예제 #1
0
void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
    if(!state.train){
        copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
        return;
    }

    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
        truth_cpu = calloc(num_truth, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state = state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_detection_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
예제 #2
0
파일: network.c 프로젝트: Nerei/darknet
void forward_network(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        }
        state.input = l.output;
    }
}
예제 #3
0
void forward_network(network net, network_state state)
{
    state.workspace = net.workspace;
    int i;
    for(i = 0; i < net.n; ++i){
        state.index = i;
        layer l = net.layers[i];
        if(l.delta){
            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == ACTIVE){
            forward_activation_layer(l, state);
        } else if(l.type == LOCAL){
            forward_local_layer(l, state);
        } else if(l.type == NORMALIZATION){
            forward_normalization_layer(l, state);
        } else if(l.type == BATCHNORM){
            forward_batchnorm_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == RNN){
            forward_rnn_layer(l, state);
        } else if(l.type == GRU){
            forward_gru_layer(l, state);
        } else if(l.type == CRNN){
            forward_crnn_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        } else if(l.type == SHORTCUT){
            forward_shortcut_layer(l, state);
        }
        state.input = l.output;
    }
}
예제 #4
0
void forward_detection_layer_gpu(const detection_layer l, network net)
{
    if(!net.train){
        copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
        return;
    }

    //float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    //float *truth_cpu = 0;

    forward_detection_layer(l, net);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
}
예제 #5
0
void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
    int outputs = get_detection_layer_output_size(l);
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        truth_cpu = calloc(l.batch*outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_detection_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
예제 #6
0
파일: network.c 프로젝트: gpeegpee/darknet
void forward_network(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.delta){
            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == NORMALIZATION){
            forward_normalization_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        }
        state.input = l.output;
    }
}