2f(1.0f, 1.0f); glVertex3f(sizeX,sizeY,0.0f);
		//glTexCoord2f(1.0f, 0.0f); glVertex3f(sizeX,-sizeY,0.0f);
		//glEnd();

		ren.setColor(1,1,1,1);
		ren.blend(0);
		ren.toggleLighting(0);


		const float t0[] = {0,0};
		const float t1[] = {0,1};
		const float t2[] = {1,1};
		const float t3[] = {1,0};

		ren.beginQuads();
		ren.t2DW(t0); ren.vertex3DW(-sizeX,-sizeY,0.0f);
		ren.t2DW(t1); ren.vertex3DW(-sizeX,sizeY,0.0f);
		ren.t2DW(t2); ren.vertex3DW(sizeX,sizeY,0.0f);
		ren.t2DW(t3); ren.vertex3DW(sizeX,-sizeY,0.0f);
		ren.endQuads();

		glDisable(GL_TEXTURE_2D);

		glBindTexture(GL_TEXTURE_2D, 0);

		ren.beginClosedLine();
		ren.vertex3DW(-sizeX,-sizeY,0.0f);
		ren.vertex3DW(-sizeX,sizeY,0.0f);
		ren.vertex3DW(sizeX,sizeY,0.0f);
		ren.vertex3DW(sizeX,-sizeY,0.0f);
		ren.endClosedLine();

		ren.toggleLighting(1);

		glPopMatrix();

	}

	if (fluid3DAh.getI() == 1 || fluid3DSliceAh.getI()== 1) {

		ren.toggleLighting(0);

		VHFluidSolver3D* curr3DSolver = VHFluidSolver3D::solverList[fluidIdAh.getI()];

		UT_Vector4 fluidPos(0,0,0);
		UT_Vector3D fluidRot(0,0,0);

		if(gdp->volumeCount() == 1) {
			GEO_Primitive* pprim = gdp->primitives().head();
			GU_PrimVolume* volume = (GU_PrimVolume *)pprim;
			UT_Matrix4 fluidRotMat;
			volume->getTransform4(fluidRotMat);

			UT_XformOrder rotOrder;
			UT_Vector3D scale, trans;
			fluidRotMat.explode(rotOrder, fluidRot, scale, trans);
			fluidRot.radToDeg();
			fluidPos = volume->getVertex().getPt()->getPos();
		}


		float sizeX = curr3DSolver->fluidSize.x*0.5;
		float sizeY = curr3DSolver->fluidSize.y*0.5;
		float sizeZ = curr3DSolver->fluidSize.z*0.5;

		if(curr3DSolver->drawCube) {
			glPushMatrix();
			glTranslatef(fluidPos.x(),fluidPos.y(),fluidPos.z());
			glRotatef(fluidRot.z(),0,0,1);
			glRotatef(fluidRot.y(),0,1,0);
			glRotatef(fluidRot.x(),1,0,0);
			drawWireCube(sizeX,sizeY,sizeZ, ren);
			glPopMatrix();
		}

			if (fluid3DAh.getI()== 1) {

				curr3DSolver->drawFluid();


			}

			if (fluid3DSliceAh.getI()== 1) {

				curr3DSolver->drawFluidSlice();


			}

			ren.toggleLighting(1);

		}



}
예제 #4
0
void GR_CudaHardware::renderWire(GU_Detail *gdp, RE_Render &ren, const GR_AttribOffset & /*ptinfo*/,
		    const GR_DisplayOption *dopt, float /*lod*/, const GU_PrimGroupClosure * /*hidden_geometry*/)
{

	GEO_AttributeHandle fluidAh= gdp->getDetailAttribute("cudaFluidPreview");
	fluidAh.setElement(gdp);

	if (fluidAh.getI()== 1) {

		GEO_AttributeHandle fluidIdAh= gdp->getDetailAttribute("solverId");
		fluidIdAh.setElement(gdp);

		VHFluidSolver* currSolver = VHFluidSolver::solverList[fluidIdAh.getI()];

		UT_Vector4 fluidPos(0,0,0);
		UT_Vector3D fluidRot(0,0,0);

		if(gdp->volumeCount() == 1) {
			GEO_Primitive* pprim = gdp->primitives().head();
			GU_PrimVolume* volume = (GU_PrimVolume *)pprim;
			UT_Matrix4 fluidRotMat;
			volume->getTransform4(fluidRotMat);

			UT_XformOrder rotOrder;
			UT_Vector3D scale, trans;
			fluidRotMat.explode(rotOrder, fluidRot, scale, trans);
			fluidRot.radToDeg();
			fluidPos = volume->getVertex().getPt()->getPos();
		}

		currSolver->drawFluid(fluidRot.x(), fluidRot.y(), fluidRot.z(),
										fluidPos.x(), fluidPos.y(), fluidPos.z());

	}

	GEO_AttributeHandle partsAh= gdp->getDetailAttribute("cudaParticlesPreview");
	partsAh.setElement(gdp);

	if (partsAh.getI()== 1) {

		GEO_AttributeHandle partsIdAh= gdp->getDetailAttribute("systemId");
		partsIdAh.setElement(gdp);

		ren.toggleLighting(0);

		VHParticlesSystem* currSystem = VHParticlesSystem::systemsList[partsIdAh.getI()];

		glClear(GL_COLOR_BUFFER_BIT);

		glEnable( GL_BLEND );
		glBlendFunc( GL_SRC_ALPHA, GL_ONE );

		currSystem->draw();

		glDisable( GL_BLEND );

		ren.toggleLighting(1);

	
	}

	GEO_AttributeHandle fluid3DAh= gdp->getDetailAttribute("cudaFluid3DPreview");
	fluid3DAh.setElement(gdp);

	GEO_AttributeHandle fluid3DSliceAh= gdp->getDetailAttribute("sliceDisplay");
	fluid3DSliceAh.setElement(gdp);

	if (fluid3DAh.getI() == 1 || fluid3DSliceAh.getI()== 1) {

		GEO_AttributeHandle fluidIdAh= gdp->getDetailAttribute("solverId");
		fluidIdAh.setElement(gdp);

		ren.toggleLighting(0);

		VHFluidSolver3D* curr3DSolver = VHFluidSolver3D::solverList[fluidIdAh.getI()];

		UT_Vector4 fluidPos(0,0,0);
		UT_Vector3D fluidRot(0,0,0);

		if(gdp->volumeCount() > 0) {
			GEO_Primitive* pprim = gdp->primitives().head();
			GU_PrimVolume* volume = (GU_PrimVolume *)pprim;
			UT_Matrix4 fluidRotMat;
			volume->getTransform4(fluidRotMat);

			UT_XformOrder rotOrder;
			UT_Vector3D scale, trans;
			fluidRotMat.explode(rotOrder, fluidRot, scale, trans);
			fluidRot.radToDeg();
			fluidPos = volume->getVertex().getPt()->getPos();
		}


		float sizeX = curr3DSolver->fluidSize.x*0.5;
		float sizeY = curr3DSolver->fluidSize.y*0.5;
		float sizeZ = curr3DSolver->fluidSize.z*0.5;

		if(curr3DSolver->drawCube) {
			glPushMatrix();
			glTranslatef(fluidPos.x(),fluidPos.y(),fluidPos.z());
			glRotatef(fluidRot.z(),0,0,1);
			glRotatef(fluidRot.y(),0,1,0);
			glRotatef(fluidRot.x(),1,0,0);
			drawWireCube(sizeX,sizeY,sizeZ, ren);
			glPopMatrix();
		}

			if (fluid3DAh.getI()== 1) {

				curr3DSolver->drawFluid(fluidRot.x(), fluidRot.y(), fluidRot.z(),
										fluidPos.x(), fluidPos.y(), fluidPos.z());

			}

			if (fluid3DSliceAh.getI()== 1) {

				curr3DSolver->drawFluidSlice(fluidRot.x(), fluidRot.y(), fluidRot.z(),
										fluidPos.x(), fluidPos.y(), fluidPos.z());

			}

			ren.toggleLighting(1);

		}




}
예제 #5
0
OP_ERROR SOP_FluidSolver2D::cookMySop(OP_Context &context) {

	oldf = f;

	double t = context.getTime();
	int f =	context.getFrame();
	UT_Interrupt	*boss;
	GU_PrimVolume	*volume;

	OP_Node::flags().timeDep = 1;
	fluidSolver->fps = OPgetDirector()->getChannelManager()->getSamplesPerSec();


	int newResX = RESX(t);
	int newResY = RESY(t);

	if ( newResX != fluidSolver->res.x || newResY != fluidSolver->res.y) {
		fluidSolver->changeFluidRes(newResX,newResY);

	}

	UT_Vector3 fluidPos(POSX(t), POSY(t), POSZ(t));
	UT_Vector3 fluidRot(ROTX(t), ROTY(t), ROTZ(t));
	fluidRot.degToRad();

	fluidSolver->fluidSize.x = FLUIDSIZEX(t);
	fluidSolver->fluidSize.y = FLUIDSIZEY(t);

	fluidSolver->borderNegX = BORDERNEGX(t);
	fluidSolver->borderPosX = BORDERPOSX(t);
	fluidSolver->borderNegY = BORDERNEGY(t);
	fluidSolver->borderPosY = BORDERPOSY(t);

	fluidSolver->preview = PREVIEW(t);
	fluidSolver->previewType = PREVIEWTYPE(t);
	fluidSolver->bounds = BOUNDS(t);

	fluidSolver->substeps = SUBSTEPS(t);
	fluidSolver->jacIter = JACITER(t);

	fluidSolver->densDis = DENSDIS(t);
	fluidSolver->densBuoyStrength = DENSBUOYSTRENGTH(t);
	float ddirX = DENSBUOYDIRX(t);
	float ddirY = DENSBUOYDIRY(t);
	fluidSolver->densBuoyDir = cu::make_float2(ddirX,ddirY);

	fluidSolver->velDamp = VELDAMP(t);
	fluidSolver->vortConf = VORTCONF(t);

	fluidSolver->noiseStr = NOISESTR(t);
	fluidSolver->noiseFreq = NOISEFREQ(t);
	fluidSolver->noiseOct = NOISEOCT(t);
	fluidSolver->noiseLacun = NOISELACUN(t);
	fluidSolver->noiseSpeed = NOISESPEED(t);
	fluidSolver->noiseAmp = NOISEAMP(t);

    if (error() < UT_ERROR_ABORT) {
			boss = UTgetInterrupt();

		gdp->clearAndDestroy();		

		// Start the interrupt server
		if (boss->opStart("Building Volume")){

			static float		 zero = 0.0;

#ifdef HOUDINI_11
			GB_AttributeRef fluidAtt = gdp->addAttrib("cudaFluidPreview", sizeof(int), GB_ATTRIB_INT, &zero);
			gdp->attribs().getElement().setValue<int>(fluidAtt, fluidSolver->preview);

			GB_AttributeRef solverIdAtt = gdp->addAttrib("solverId", sizeof(int), GB_ATTRIB_INT, &zero);
			gdp->attribs().getElement().setValue<int>(solverIdAtt, fluidSolver->id);
#else
			GA_WOAttributeRef fluidAtt = gdp->addIntTuple(GA_ATTRIB_DETAIL, "cudaFluidPreview", 1);
			gdp->element().setValue<int>(fluidAtt, fluidSolver->preview);

			GA_WOAttributeRef solverIdAtt = gdp->addIntTuple(GA_ATTRIB_DETAIL, "solverId", 1);
			gdp->element().setValue<int>(solverIdAtt, fluidSolver->id);
#endif


			UT_Matrix3              xform;
			const UT_XformOrder volXFormOrder;
			
			volume = (GU_PrimVolume *)GU_PrimVolume::build(gdp);

#ifdef HOUDINI_11
			volume->getVertex().getPt()->getPos() = fluidPos;
#else
			volume->getVertexElement(0).getPt()->setPos(fluidPos);
#endif

			xform.identity();
			xform.scale(fluidSolver->fluidSize.x*0.5, fluidSolver->fluidSize.y*0.5, 0.25);
			xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder);

			volume->setTransform(xform);
			

			xform.identity();
			xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder);
			xform.invert();

			if(lockInputs(context) >= UT_ERROR_ABORT)
				return error();

			if(getInput(0)){
				GU_Detail* emittersInput = (GU_Detail*)inputGeo(0, context);
				GEO_PointList emittersList = emittersInput->points();
				int numEmitters = emittersList.entries();

				if (numEmitters != fluidSolver->nEmit) {
					delete fluidSolver->emitters;
					fluidSolver->nEmit = numEmitters;
					fluidSolver->emitters = new FluidEmitter[numEmitters];
				}

				GEO_AttributeHandle radAh, amountAh;
				radAh = emittersInput->getPointAttribute("radius");
				amountAh = emittersInput->getPointAttribute("amount");

				for (int i = 0; i < numEmitters; i++) {

					UT_Vector4 emitPos = emittersList[i]->getPos();
					UT_Vector3 emitPos3(emitPos);

					emitPos3 -= fluidPos;
					emitPos3 = emitPos3*xform;

					fluidSolver->emitters[i].posX = emitPos3.x();
					fluidSolver->emitters[i].posY = emitPos3.y();

					radAh.setElement(emittersList[i]);
					amountAh.setElement(emittersList[i]);

					fluidSolver->emitters[i].radius = radAh.getF(0);
					fluidSolver->emitters[i].amount = amountAh.getF(0);
				}
			} else {

				fluidSolver->nEmit = 0;

			}
		

			if(getInput(1)) {
				GU_Detail* collidersInput = (GU_Detail*)inputGeo(1, context);
		
				GEO_PointList collidersList = collidersInput->points();
				int numColliders = collidersList.entries();

				if (numColliders != fluidSolver->nColliders) {
					delete fluidSolver->colliders;
					fluidSolver->nColliders = numColliders;
					fluidSolver->colliders = new Collider[numColliders];
				}

				GEO_AttributeHandle colRadAh;
				colRadAh = collidersInput->getPointAttribute("radius");

				for (int i = 0; i < numColliders; i++) {

					UT_Vector4 colPos = collidersList[i]->getPos();
					UT_Vector3 colPos3(colPos);

					colPos3 -= fluidPos;
					colPos3 = colPos3*xform;

					if (f > STARTFRAME(t)) {
						fluidSolver->colliders[i].oldPosX = fluidSolver->colliders[i].posX;
						fluidSolver->colliders[i].oldPosY = fluidSolver->colliders[i].posY;
					} else {
						fluidSolver->colliders[i].oldPosX = colPos3.x();
						fluidSolver->colliders[i].oldPosY = colPos3.y();
					}

					fluidSolver->colliders[i].posX = colPos3.x();
					fluidSolver->colliders[i].posY = colPos3.y();

					colRadAh.setElement(collidersList[i]);

					fluidSolver->colliders[i].radius = colRadAh.getF(0);
				}

			} else {
				fluidSolver->nColliders = 0;
			}

			unlockInputs();

			if (f <= STARTFRAME(t)) {

				fluidSolver->resetFluid();

				if (fluidSolver->preview != 1) {
					{
						UT_VoxelArrayWriteHandleF	handle = volume->getVoxelWriteHandle();
						handle->constant(0);
					}
				}


			} else {

				if (f!=oldf) {

					fluidSolver->solveFluid();

				}

				if (fluidSolver->preview != 1) {
					
						cu::cudaMemcpy( fluidSolver->host_dens, fluidSolver->dev_dens,
						fluidSolver->res.x*fluidSolver->res.y*sizeof(float), cu::cudaMemcpyDeviceToHost );
				
					{
						UT_VoxelArrayWriteHandleF	handle = volume->getVoxelWriteHandle();

						handle->size(fluidSolver->res.x, fluidSolver->res.y, 1);

						for (int i = 0; i < fluidSolver->res.x; i++) {
							for (int j = 0; j < fluidSolver->res.y; j++) {
								handle->setValue(i, j, 0, fluidSolver->host_dens[(j*fluidSolver->res.x + i)]);
							}
						}
									

					}

				}
			}


		select(GU_SPrimitive);
		}

		// Tell the interrupt server that we've completed. Must do this
		// regardless of what opStart() returns.
		boss->opEnd();
    }

    gdp->notifyCache(GU_CACHE_ALL);
 
    return error();
}
예제 #6
-1
OP_ERROR SOP_FluidSolver3D::cookMySop(OP_Context &context) {

	oldf = f;
	f =	context.getFrame();

	double t = context.getTime();

	fluidSolver->fps = OPgetDirector()->getChannelManager()->getSamplesPerSec();

	UT_Interrupt	*boss;
	GU_PrimVolume	*volume;
	GU_PrimVolume	*velXVolume;
	GU_PrimVolume	*velYVolume;
	GU_PrimVolume	*velZVolume;

	OP_Node::flags().timeDep = 1;

	int newResX = RESX(t);
	int newResY = RESY(t);
	int newResZ = RESZ(t);

	if ( newResX != fluidSolver->res.width || newResY != fluidSolver->res.height || newResZ != fluidSolver->res.depth) {
		fluidSolver->changeFluidRes(newResX,newResY,newResZ);

	}

	UT_Vector3 fluidPos(POSX(t), POSY(t), POSZ(t));
	UT_Vector3 fluidRot(ROTX(t), ROTY(t), ROTZ(t));
	fluidRot.degToRad();

	fluidSolver->fluidSize.x = FLUIDSIZEX(t);
	fluidSolver->fluidSize.y = FLUIDSIZEY(t);
	fluidSolver->fluidSize.z = FLUIDSIZEZ(t);

	fluidSolver->borderNegX = BORDERNEGX(t);
	fluidSolver->borderPosX = BORDERPOSX(t);
	fluidSolver->borderNegY = BORDERNEGY(t);
	fluidSolver->borderPosY = BORDERPOSY(t);
	fluidSolver->borderNegZ = BORDERNEGZ(t);
	fluidSolver->borderPosZ = BORDERPOSZ(t);

	fluidSolver->substeps = SUBSTEPS(t);
	fluidSolver->jacIter = JACITER(t);

	fluidSolver->densDis = DENSDIS(t);
	fluidSolver->densBuoyStrength = DENSBUOYSTRENGTH(t);
	float ddirX = DENSBUOYDIRX(t);
	float ddirY = DENSBUOYDIRY(t);
	float ddirZ = DENSBUOYDIRZ(t);
	fluidSolver->densBuoyDir = cu::make_float3(ddirX,ddirY,ddirZ);

	fluidSolver->velDamp = VELDAMP(t);
	fluidSolver->vortConf = VORTCONF(t);

	fluidSolver->noiseStr = NOISESTR(t);
	fluidSolver->noiseFreq = NOISEFREQ(t);
	fluidSolver->noiseOct = NOISEOCT(t);
	fluidSolver->noiseLacun = NOISELACUN(t);
	fluidSolver->noiseSpeed = NOISESPEED(t);
	fluidSolver->noiseAmp = NOISEAMP(t);

	fluidSolver->preview = PREVIEW(t);
	fluidSolver->drawCube = DRAWCUBE(t);
	fluidSolver->opaScale = OPASCALE(t);
	fluidSolver->stepMul = STEPMUL(t);
	fluidSolver->displayRes = DISPLAYRES(t);


	fluidSolver->doShadows = DOSHADOWS(t);
	float lightPosX = LIGHTPOSX(t);
	float lightPosY = LIGHTPOSY(t);
	float lightPosZ = LIGHTPOSZ(t);
	fluidSolver->lightPos = cu::make_float3(lightPosX,lightPosY,lightPosZ);
	fluidSolver->shadowDens = SHADOWDENS(t);
	fluidSolver->shadowStepMul = SHADOWSTEPMUL(t);
	fluidSolver->shadowThres = SHADOWTHRES(t);

	fluidSolver->displaySlice = DISPLAYSLICE(t);
	fluidSolver->sliceType = SLICETYPE(t);
	fluidSolver->sliceAxis = SLICEAXIS(t);
	fluidSolver->slicePos = SLICEPOS(t);
	fluidSolver->sliceBounds = SLICEBOUNDS(t);


    if (error() < UT_ERROR_ABORT) {
		boss = UTgetInterrupt();

	gdp->clearAndDestroy();		

		// Start the interrupt server
		if (boss->opStart("Building Volume")){

			static float		 zero = 0.0;
			GB_AttributeRef fluidAtt = gdp->addAttrib("cudaFluid3DPreview", sizeof(int), GB_ATTRIB_INT, &zero);
			gdp->attribs().getElement().setValue<int>(fluidAtt, fluidSolver->preview);

			GB_AttributeRef fluidSliceAtt = gdp->addAttrib("sliceDisplay", sizeof(int), GB_ATTRIB_INT, &zero);
			gdp->attribs().getElement().setValue<int>(fluidSliceAtt, fluidSolver->displaySlice);

			GB_AttributeRef solverIdAtt = gdp->addAttrib("solverId", sizeof(int), GB_ATTRIB_INT, &zero);
			gdp->attribs().getElement().setValue<int>(solverIdAtt, fluidSolver->id);

			GEO_AttributeHandle         name_gah;
			int	def = -1;

			gdp->addPrimAttrib("name", sizeof(int), GB_ATTRIB_INDEX, &def);
			name_gah = gdp->getPrimAttribute("name");


			UT_Matrix3              xform;
			const UT_XformOrder volXFormOrder;

			volume = (GU_PrimVolume *)GU_PrimVolume::build(gdp);

			volume->getVertex().getPt()->getPos() = fluidPos;

			xform.identity();
			xform.scale(fluidSolver->fluidSize.x*0.5, fluidSolver->fluidSize.y*0.5, fluidSolver->fluidSize.z*0.5);
			xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder);

			volume->setTransform(xform);

			name_gah.setElement(volume);
			name_gah.setString("density");

			velXVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp);
			velXVolume->getVertex().getPt()->getPos() = fluidPos;
			velXVolume->setTransform(xform);

			name_gah.setElement(velXVolume);
			name_gah.setString("vel.x");

			velYVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp);
			velYVolume->getVertex().getPt()->getPos() = fluidPos;
			velYVolume->setTransform(xform);

			name_gah.setElement(velYVolume);
			name_gah.setString("vel.y");

			velZVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp);
			velZVolume->getVertex().getPt()->getPos() = fluidPos;
			velZVolume->setTransform(xform);

			name_gah.setElement(velZVolume);
			name_gah.setString("vel.z");


			xform.identity();
			xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder);
			xform.invert();

			if(lockInputs(context) >= UT_ERROR_ABORT)
				return error();

			if(getInput(0)){
				GU_Detail* emittersInput = (GU_Detail*)inputGeo(0, context);
				GEO_PointList emittersList = emittersInput->points();
				int numEmitters = emittersList.entries();

				if (numEmitters != fluidSolver->nEmit) {
					delete fluidSolver->emitters;
					fluidSolver->nEmit = numEmitters;
					fluidSolver->emitters = new VHFluidEmitter[numEmitters];
				}

				GEO_AttributeHandle radAh, amountAh;
				radAh = emittersInput->getPointAttribute("radius");
				amountAh = emittersInput->getPointAttribute("amount");

				for (int i = 0; i < numEmitters; i++) {

					UT_Vector4 emitPos = emittersList[i]->getPos();
					UT_Vector3 emitPos3(emitPos);

					emitPos3 -= fluidPos;
					emitPos3 = emitPos3*xform;

					fluidSolver->emitters[i].posX = emitPos3.x();
					fluidSolver->emitters[i].posY = emitPos3.y();
					fluidSolver->emitters[i].posZ = emitPos3.z();

					radAh.setElement(emittersList[i]);
					amountAh.setElement(emittersList[i]);

					fluidSolver->emitters[i].radius = radAh.getF(0);
					fluidSolver->emitters[i].amount = amountAh.getF(0);
				}
			} else {

				fluidSolver->nEmit = 0;

			}
		

			if(getInput(1)) {
				GU_Detail* collidersInput = (GU_Detail*)inputGeo(1, context);
		
				GEO_PointList collidersList = collidersInput->points();
				int numColliders = collidersList.entries();

				if (numColliders != fluidSolver->nColliders) {
					delete fluidSolver->colliders;
					fluidSolver->nColliders = numColliders;
					fluidSolver->colliders = new VHFluidCollider[numColliders];
				}

				GEO_AttributeHandle colRadAh;
				colRadAh = collidersInput->getPointAttribute("radius");

				for (int i = 0; i < numColliders; i++) {

					UT_Vector4 colPos = collidersList[i]->getPos();
					UT_Vector3 colPos3(colPos);

					colPos3 -= fluidPos;
					colPos3 = colPos3*xform;

					if (f > STARTFRAME(t)) {
						fluidSolver->colliders[i].oldPosX = fluidSolver->colliders[i].posX;
						fluidSolver->colliders[i].oldPosY = fluidSolver->colliders[i].posY;
						fluidSolver->colliders[i].oldPosZ = fluidSolver->colliders[i].posZ;
					} else {
						fluidSolver->colliders[i].oldPosX = colPos3.x();
						fluidSolver->colliders[i].oldPosY = colPos3.y();
						fluidSolver->colliders[i].oldPosZ = colPos3.z();
					}

					fluidSolver->colliders[i].posX = colPos3.x();
					fluidSolver->colliders[i].posY = colPos3.y();
					fluidSolver->colliders[i].posZ = colPos3.z();

					colRadAh.setElement(collidersList[i]);

					fluidSolver->colliders[i].radius = colRadAh.getF(0);
				}

			} else {
				fluidSolver->nColliders = 0;
			}

			unlockInputs();

			if (f <= STARTFRAME(t)) {

				fluidSolver->resetFluid();

				if (COPYDENS(t)) {

					{
						UT_VoxelArrayWriteHandleF	handle = volume->getVoxelWriteHandle();
						handle->constant(0);

						UT_VoxelArrayWriteHandleF	velXHandle = velXVolume->getVoxelWriteHandle();
						velXHandle->constant(0);
						UT_VoxelArrayWriteHandleF	velYHandle = velYVolume->getVoxelWriteHandle();
						velYHandle->constant(0);
						UT_VoxelArrayWriteHandleF	velZHandle = velZVolume->getVoxelWriteHandle();
						velZHandle->constant(0);
					}

				}


			} else {

				if (f!=oldf) {

					fluidSolver->solveFluid();

				}

				if (COPYDENS(t)) {

					cu::cudaMemcpy( fluidSolver->host_dens, fluidSolver->dev_dens,
					fluidSolver->res.width*fluidSolver->res.height*fluidSolver->res.depth*sizeof(float), cu::cudaMemcpyDeviceToHost );

					{
						UT_VoxelArrayWriteHandleF	handle = volume->getVoxelWriteHandle();

						handle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth);

						for (int i = 0; i < fluidSolver->res.width; i++) {
							for (int j = 0; j < fluidSolver->res.height; j++) {
								for (int k = 0; k < fluidSolver->res.depth; k++) {
									handle->setValue(i, j, k, fluidSolver->host_dens[k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i]);
								}
							}
						}
									

					}

					if (COPYVEL(t)) {

					cu::cudaMemcpy( fluidSolver->host_vel, fluidSolver->dev_vel,
						fluidSolver->res.width*fluidSolver->res.height*fluidSolver->res.depth*sizeof(cu::float4), cu::cudaMemcpyDeviceToHost );

					{
						UT_VoxelArrayWriteHandleF	velXHandle = velXVolume->getVoxelWriteHandle();
						velXHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth);
						UT_VoxelArrayWriteHandleF	velYHandle = velYVolume->getVoxelWriteHandle();
						velYHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth);
						UT_VoxelArrayWriteHandleF	velZHandle = velZVolume->getVoxelWriteHandle();
						velZHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth);

						
						for (int i = 0; i < fluidSolver->res.width; i++) {
							for (int j = 0; j < fluidSolver->res.height; j++) {
								for (int k = 0; k < fluidSolver->res.depth; k++) {
									velXHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)]);
									velYHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)+1]);
									velZHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)+2]);
								}
							}
						}
									

					}


					}

				}
			}


		select(GU_SPrimitive);
		}

		// Tell the interrupt server that we've completed. Must do this
		// regardless of what opStart() returns.
		boss->opEnd();
    }

    gdp->notifyCache(GU_CACHE_ALL);

 
    return error();
}