/** Generate a new certificate for our loaded or generated keys, and write it * to disk. Return 0 on success, nonzero on failure. */ static int generate_certificate(void) { char buf[8192]; time_t now = time(NULL); struct tm tm; char published[ISO_TIME_LEN+1]; char expires[ISO_TIME_LEN+1]; char fingerprint[FINGERPRINT_LEN+1]; char *ident = key_to_string(identity_key); char *signing = key_to_string(signing_key); FILE *f; size_t signed_len; char digest[DIGEST_LEN]; char signature[1024]; /* handles up to 8192-bit keys. */ int r; get_fingerprint(identity_key, fingerprint); tor_localtime_r(&now, &tm); tm.tm_mon += months_lifetime; format_iso_time(published, now); format_iso_time(expires, mktime(&tm)); tor_snprintf(buf, sizeof(buf), "dir-key-certificate-version 3" "%s%s" "\nfingerprint %s\n" "dir-key-published %s\n" "dir-key-expires %s\n" "dir-identity-key\n%s" "dir-signing-key\n%s" "dir-key-certification\n", address?"\ndir-address ":"", address?address:"", fingerprint, published, expires, ident, signing); tor_free(ident); tor_free(signing); signed_len = strlen(buf); SHA1((const unsigned char*)buf,signed_len,(unsigned char*)digest); r = RSA_private_encrypt(DIGEST_LEN, (unsigned char*)digest, (unsigned char*)signature, EVP_PKEY_get1_RSA(identity_key), RSA_PKCS1_PADDING); strlcat(buf, "-----BEGIN SIGNATURE-----\n", sizeof(buf)); signed_len = strlen(buf); base64_encode(buf+signed_len, sizeof(buf)-signed_len, signature, r); strlcat(buf, "-----END SIGNATURE-----\n", sizeof(buf)); if (!(f = fopen(certificate_file, "w"))) { log_err(LD_GENERAL, "Couldn't open %s for writing: %s", certificate_file, strerror(errno)); return 1; } fputs(buf, f); fclose(f); return 0; }
/** Read stored accounting information from disk. Return 0 on success; * return -1 and change nothing on failure. */ static int read_bandwidth_usage(void) { or_state_t *state = get_or_state(); { char *fname = get_datadir_fname("bw_accounting"); unlink(fname); tor_free(fname); } if (!state) return -1; log_info(LD_ACCT, "Reading bandwidth accounting data from state file"); n_bytes_read_in_interval = state->AccountingBytesReadInInterval; n_bytes_written_in_interval = state->AccountingBytesWrittenInInterval; n_seconds_active_in_interval = state->AccountingSecondsActive; interval_start_time = state->AccountingIntervalStart; expected_bandwidth_usage = state->AccountingExpectedUsage; /* Older versions of Tor (before 0.2.2.17-alpha or so) didn't generate these * fields. If you switch back and forth, you might get an * AccountingSoftLimitHitAt value from long before the most recent * interval_start_time. If that's so, then ignore the softlimit-related * values. */ if (state->AccountingSoftLimitHitAt > interval_start_time) { soft_limit_hit_at = state->AccountingSoftLimitHitAt; n_bytes_at_soft_limit = state->AccountingBytesAtSoftLimit; n_seconds_to_hit_soft_limit = state->AccountingSecondsToReachSoftLimit; } else { soft_limit_hit_at = 0; n_bytes_at_soft_limit = 0; n_seconds_to_hit_soft_limit = 0; } { char tbuf1[ISO_TIME_LEN+1]; char tbuf2[ISO_TIME_LEN+1]; format_iso_time(tbuf1, state->LastWritten); format_iso_time(tbuf2, state->AccountingIntervalStart); log_info(LD_ACCT, "Successfully read bandwidth accounting info from state written at %s " "for interval starting at %s. We have been active for %lu seconds in " "this interval. At the start of the interval, we expected to use " "about %lu KB per second. ("U64_FORMAT" bytes read so far, " U64_FORMAT" bytes written so far)", tbuf1, tbuf2, (unsigned long)n_seconds_active_in_interval, (unsigned long)(expected_bandwidth_usage*1024/60), U64_PRINTF_ARG(n_bytes_read_in_interval), U64_PRINTF_ARG(n_bytes_written_in_interval)); } return 0; }
/** Called when hibernate_end_time has arrived. */ static void hibernate_end_time_elapsed(time_t now) { char buf[ISO_TIME_LEN+1]; /* The interval has ended, or it is wakeup time. Find out which. */ accounting_run_housekeeping(now); if (interval_wakeup_time <= now) { /* The interval hasn't changed, but interval_wakeup_time has passed. * It's time to wake up and start being a server. */ hibernate_end(HIBERNATE_STATE_LIVE); return; } else { /* The interval has changed, and it isn't time to wake up yet. */ hibernate_end_time = interval_wakeup_time; format_iso_time(buf,interval_wakeup_time); if (hibernate_state != HIBERNATE_STATE_DORMANT) { /* We weren't sleeping before; we should sleep now. */ log_notice(LD_ACCT, "Accounting period ended. Commencing hibernation until " "%s GMT", buf); hibernate_go_dormant(now); } else { log_notice(LD_ACCT, "Accounting period ended. This period, we will hibernate" " until %s GMT",buf); } } }
/** Write the body of <b>md</b> into <b>f</b>, with appropriate annotations. * On success, return the total number of bytes written, and set * *<b>annotation_len_out</b> to the number of bytes written as * annotations. */ static ssize_t dump_microdescriptor(FILE *f, microdesc_t *md, size_t *annotation_len_out) { ssize_t r = 0; size_t written; /* XXXX drops unknown annotations. */ if (md->last_listed) { char buf[ISO_TIME_LEN+1]; char annotation[ISO_TIME_LEN+32]; format_iso_time(buf, md->last_listed); tor_snprintf(annotation, sizeof(annotation), "@last-listed %s\n", buf); if (fputs(annotation, f) < 0) { log_warn(LD_DIR, "Couldn't write microdescriptor annotation: %s", strerror(ferror(f))); return -1; } r += strlen(annotation); *annotation_len_out = r; } else { *annotation_len_out = 0; } md->off = (off_t) ftell(f); written = fwrite(md->body, 1, md->bodylen, f); if (written != md->bodylen) { log_warn(LD_DIR, "Couldn't dump microdescriptor (wrote %lu out of %lu): %s", (unsigned long)written, (unsigned long)md->bodylen, strerror(ferror(f))); return -1; } r += md->bodylen; return r; }
/* Return the time we should expire the state file created at <b>now</b>. * We expire the state file in the beginning of the next protocol run. */ STATIC time_t get_state_valid_until_time(time_t now) { int total_rounds = SHARED_RANDOM_N_ROUNDS * SHARED_RANDOM_N_PHASES; int current_round, voting_interval, rounds_left; time_t valid_until, beginning_of_current_round; voting_interval = get_voting_interval(); /* Find the time the current round started. */ beginning_of_current_round = get_start_time_of_current_round(); /* Find how many rounds are left till the end of the protocol run */ current_round = (now / voting_interval) % total_rounds; rounds_left = total_rounds - current_round; /* To find the valid-until time now, take the start time of the current * round and add to it the time it takes for the leftover rounds to * complete. */ valid_until = beginning_of_current_round + (rounds_left * voting_interval); { /* Logging */ char tbuf[ISO_TIME_LEN + 1]; format_iso_time(tbuf, valid_until); log_debug(LD_DIR, "SR: Valid until time for state set to %s.", tbuf); } return valid_until; }
/** Read stored accounting information from disk. Return 0 on success; * return -1 and change nothing on failure. */ static int read_bandwidth_usage(void) { or_state_t *state = get_or_state(); { char *fname = get_datadir_fname("bw_accounting"); unlink(fname); tor_free(fname); } if (!state) return -1; /* Okay; it looks like the state file is more up-to-date than the * bw_accounting file, or the bw_accounting file is nonexistent, * or the bw_accounting file is corrupt. */ log_info(LD_ACCT, "Reading bandwidth accounting data from state file"); n_bytes_read_in_interval = state->AccountingBytesReadInInterval; n_bytes_written_in_interval = state->AccountingBytesWrittenInInterval; n_seconds_active_in_interval = state->AccountingSecondsActive; interval_start_time = state->AccountingIntervalStart; expected_bandwidth_usage = state->AccountingExpectedUsage; { char tbuf1[ISO_TIME_LEN+1]; char tbuf2[ISO_TIME_LEN+1]; format_iso_time(tbuf1, state->LastWritten); format_iso_time(tbuf2, state->AccountingIntervalStart); log_info(LD_ACCT, "Successfully read bandwidth accounting info from state written at %s " "for interval starting at %s. We have been active for %lu seconds in " "this interval. At the start of the interval, we expected to use " "about %lu KB per second. ("U64_FORMAT" bytes read so far, " U64_FORMAT" bytes written so far)", tbuf1, tbuf2, (unsigned long)n_seconds_active_in_interval, (unsigned long)(expected_bandwidth_usage*1024/60), U64_PRINTF_ARG(n_bytes_read_in_interval), U64_PRINTF_ARG(n_bytes_written_in_interval)); } return 0; }
/** Helper function: called when we get a GETINFO request for an * accounting-related key on the control connection <b>conn</b>. If we can * answer the request for <b>question</b>, then set *<b>answer</b> to a newly * allocated string holding the result. Otherwise, set *<b>answer</b> to * NULL. */ int getinfo_helper_accounting(control_connection_t *conn, const char *question, char **answer, const char **errmsg) { (void) conn; (void) errmsg; if (!strcmp(question, "accounting/enabled")) { *answer = tor_strdup(accounting_is_enabled(get_options()) ? "1" : "0"); } else if (!strcmp(question, "accounting/hibernating")) { if (hibernate_state == HIBERNATE_STATE_DORMANT) *answer = tor_strdup("hard"); else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) *answer = tor_strdup("soft"); else *answer = tor_strdup("awake"); } else if (!strcmp(question, "accounting/bytes")) { *answer = tor_malloc(32); tor_snprintf(*answer, 32, U64_FORMAT" "U64_FORMAT, U64_PRINTF_ARG(n_bytes_read_in_interval), U64_PRINTF_ARG(n_bytes_written_in_interval)); } else if (!strcmp(question, "accounting/bytes-left")) { uint64_t limit = get_options()->AccountingMax; uint64_t read_left = 0, write_left = 0; if (n_bytes_read_in_interval < limit) read_left = limit - n_bytes_read_in_interval; if (n_bytes_written_in_interval < limit) write_left = limit - n_bytes_written_in_interval; *answer = tor_malloc(64); tor_snprintf(*answer, 64, U64_FORMAT" "U64_FORMAT, U64_PRINTF_ARG(read_left), U64_PRINTF_ARG(write_left)); } else if (!strcmp(question, "accounting/interval-start")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_start_time); } else if (!strcmp(question, "accounting/interval-wake")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_wakeup_time); } else if (!strcmp(question, "accounting/interval-end")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_end_time); } else { *answer = NULL; } return 0; }
/* Return a statically allocated string representing yesterday's date * in ISO format. We use it so that state file items are not found to * be outdated. */ const char * get_yesterday_date_str(void) { static char buf[ISO_TIME_LEN+1]; time_t yesterday = time(NULL) - 24*60*60; format_iso_time(buf, yesterday); return buf; }
/* time_t to ISO 8601 */ int strtime_iso(const time_t *t, int flags, char *buf, size_t bufsz) { struct tm tm; if (flags & ISO_8601_GMTIME) tm = *gmtime(t); else tm = *localtime(t); return format_iso_time(&tm, 0, flags, buf, bufsz); }
/* timeval to ISO 8601 */ int strtimeval_iso(struct timeval *tv, int flags, char *buf, size_t bufsz) { struct tm tm; if (flags & ISO_8601_GMTIME) tm = *gmtime(&tv->tv_sec); else tm = *localtime(&tv->tv_sec); return format_iso_time(&tm, tv->tv_usec, flags, buf, bufsz); }
/** Write the body of <b>md</b> into <b>f</b>, with appropriate annotations. * On success, return the total number of bytes written, and set * *<b>annotation_len_out</b> to the number of bytes written as * annotations. */ static ssize_t dump_microdescriptor(int fd, microdesc_t *md, size_t *annotation_len_out) { ssize_t r = 0; ssize_t written; if (md->body == NULL) { *annotation_len_out = 0; return 0; } /* XXXX drops unknown annotations. */ if (md->last_listed) { char buf[ISO_TIME_LEN+1]; char annotation[ISO_TIME_LEN+32]; format_iso_time(buf, md->last_listed); tor_snprintf(annotation, sizeof(annotation), "@last-listed %s\n", buf); if (write_all_to_fd(fd, annotation, strlen(annotation)) < 0) { log_warn(LD_DIR, "Couldn't write microdescriptor annotation: %s", strerror(errno)); return -1; } r += strlen(annotation); *annotation_len_out = r; } else { *annotation_len_out = 0; } md->off = tor_fd_getpos(fd); warn_if_nul_found(md->body, md->bodylen, (int64_t) md->off, "dumping a microdescriptor"); written = write_all_to_fd(fd, md->body, md->bodylen); if (written != (ssize_t)md->bodylen) { written = written < 0 ? 0 : written; log_warn(LD_DIR, "Couldn't dump microdescriptor (wrote %ld out of %lu): %s", (long)written, (unsigned long)md->bodylen, strerror(errno)); return -1; } r += md->bodylen; return r; }
/** Based on our interval and our estimated bandwidth, choose a * deterministic (but random-ish) time to wake up. */ static void accounting_set_wakeup_time(void) { char buf[ISO_TIME_LEN+1]; char digest[DIGEST_LEN]; crypto_digest_env_t *d_env; int time_in_interval; uint64_t time_to_exhaust_bw; int time_to_consider; if (! identity_key_is_set()) { if (init_keys() < 0) { log_err(LD_BUG, "Error initializing keys"); tor_assert(0); } } format_iso_time(buf, interval_start_time); crypto_pk_get_digest(get_identity_key(), digest); d_env = crypto_new_digest_env(); crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN); crypto_digest_add_bytes(d_env, digest, DIGEST_LEN); crypto_digest_get_digest(d_env, digest, DIGEST_LEN); crypto_free_digest_env(d_env); if (!expected_bandwidth_usage) { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_end_time); time_to_exhaust_bw = GUESS_TIME_TO_USE_BANDWIDTH; interval_wakeup_time = interval_start_time; log_notice(LD_ACCT, "Configured hibernation. This interval begins at %s " "and ends at %s. We have no prior estimate for bandwidth, so " "we will start out awake and hibernate when we exhaust our quota.", buf1, buf2); return; } time_in_interval = (int)(interval_end_time - interval_start_time); time_to_exhaust_bw = (get_options()->AccountingMax/expected_bandwidth_usage)*60; if (time_to_exhaust_bw > TIME_MAX) { time_to_exhaust_bw = TIME_MAX; time_to_consider = 0; } else { time_to_consider = time_in_interval - (int)time_to_exhaust_bw; } if (time_to_consider<=0) { interval_wakeup_time = interval_start_time; } else { /* XXX can we simplify this just by picking a random (non-deterministic) * time to be up? If we go down and come up, then we pick a new one. Is * that good enough? -RD */ /* This is not a perfectly unbiased conversion, but it is good enough: * in the worst case, the first half of the day is 0.06 percent likelier * to be chosen than the last half. */ interval_wakeup_time = interval_start_time + (get_uint32(digest) % time_to_consider); format_iso_time(buf, interval_wakeup_time); } { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; char buf3[ISO_TIME_LEN+1]; char buf4[ISO_TIME_LEN+1]; time_t down_time; if (interval_wakeup_time+time_to_exhaust_bw > TIME_MAX) down_time = TIME_MAX; else down_time = (time_t)(interval_wakeup_time+time_to_exhaust_bw); if (down_time>interval_end_time) down_time = interval_end_time; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_wakeup_time); format_local_iso_time(buf3, down_time); format_local_iso_time(buf4, interval_end_time); log_notice(LD_ACCT, "Configured hibernation. This interval began at %s; " "the scheduled wake-up time %s %s; " "we expect%s to exhaust our quota for this interval around %s; " "the next interval begins at %s (all times local)", buf1, time(NULL)<interval_wakeup_time?"is":"was", buf2, time(NULL)<down_time?"":"ed", buf3, buf4); } }
/** Helper: write the router-status information in <b>rs</b> into a newly * allocated character buffer. Use the same format as in network-status * documents. If <b>version</b> is non-NULL, add a "v" line for the platform. * * consensus_method is the current consensus method when format is * NS_V3_CONSENSUS or NS_V3_CONSENSUS_MICRODESC. It is ignored for other * formats: pass ROUTERSTATUS_FORMAT_NO_CONSENSUS_METHOD. * * Return 0 on success, -1 on failure. * * The format argument has one of the following values: * NS_V2 - Output an entry suitable for a V2 NS opinion document * NS_V3_CONSENSUS - Output the first portion of a V3 NS consensus entry * for consensus_method. * NS_V3_CONSENSUS_MICRODESC - Output the first portion of a V3 microdesc * consensus entry for consensus_method. * NS_V3_VOTE - Output a complete V3 NS vote. If <b>vrs</b> is present, * it contains additional information for the vote. * NS_CONTROL_PORT - Output a NS document for the control port. */ char * routerstatus_format_entry(const routerstatus_t *rs, const char *version, const char *protocols, routerstatus_format_type_t format, int consensus_method, const vote_routerstatus_t *vrs) { char *summary; char *result = NULL; char published[ISO_TIME_LEN+1]; char identity64[BASE64_DIGEST_LEN+1]; char digest64[BASE64_DIGEST_LEN+1]; smartlist_t *chunks = smartlist_new(); format_iso_time(published, rs->published_on); digest_to_base64(identity64, rs->identity_digest); digest_to_base64(digest64, rs->descriptor_digest); smartlist_add_asprintf(chunks, "r %s %s %s%s%s %s %d %d\n", rs->nickname, identity64, (format==NS_V3_CONSENSUS_MICRODESC)?"":digest64, (format==NS_V3_CONSENSUS_MICRODESC)?"":" ", published, fmt_addr32(rs->addr), (int)rs->or_port, (int)rs->dir_port); /* TODO: Maybe we want to pass in what we need to build the rest of * this here, instead of in the caller. Then we could use the * networkstatus_type_t values, with an additional control port value * added -MP */ /* V3 microdesc consensuses only have "a" lines in later consensus methods */ if (format == NS_V3_CONSENSUS_MICRODESC && consensus_method < MIN_METHOD_FOR_A_LINES_IN_MICRODESC_CONSENSUS) goto done; /* Possible "a" line. At most one for now. */ if (!tor_addr_is_null(&rs->ipv6_addr)) { smartlist_add_asprintf(chunks, "a %s\n", fmt_addrport(&rs->ipv6_addr, rs->ipv6_orport)); } if (format == NS_V3_CONSENSUS || format == NS_V3_CONSENSUS_MICRODESC) goto done; smartlist_add_asprintf(chunks, "s%s%s%s%s%s%s%s%s%s%s%s\n", /* These must stay in alphabetical order. */ rs->is_authority?" Authority":"", rs->is_bad_exit?" BadExit":"", rs->is_exit?" Exit":"", rs->is_fast?" Fast":"", rs->is_possible_guard?" Guard":"", rs->is_hs_dir?" HSDir":"", rs->is_flagged_running?" Running":"", rs->is_stable?" Stable":"", rs->is_staledesc?" StaleDesc":"", rs->is_v2_dir?" V2Dir":"", rs->is_valid?" Valid":""); /* length of "opt v \n" */ #define V_LINE_OVERHEAD 7 if (version && strlen(version) < MAX_V_LINE_LEN - V_LINE_OVERHEAD) { smartlist_add_asprintf(chunks, "v %s\n", version); } if (protocols) { smartlist_add_asprintf(chunks, "pr %s\n", protocols); } if (format != NS_V2) { const routerinfo_t* desc = router_get_by_id_digest(rs->identity_digest); uint32_t bw_kb; if (format != NS_CONTROL_PORT) { /* Blow up more or less nicely if we didn't get anything or not the * thing we expected. */ if (!desc) { char id[HEX_DIGEST_LEN+1]; char dd[HEX_DIGEST_LEN+1]; base16_encode(id, sizeof(id), rs->identity_digest, DIGEST_LEN); base16_encode(dd, sizeof(dd), rs->descriptor_digest, DIGEST_LEN); log_warn(LD_BUG, "Cannot get any descriptor for %s " "(wanted descriptor %s).", id, dd); goto err; } /* This assert could fire for the control port, because * it can request NS documents before all descriptors * have been fetched. Therefore, we only do this test when * format != NS_CONTROL_PORT. */ if (tor_memneq(desc->cache_info.signed_descriptor_digest, rs->descriptor_digest, DIGEST_LEN)) { char rl_d[HEX_DIGEST_LEN+1]; char rs_d[HEX_DIGEST_LEN+1]; char id[HEX_DIGEST_LEN+1]; base16_encode(rl_d, sizeof(rl_d), desc->cache_info.signed_descriptor_digest, DIGEST_LEN); base16_encode(rs_d, sizeof(rs_d), rs->descriptor_digest, DIGEST_LEN); base16_encode(id, sizeof(id), rs->identity_digest, DIGEST_LEN); log_err(LD_BUG, "descriptor digest in routerlist does not match " "the one in routerstatus: %s vs %s " "(router %s)\n", rl_d, rs_d, id); tor_assert(tor_memeq(desc->cache_info.signed_descriptor_digest, rs->descriptor_digest, DIGEST_LEN)); } } if (format == NS_CONTROL_PORT && rs->has_bandwidth) { bw_kb = rs->bandwidth_kb; } else { tor_assert(desc); bw_kb = router_get_advertised_bandwidth_capped(desc) / 1000; } smartlist_add_asprintf(chunks, "w Bandwidth=%d", bw_kb); if (format == NS_V3_VOTE && vrs && vrs->has_measured_bw) { smartlist_add_asprintf(chunks, " Measured=%d", vrs->measured_bw_kb); } /* Write down guardfraction information if we have it. */ if (format == NS_V3_VOTE && vrs && vrs->status.has_guardfraction) { smartlist_add_asprintf(chunks, " GuardFraction=%d", vrs->status.guardfraction_percentage); } smartlist_add_strdup(chunks, "\n"); if (desc) { summary = policy_summarize(desc->exit_policy, AF_INET); smartlist_add_asprintf(chunks, "p %s\n", summary); tor_free(summary); } if (format == NS_V3_VOTE && vrs) { if (tor_mem_is_zero((char*)vrs->ed25519_id, ED25519_PUBKEY_LEN)) { smartlist_add_strdup(chunks, "id ed25519 none\n"); } else { char ed_b64[BASE64_DIGEST256_LEN+1]; digest256_to_base64(ed_b64, (const char*)vrs->ed25519_id); smartlist_add_asprintf(chunks, "id ed25519 %s\n", ed_b64); } } } done: result = smartlist_join_strings(chunks, "", 0, NULL); err: SMARTLIST_FOREACH(chunks, char *, cp, tor_free(cp)); smartlist_free(chunks); return result; }
/* struct tm to ISO 8601 */ int strtm_iso(struct tm *tm, int flags, char *buf, size_t bufsz) { return format_iso_time(tm, 0, flags, buf, bufsz); }
/* Update the current SR state as needed for the upcoming voting round at * <b>valid_after</b>. */ void sr_state_update(time_t valid_after) { sr_phase_t next_phase; if (BUG(!sr_state)) return; /* Don't call this function twice in the same voting period. */ if (valid_after <= sr_state->valid_after) { log_info(LD_DIR, "SR: Asked to update state twice. Ignoring."); return; } /* Get phase of upcoming round. */ next_phase = get_sr_protocol_phase(valid_after); /* If we are transitioning to a new protocol phase, prepare the stage. */ if (is_phase_transition(next_phase)) { if (next_phase == SR_PHASE_COMMIT) { /* Going into commit phase means we are starting a new protocol run. */ new_protocol_run(valid_after); } /* Set the new phase for this round */ sr_state->phase = next_phase; } else if (sr_state->phase == SR_PHASE_COMMIT && digestmap_size(sr_state->commits) == 0) { /* We are _NOT_ in a transition phase so if we are in the commit phase * and have no commit, generate one. Chances are that we are booting up * so let's have a commit in our state for the next voting period. */ sr_commit_t *our_commit = sr_generate_our_commit(valid_after, get_my_v3_authority_cert()); if (our_commit) { /* Add our commitment to our state. In case we are unable to create one * (highly unlikely), we won't vote for this protocol run since our * commitment won't be in our state. */ sr_state_add_commit(our_commit); } } sr_state_set_valid_after(valid_after); /* Count the current round */ if (sr_state->phase == SR_PHASE_COMMIT) { /* invariant check: we've not entered reveal phase yet */ if (BUG(sr_state->n_reveal_rounds != 0)) return; sr_state->n_commit_rounds++; } else { sr_state->n_reveal_rounds++; } { /* Debugging. */ char tbuf[ISO_TIME_LEN + 1]; format_iso_time(tbuf, valid_after); log_info(LD_DIR, "SR: State prepared for upcoming voting period (%s). " "Upcoming phase is %s (counters: %d commit & %d reveal rounds).", tbuf, get_phase_str(sr_state->phase), sr_state->n_commit_rounds, sr_state->n_reveal_rounds); } }