예제 #1
0
/* compute the mean, the covariance matrix, and the eigenvectors.
   They are stored in the structure itself  */
void pca_online_complete (struct pca_online_s * pca)
{
  int d = pca->d;
  int n = pca->n;

  fvec_div_by (pca->mu, d, n);
  fvec_div_by (pca->cov, d * d, n);

  float * mumut = fvec_new (d*d);
  fmat_mul_tr (pca->mu, pca->mu, d, d, 1, mumut);
  fvec_sub (pca->cov, mumut, d*d);
  free (mumut);

  assert(fvec_all_finite(pca->cov,d*d));
  pca->eigvec = fmat_new_pca_from_covariance (d, pca->cov, pca->eigval);
}
예제 #2
0
파일: matrix.c 프로젝트: pombreda/yael
/* compute the mean and covariance matrix */
void pca_online_cov (struct pca_online_s * pca)
{
  int d = pca->d;
  int n = pca->n;

  fvec_div_by (pca->mu, d, n);
  fvec_div_by (pca->cov, d * (long)d, n);

  float * mumut = fvec_new (d*(long)d);
  fmat_mul_tr (pca->mu, pca->mu, d, d, 1, mumut);
  fvec_sub (pca->cov, mumut, d*(long)d);
  free (mumut);
  
  fvec_mul_by (pca->cov, d * (long)d, n / (double) (n-1));
  assert(fvec_all_finite(pca->cov,d*(long)d));
  pca->n = -pca->n;
}
예제 #3
0
파일: matrix.c 프로젝트: pombreda/yael
/* Accumulate information for PCA for n input vectors */
void pca_online_accu (struct pca_online_s * pca, const float * v, long n)
{
  int d = pca->d;
  float * cov = fvec_new (d*(long)d);
  float * mu = fvec_new (d);

  fmat_sum_rows (v, d, n, mu);
  fmat_mul_tr (v, v, d, d, n, cov);

  fvec_add (pca->mu, mu, d);
  fvec_add (pca->cov, cov, d*(long)d);

  pca->n += n;

  free (cov);
  free (mu);
}
예제 #4
0
파일: gmm.c 프로젝트: czxxjtu/videosearch
void gmm_fisher_save_soft_assgn(int n, const float *v, const gmm_t * g, int flags,
                                float *dp_dlambda,
                                float *word_total_soft_assignment) {
    long d=g->d, k=g->k;
    float *p = fvec_new(n * k);
    long i,j,l;
    long ii=0;

    float * vp = NULL; /* v*p */
    float * sum_pj = NULL; /* sum of p's for a given j */

    gmm_compute_p(n,v,g,p,flags | GMM_FLAGS_W);

#define P(j,i) p[(i)*k+(j)]
#define V(l,i) v[(i)*d+(l)]
#define MU(l,j) g->mu[(j)*d+(l)]
#define SIGMA(l,j) g->sigma[(j)*d+(l)]
#define VP(l,j) vp[(j)*d+(l)]

    // Save total soft assignment per centroid
    if (word_total_soft_assignment != NULL) {
        for (j=0; j<k; j++) {
            double sum=0;
            for (i=0; i<n; i++) {
                sum += P(j,i);
            }
            if (n != 0) {
                word_total_soft_assignment[j] = (float)(sum/n);
            } else {
                word_total_soft_assignment[j] = 0.0;
            }
        }
    }

    if(flags & GMM_FLAGS_W) {

        for(j=1; j<k; j++) {
            double accu=0;

            for(i=0; i<n; i++)
                accu+= P(j,i)/g->w[j] - P(0,i)/g->w[0];

            /* normalization */
            double f=n*(1/g->w[j]+1/g->w[0]);

            dp_dlambda[ii++]=accu/sqrt(f);
        }
    }

    if(flags & GMM_FLAGS_MU) {
        float *dp_dmu=dp_dlambda+ii;

#define DP_DMU(l,j) dp_dmu[(j)*d+(l)]

        if(0) { /* simple and slow */

            for(j=0; j<k; j++) {
                for(l=0; l<d; l++) {
                    double accu=0;

                    for(i=0; i<n; i++)
                        accu += P(j,i) * (V(l,i)-MU(l,j)) / SIGMA(l,j);

                    DP_DMU(l,j)=accu;
                }
            }

        } else { /* complicated and fast */

            /* precompute  tables that may be useful for sigma too */
            vp = fvec_new(k * d);
            fmat_mul_tr(v,p,d,k,n,vp);

            sum_pj = fvec_new(k);
            for(j=0; j<k; j++) {
                double sum=0;
                for(i=0; i<n; i++) sum += P(j,i);
                sum_pj[j] = sum;
            }

            for(j=0; j<k; j++) {
                for(l=0; l<d; l++)
                    DP_DMU(l,j) = (VP(l,j) - MU(l,j) * sum_pj[j]) / SIGMA(l,j);
            }

        }
        /* normalization */
        if(!(flags & GMM_FLAGS_NO_NORM)) {
            for(j=0; j<k; j++)
                for(l=0; l<d; l++) {
                    float nf = sqrt(n*g->w[j]/SIGMA(l,j));
                    if(nf > 0) DP_DMU(l,j) /= nf;
                }
        }
#undef DP_DMU
        ii+=d*k;
    }

    if(flags & (GMM_FLAGS_SIGMA | GMM_FLAGS_1SIGMA)) {


        if(flags & GMM_FLAGS_1SIGMA) { /* fast not implemented for 1 sigma */

            for(j=0; j<k; j++) {
                double accu2=0;
                for(l=0; l<d; l++) {
                    double accu=0;

                    for(i=0; i<n; i++)
                        accu += P(j,i) * (sqr(V(l,i)-MU(l,j)) / SIGMA(l,j) - 1) / sqrt(SIGMA(l,j));

                    if(flags & GMM_FLAGS_SIGMA) {

                        double f=flags & GMM_FLAGS_NO_NORM ? 1.0 : 2*n*g->w[j]/SIGMA(l,j);

                        dp_dlambda[ii++]=accu/sqrt(f);
                    }
                    accu2+=accu;
                }

                if(flags & GMM_FLAGS_1SIGMA) {
                    double f=flags & GMM_FLAGS_NO_NORM ? 1.0 : 2*d*n*g->w[j]/SIGMA(0,j);
                    dp_dlambda[ii++]=accu2/sqrt(f);
                }

            }

        } else { /* fast and complicated */
            assert(flags & GMM_FLAGS_SIGMA);
            float *dp_dsigma = dp_dlambda + ii;

            if(!vp) {
                vp = fvec_new(k * d);
                fmat_mul_tr(v,p,d,k,n,vp);
            }

            if(!sum_pj) {
                sum_pj = fvec_new(k);
                for(j=0; j<k; j++) {
                    double sum=0;
                    for(i=0; i<n; i++) sum += P(j,i);
                    sum_pj[j] = sum;
                }
            }
            float *v2 = fvec_new(n * d);
            for(i = n*d-1 ; i >= 0; i--) v2[i] = v[i] * v[i];
            float *v2p = fvec_new(k * d);
            fmat_mul_tr(v2,p,d,k,n,v2p);
            free(v2);

#define V2P(l,j) v2p[(j)*d+(l)]
#define DP_DSIGMA(i,j) dp_dsigma[(i)+(j)*d]
            for(j=0; j<k; j++) {

                for(l=0; l<d; l++) {
                    double accu;

                    accu = V2P(l, j);

                    accu += VP(l, j) * (- 2 * MU(l,j));

                    accu += sum_pj[j] * (sqr(MU(l,j))  - SIGMA(l,j));

                    /* normalization */

                    double f;

                    if(flags & GMM_FLAGS_NO_NORM) {
                        f = pow(SIGMA(l,j), -1.5);
                    } else {
                        f = 1 / (SIGMA(l,j) * sqrt(2*n*g->w[j]));
                    }

                    DP_DSIGMA(l,j) = accu * f;

                }

            }

            free(v2p);

#undef DP_DSIGMA
#undef V2P
            ii += d * k;
        }

    }

    assert(ii==gmm_fisher_sizeof(g,flags));
#undef P
#undef V
#undef MU
#undef SIGMA
    free(p);
    free(sum_pj);
    free(vp);
}