static void fk_1_proxy(const ModelHandler& model, DataHandler & data, const VectorXd_fx & q, const VectorXd_fx & qdot ) { forwardKinematics(*model,*data,q,qdot); }
static void fk_2_proxy(const ModelHandler& model, DataHandler & data, const VectorXd_fx & q, const VectorXd_fx & v, const VectorXd_fx & a) { forwardKinematics(*model,*data,q,v,a); }
//Evaluate the constraints for Chompification void TSRConstraint::evaluateConstraints(const MatX& qt, MatX& h, MatX& H) { //the pos is equivalent to the position of the // end-effector in the robot frame. double xyzrpy[6]; //the position of the ee. Transform pos; //get the position of the ee forwardKinematics( qt, pos ); //get the position of the ee in the TSR frame endeffectorToTSRFrame( pos, xyzrpy ); //the dimensionality of the configuration space size_t DoF = qt.size() ; //format h (constraint value vector). if (size_t(h.rows()) != _dim_constraint || h.cols() != 1) { h.resize(_dim_constraint, 1); } int current_dim = 0; std::vector< int > active_dims; for ( int i = 0; i < _dim_constraint; i ++ ) { const int dim = _dimension_id[i]; //if the robot's position goes over the TSR's upper bound: if ( xyzrpy[dim] > _Bw(dim, 1) ){ h(current_dim) = xyzrpy[ dim ] - _Bw(dim, 1); active_dims.push_back( dim ); current_dim ++; } //if the robot's position goes below the TSR's lower bound: else if ( xyzrpy[dim] < _Bw( dim, 0 ) ){ h(current_dim) = xyzrpy[ dim ] - _Bw(dim, 0); active_dims.push_back( dim ); current_dim ++; } } if ( current_dim != _dim_constraint ){ h.conservativeResize( current_dim, 1 ); } if ( H.rows() != current_dim || size_t( H.cols() ) != DoF ){ H.resize( current_dim, DoF ); } computeJacobian( qt, pos, H, active_dims ); }
void sForwardKinematics(const MultiBody& mb, MultiBodyConfig& mbc) { checkMatchQ(mb, mbc); checkMatchBodyPos(mb, mbc); checkMatchJointConf(mb, mbc); checkMatchParentToSon(mb, mbc); forwardKinematics(mb, mbc); }
inline double kineticEnergy(const Model & model, Data & data, const Eigen::VectorXd & q, const Eigen::VectorXd & v, const bool update_kinematics) { data.kinetic_energy = 0.; if (update_kinematics) forwardKinematics(model,data,q,v); for(Model::Index i=1;i<(Model::Index)(model.nbody);++i) data.kinetic_energy += model.inertias[i].vtiv(data.v[i]); data.kinetic_energy *= .5; return data.kinetic_energy; }
void Bone::forwardKinematics(const TransMatrixf& m, const map<unsigned int, AngDeg>& angles, map<unsigned int, TransMatrixf>& mats) const { TransMatrixf t = m; forwardKinematics(t,angles); mats[mId]=t; shared_ptr<const Bone> s = sister(); if ( NULL != s.get() ){ s->forwardKinematics(m,angles,mats); } shared_ptr<const Bone> c = child(); if ( NULL != c.get() ){ c->forwardKinematics(t,angles,mats); } }
inline double potentialEnergy(const Model & model, Data & data, const Eigen::VectorXd & q, const bool update_kinematics) { data.potential_energy = 0.; const Motion::ConstLinear_t & g = model.gravity.linear(); SE3::Vector3 com_global; if (update_kinematics) forwardKinematics(model,data,q); for(Model::Index i=1;i<(Model::Index)(model.nbody);++i) { com_global = data.oMi[i].translation() + data.oMi[i].rotation() * model.inertias[i].lever(); data.potential_energy += model.inertias[i].mass() * com_global.dot(g); } return data.potential_energy; }
void Wheels::updateGlobalPosition(long leftWheel, long rightWheel, long backWheel, double gyroAngle) { double localX, localY, localTheta; forwardKinematics(leftWheel, rightWheel, backWheel, localX, localY, localTheta); long cosRotation = SinLookupTable::getCosFromTenthDegrees(globalCurrentTheta); long sinRotation = SinLookupTable::getSinFromTenthDegrees(globalCurrentTheta); //double worldX = (localX * sinRotation) - (localY * cosRotation); //double worldY = (localX * cosRotation) + (localY * sinRotation); long worldX = (localX * cosRotation) - (localY * sinRotation); long worldY = (localX * sinRotation) + (localY * cosRotation); worldX /= LOOKUP_SCALE; // rotated from gyroscope worldY /= LOOKUP_SCALE; localCurrentX += worldX; localCurrentY += worldY; globalCurrentTheta = gyroAngle * 10; worldCurrentX += worldX; worldCurrentY += worldY; }
void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo) { forwardKinematics(); BT_PROFILE("solveConstraints"); m_sortedConstraints.resize( m_constraints.size()); int i; for (i=0;i<getNumConstraints();i++) { m_sortedConstraints[i] = m_constraints[i]; } m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate2()); btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0; m_sortedMultiBodyConstraints.resize(m_multiBodyConstraints.size()); for (i=0;i<m_multiBodyConstraints.size();i++) { m_sortedMultiBodyConstraints[i] = m_multiBodyConstraints[i]; } m_sortedMultiBodyConstraints.quickSort(btSortMultiBodyConstraintOnIslandPredicate()); btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0; m_solverMultiBodyIslandCallback->setup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),sortedMultiBodyConstraints,m_sortedMultiBodyConstraints.size(), getDebugDrawer()); m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds()); /// solve all the constraints for this island m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverMultiBodyIslandCallback); #ifndef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY { BT_PROFILE("btMultiBody addForce"); for (int i=0;i<this->m_multiBodies.size();i++) { btMultiBody* bod = m_multiBodies[i]; bool isSleeping = false; if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING) { isSleeping = true; } for (int b=0;b<bod->getNumLinks();b++) { if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING) isSleeping = true; } if (!isSleeping) { //useless? they get resized in stepVelocities once again (AND DIFFERENTLY) m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd) m_scratch_v.resize(bod->getNumLinks()+1); m_scratch_m.resize(bod->getNumLinks()+1); bod->addBaseForce(m_gravity * bod->getBaseMass()); for (int j = 0; j < bod->getNumLinks(); ++j) { bod->addLinkForce(j, m_gravity * bod->getLinkMass(j)); } }//if (!isSleeping) } } #endif //BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY { BT_PROFILE("btMultiBody stepVelocities"); for (int i=0;i<this->m_multiBodies.size();i++) { btMultiBody* bod = m_multiBodies[i]; bool isSleeping = false; if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING) { isSleeping = true; } for (int b=0;b<bod->getNumLinks();b++) { if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING) isSleeping = true; } if (!isSleeping) { //useless? they get resized in stepVelocities once again (AND DIFFERENTLY) m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd) m_scratch_v.resize(bod->getNumLinks()+1); m_scratch_m.resize(bod->getNumLinks()+1); bool doNotUpdatePos = false; { if(!bod->isUsingRK4Integration()) { bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m); } else { // int numDofs = bod->getNumDofs() + 6; int numPosVars = bod->getNumPosVars() + 7; btAlignedObjectArray<btScalar> scratch_r2; scratch_r2.resize(2*numPosVars + 8*numDofs); //convenience btScalar *pMem = &scratch_r2[0]; btScalar *scratch_q0 = pMem; pMem += numPosVars; btScalar *scratch_qx = pMem; pMem += numPosVars; btScalar *scratch_qd0 = pMem; pMem += numDofs; btScalar *scratch_qd1 = pMem; pMem += numDofs; btScalar *scratch_qd2 = pMem; pMem += numDofs; btScalar *scratch_qd3 = pMem; pMem += numDofs; btScalar *scratch_qdd0 = pMem; pMem += numDofs; btScalar *scratch_qdd1 = pMem; pMem += numDofs; btScalar *scratch_qdd2 = pMem; pMem += numDofs; btScalar *scratch_qdd3 = pMem; pMem += numDofs; btAssert((pMem - (2*numPosVars + 8*numDofs)) == &scratch_r2[0]); ///// //copy q0 to scratch_q0 and qd0 to scratch_qd0 scratch_q0[0] = bod->getWorldToBaseRot().x(); scratch_q0[1] = bod->getWorldToBaseRot().y(); scratch_q0[2] = bod->getWorldToBaseRot().z(); scratch_q0[3] = bod->getWorldToBaseRot().w(); scratch_q0[4] = bod->getBasePos().x(); scratch_q0[5] = bod->getBasePos().y(); scratch_q0[6] = bod->getBasePos().z(); // for(int link = 0; link < bod->getNumLinks(); ++link) { for(int dof = 0; dof < bod->getLink(link).m_posVarCount; ++dof) scratch_q0[7 + bod->getLink(link).m_cfgOffset + dof] = bod->getLink(link).m_jointPos[dof]; } // for(int dof = 0; dof < numDofs; ++dof) scratch_qd0[dof] = bod->getVelocityVector()[dof]; //// struct { btMultiBody *bod; btScalar *scratch_qx, *scratch_q0; void operator()() { for(int dof = 0; dof < bod->getNumPosVars() + 7; ++dof) scratch_qx[dof] = scratch_q0[dof]; } } pResetQx = {bod, scratch_qx, scratch_q0}; // struct { void operator()(btScalar dt, const btScalar *pDer, const btScalar *pCurVal, btScalar *pVal, int size) { for(int i = 0; i < size; ++i) pVal[i] = pCurVal[i] + dt * pDer[i]; } } pEulerIntegrate; // struct { void operator()(btMultiBody *pBody, const btScalar *pData) { btScalar *pVel = const_cast<btScalar*>(pBody->getVelocityVector()); for(int i = 0; i < pBody->getNumDofs() + 6; ++i) pVel[i] = pData[i]; } } pCopyToVelocityVector; // struct { void operator()(const btScalar *pSrc, btScalar *pDst, int start, int size) { for(int i = 0; i < size; ++i) pDst[i] = pSrc[start + i]; } } pCopy; // btScalar h = solverInfo.m_timeStep; #define output &m_scratch_r[bod->getNumDofs()] //calc qdd0 from: q0 & qd0 bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m); pCopy(output, scratch_qdd0, 0, numDofs); //calc q1 = q0 + h/2 * qd0 pResetQx(); bod->stepPositionsMultiDof(btScalar(.5)*h, scratch_qx, scratch_qd0); //calc qd1 = qd0 + h/2 * qdd0 pEulerIntegrate(btScalar(.5)*h, scratch_qdd0, scratch_qd0, scratch_qd1, numDofs); // //calc qdd1 from: q1 & qd1 pCopyToVelocityVector(bod, scratch_qd1); bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m); pCopy(output, scratch_qdd1, 0, numDofs); //calc q2 = q0 + h/2 * qd1 pResetQx(); bod->stepPositionsMultiDof(btScalar(.5)*h, scratch_qx, scratch_qd1); //calc qd2 = qd0 + h/2 * qdd1 pEulerIntegrate(btScalar(.5)*h, scratch_qdd1, scratch_qd0, scratch_qd2, numDofs); // //calc qdd2 from: q2 & qd2 pCopyToVelocityVector(bod, scratch_qd2); bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m); pCopy(output, scratch_qdd2, 0, numDofs); //calc q3 = q0 + h * qd2 pResetQx(); bod->stepPositionsMultiDof(h, scratch_qx, scratch_qd2); //calc qd3 = qd0 + h * qdd2 pEulerIntegrate(h, scratch_qdd2, scratch_qd0, scratch_qd3, numDofs); // //calc qdd3 from: q3 & qd3 pCopyToVelocityVector(bod, scratch_qd3); bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m); pCopy(output, scratch_qdd3, 0, numDofs); // //calc q = q0 + h/6(qd0 + 2*(qd1 + qd2) + qd3) //calc qd = qd0 + h/6(qdd0 + 2*(qdd1 + qdd2) + qdd3) btAlignedObjectArray<btScalar> delta_q; delta_q.resize(numDofs); btAlignedObjectArray<btScalar> delta_qd; delta_qd.resize(numDofs); for(int i = 0; i < numDofs; ++i) { delta_q[i] = h/btScalar(6.)*(scratch_qd0[i] + 2*scratch_qd1[i] + 2*scratch_qd2[i] + scratch_qd3[i]); delta_qd[i] = h/btScalar(6.)*(scratch_qdd0[i] + 2*scratch_qdd1[i] + 2*scratch_qdd2[i] + scratch_qdd3[i]); //delta_q[i] = h*scratch_qd0[i]; //delta_qd[i] = h*scratch_qdd0[i]; } // pCopyToVelocityVector(bod, scratch_qd0); bod->applyDeltaVeeMultiDof(&delta_qd[0], 1); // if(!doNotUpdatePos) { btScalar *pRealBuf = const_cast<btScalar *>(bod->getVelocityVector()); pRealBuf += 6 + bod->getNumDofs() + bod->getNumDofs()*bod->getNumDofs(); for(int i = 0; i < numDofs; ++i) pRealBuf[i] = delta_q[i]; //bod->stepPositionsMultiDof(1, 0, &delta_q[0]); bod->setPosUpdated(true); } //ugly hack which resets the cached data to t0 (needed for constraint solver) { for(int link = 0; link < bod->getNumLinks(); ++link) bod->getLink(link).updateCacheMultiDof(); bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0, m_scratch_r, m_scratch_v, m_scratch_m); } } } #ifndef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY bod->clearForcesAndTorques(); #endif //BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY }//if (!isSleeping) } } clearMultiBodyConstraintForces(); m_solverMultiBodyIslandCallback->processConstraints(); m_constraintSolver->allSolved(solverInfo, m_debugDrawer); { BT_PROFILE("btMultiBody stepVelocities"); for (int i=0;i<this->m_multiBodies.size();i++) { btMultiBody* bod = m_multiBodies[i]; bool isSleeping = false; if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING) { isSleeping = true; } for (int b=0;b<bod->getNumLinks();b++) { if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING) isSleeping = true; } if (!isSleeping) { //useless? they get resized in stepVelocities once again (AND DIFFERENTLY) m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd) m_scratch_v.resize(bod->getNumLinks()+1); m_scratch_m.resize(bod->getNumLinks()+1); { if(!bod->isUsingRK4Integration()) { bool isConstraintPass = true; bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass); } } } } } for (int i=0;i<this->m_multiBodies.size();i++) { btMultiBody* bod = m_multiBodies[i]; bod->processDeltaVeeMultiDof2(); } }