int ed_is_infty(const ed_t p) { assert(!fp_is_zero(p->z)); int ret = 0; fp_t norm_y; fp_null(norm_y); fp_new(norm_y); fp_inv(norm_y, p->z); fp_mul(norm_y, p->y, norm_y); if (fp_cmp_dig(norm_y, 1) == CMP_EQ && fp_is_zero(p->x)) { ret = 1; } fp_free(norm_y); return ret; }
void ep_dbl_projc(ep_t r, const ep_t p) { if (ep_is_infty(p)) { ep_set_infty(r); return; } if (fp_is_zero(p->x)) { ep_set_infty(r); return; } ep_dbl_projc_imp(r, p); }
int ed_is_valid(const ed_t p) { ed_t t; #if ED_ADD == EXTND fp_t x_times_y; #endif int r = 0; ed_null(t); #if ED_ADD == EXTND fp_null(x_times_y); #endif if (fp_is_zero(p->z)) { r = 0; } else { TRY { #if ED_ADD == EXTND fp_new(x_times_y); #endif ed_new(t); ed_norm(t, p); // check t coordinate #if ED_ADD == PROJC r = ed_affine_is_valid(t->x, t->y); #elif ED_ADD == EXTND fp_mul(x_times_y, t->x, t->y); if (fp_cmp(x_times_y, t->t) != CMP_EQ) { r = 0; } else { r = ed_affine_is_valid(t->x, t->y); } #endif // if (r == 0) { // util_printf("\n\n(X, Y, T, Z) = \n"); // ed_print(p); // } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { #if ED_ADD == EXTND fp_free(x_times_y); #endif ed_free(t); } } return r; }
/** * Detects an optimization based on the curve coefficients. * * @param[out] opt - the resulting optimization. * @param[in] a - the curve coefficient. */ static void detect_opt(int *opt, fp_t a) { fp_t t; fp_null(t); TRY { fp_new(t); fp_prime_conv_dig(t, 3); fp_neg(t, t); if (fp_cmp(a, t) == CMP_EQ) { *opt = OPT_MINUS3; } else { if (fp_is_zero(a)) { *opt = OPT_ZERO; } else { fp_set_dig(t, 1); if (fp_cmp_dig(a, 1) == CMP_EQ) { *opt = OPT_ONE; } else { if (fp_cmp_dig(a, 2) == CMP_EQ) { *opt = OPT_TWO; } else { if (fp_bits(a) <= FP_DIGIT) { *opt = OPT_DIGIT; } else { *opt = RELIC_OPT_NONE; } } } } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
int ed_affine_is_valid(const fp_t x, const fp_t y) { fp_t tmpFP0; fp_t tmpFP1; fp_t tmpFP2; fp_null(tmpFP0); fp_null(tmpFP1); fp_null(tmpFP2); int r = 0; TRY { fp_new(tmpFP0); fp_new(tmpFP1); fp_new(tmpFP2); // a * X^2 + Y^2 - 1 - d * X^2 * Y^2 =?= 0 fp_sqr(tmpFP0, x); fp_mul(tmpFP0, core_get()->ed_a, tmpFP0); fp_sqr(tmpFP1, y); fp_add(tmpFP1, tmpFP0, tmpFP1); fp_sub_dig(tmpFP1, tmpFP1, 1); fp_sqr(tmpFP0, x); fp_mul(tmpFP0, core_get()->ed_d, tmpFP0); fp_sqr(tmpFP2, y); fp_mul(tmpFP2, tmpFP0, tmpFP2); fp_sub(tmpFP0, tmpFP1, tmpFP2); r = fp_is_zero(tmpFP0); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(tmpFP0); fp_free(tmpFP1); fp_free(tmpFP2); } return r; }
int fp3_cmp_dig(fp3_t a, dig_t b) { return (fp_cmp_dig(a[0], b) == CMP_EQ) && fp_is_zero(a[1]) && fp_is_zero(a[2]) ? CMP_EQ : CMP_NE; }
void fp_rdcs_low(dig_t *c, dig_t *a, dig_t *m) { align dig_t q[2 * FP_DIGS], _q[2 * FP_DIGS]; align dig_t _r[2 * FP_DIGS], r[2 * FP_DIGS], t[2 * FP_DIGS]; int *sform, len; int first, i, j, b0, d0, b1, d1; dig_t carry; sform = fp_prime_get_sps(&len); SPLIT(b0, d0, FP_BITS, FP_DIG_LOG); first = (d0) + (b0 == 0 ? 0 : 1); /* q = floor(a/b^k) */ dv_zero(q, 2 * FP_DIGS); bn_rshd_low(q, a, 2 * FP_DIGS, d0); if (b0 > 0) { bn_rshb_low(q, q, 2 * FP_DIGS, b0); } /* r = a - qb^k. */ dv_copy(r, a, first); if (b0 > 0) { r[first - 1] &= MASK(b0); } carry = 0; while (!fp_is_zero(q)) { dv_zero(_q, 2 * FP_DIGS); for (i = len - 1; i > 0; i--) { j = (sform[i] < 0 ? -sform[i] : sform[i]); SPLIT(b1, d1, j, FP_DIG_LOG); dv_zero(t, 2 * FP_DIGS); bn_lshd_low(t, q, FP_DIGS, d1); if (b1 > 0) { bn_lshb_low(t, t, 2 * FP_DIGS, b1); } if (sform[i] > 0) { bn_subn_low(_q, _q, t, 2 * FP_DIGS); } else { bn_addn_low(_q, _q, t, 2 * FP_DIGS); } } if (sform[0] > 0) { bn_subn_low(_q, _q, q, 2 * FP_DIGS); } else { bn_addn_low(_q, _q, q, 2 * FP_DIGS); } bn_rshd_low(q, _q, 2 * FP_DIGS, d0); if (b0 > 0) { bn_rshb_low(q, q, 2 * FP_DIGS, b0); } dv_copy(_r, _q, first); if (b0 > 0) { _r[first - 1] &= MASK(b0); } fp_add(r, r, _r); } while (fp_cmpn_low(r, m) != CMP_LT) { fp_subn_low(r, r, m); } fp_copy(c, r); }
int ep_is_infty(const ep_t p) { return (fp_is_zero(p->z) == 1); }
int fp2_is_zero(fp2_t a) { return fp_is_zero(a[0]) && fp_is_zero(a[1]); }
int fp3_is_zero(fp3_t a) { return fp_is_zero(a[0]) && fp_is_zero(a[1]) && fp_is_zero(a[2]); }
/** * Adds two points represented in affine coordinates on an ordinary prime * elliptic curve. * * @param[out] r - the result. * @param[out] s - the slope. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void ep_add_basic_imp(ep_t r, fp_t s, const ep_t p, const ep_t q) { fp_t t0, t1, t2; fp_null(t0); fp_null(t1); fp_null(t2); TRY { fp_new(t0); fp_new(t1); fp_new(t2); /* t0 = x2 - x1. */ fp_sub(t0, q->x, p->x); /* t1 = y2 - y1. */ fp_sub(t1, q->y, p->y); /* If t0 is zero. */ if (fp_is_zero(t0)) { if (fp_is_zero(t1)) { /* If t1 is zero, q = p, should have doubled. */ ep_dbl_basic(r, p); } else { /* If t1 is not zero and t0 is zero, q = -p and r = infinity. */ ep_set_infty(r); } } else { /* t2 = 1/(x2 - x1). */ fp_inv(t2, t0); /* t2 = lambda = (y2 - y1)/(x2 - x1). */ fp_mul(t2, t1, t2); /* x3 = lambda^2 - x2 - x1. */ fp_sqr(t1, t2); fp_sub(t0, t1, p->x); fp_sub(t0, t0, q->x); /* y3 = lambda * (x1 - x3) - y1. */ fp_sub(t1, p->x, t0); fp_mul(t1, t2, t1); fp_sub(r->y, t1, p->y); fp_copy(r->x, t0); fp_copy(r->z, p->z); if (s != NULL) { fp_copy(s, t2); } r->norm = 1; } fp_free(t0); fp_free(t1); fp_free(t2); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); } }
/** * Adds two points represented in projective coordinates on an ordinary prime * elliptic curve. * * @param[out] r - the result. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void ep_add_projc_imp(ep_t r, const ep_t p, const ep_t q) { #if defined(EP_MIXED) && defined(STRIP) /* If code size is a problem, leave only the mixed version. */ ep_add_projc_mix(r, p, q); #else /* General addition. */ #if defined(EP_MIXED) || !defined(STRIP) /* Test if z2 = 1 only if mixed coordinates are turned on. */ if (q->norm) { ep_add_projc_mix(r, p, q); return; } #endif fp_t t0, t1, t2, t3, t4, t5, t6; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); fp_null(t6); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); fp_new(t6); /* add-2007-bl formulas: 11M + 5S + 9add + 4*2 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl */ /* t0 = z1^2. */ fp_sqr(t0, p->z); /* t1 = z2^2. */ fp_sqr(t1, q->z); /* t2 = U1 = x1 * z2^2. */ fp_mul(t2, p->x, t1); /* t3 = U2 = x2 * z1^2. */ fp_mul(t3, q->x, t0); /* t6 = z1^2 + z2^2. */ fp_add(t6, t0, t1); /* t0 = S2 = y2 * z1^3. */ fp_mul(t0, t0, p->z); fp_mul(t0, t0, q->y); /* t1 = S1 = y1 * z2^3. */ fp_mul(t1, t1, q->z); fp_mul(t1, t1, p->y); /* t3 = H = U2 - U1. */ fp_sub(t3, t3, t2); /* t0 = R = 2 * (S2 - S1). */ fp_sub(t0, t0, t1); fp_dbl(t0, t0); /* If E is zero. */ if (fp_is_zero(t3)) { if (fp_is_zero(t0)) { /* If I is zero, p = q, should have doubled. */ ep_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ ep_set_infty(r); } } else { /* t4 = I = (2*H)^2. */ fp_dbl(t4, t3); fp_sqr(t4, t4); /* t5 = J = H * I. */ fp_mul(t5, t3, t4); /* t4 = V = U1 * I. */ fp_mul(t4, t2, t4); /* x3 = R^2 - J - 2 * V. */ fp_sqr(r->x, t0); fp_sub(r->x, r->x, t5); fp_dbl(t2, t4); fp_sub(r->x, r->x, t2); /* y3 = R * (V - x3) - 2 * S1 * J. */ fp_sub(t4, t4, r->x); fp_mul(t4, t4, t0); fp_mul(t1, t1, t5); fp_dbl(t1, t1); fp_sub(r->y, t4, t1); /* z3 = ((z1 + z2)^2 - z1^2 - z2^2) * H. */ fp_add(r->z, p->z, q->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t6); fp_mul(r->z, r->z, t3); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); fp_free(t6); } #endif }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param[out] r - the result. * @param[in] p - the projective point. * @param[in] q - the affine point. */ static void ep_add_projc_mix(ep_t r, const ep_t p, const ep_t q) { fp_t t0, t1, t2, t3, t4, t5, t6; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); fp_null(t6); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); fp_new(t6); /* madd-2007-bl formulas: 7M + 4S + 9add + 1*4 + 3*2. */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-madd-2007-bl */ if (!p->norm) { /* t0 = z1^2. */ fp_sqr(t0, p->z); /* t3 = U2 = x2 * z1^2. */ fp_mul(t3, q->x, t0); /* t1 = S2 = y2 * z1^3. */ fp_mul(t1, t0, p->z); fp_mul(t1, t1, q->y); /* t3 = H = U2 - x1. */ fp_sub(t3, t3, p->x); /* t1 = R = 2 * (S2 - y1). */ fp_sub(t1, t1, p->y); fp_dbl(t1, t1); } else { /* H = x2 - x1. */ fp_sub(t3, q->x, p->x); /* t1 = R = 2 * (y2 - y1). */ fp_sub(t1, q->y, p->y); fp_dbl(t1, t1); } /* t2 = HH = H^2. */ fp_sqr(t2, t3); /* If E is zero. */ if (fp_is_zero(t3)) { if (fp_is_zero(t1)) { /* If I is zero, p = q, should have doubled. */ ep_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ ep_set_infty(r); } } else { /* t4 = I = 4*HH. */ fp_dbl(t4, t2); fp_dbl(t4, t4); /* t5 = J = H * I. */ fp_mul(t5, t3, t4); /* t4 = V = x1 * I. */ fp_mul(t4, p->x, t4); /* x3 = R^2 - J - 2 * V. */ fp_sqr(r->x, t1); fp_sub(r->x, r->x, t5); fp_dbl(t6, t4); fp_sub(r->x, r->x, t6); /* y3 = R * (V - x3) - 2 * Y1 * J. */ fp_sub(t4, t4, r->x); fp_mul(t4, t4, t1); fp_mul(t1, p->y, t5); fp_dbl(t1, t1); fp_sub(r->y, t4, t1); if (!p->norm) { /* z3 = (z1 + H)^2 - z1^2 - HH. */ fp_add(r->z, p->z, t3); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t0); fp_sub(r->z, r->z, t2); } else { /* z3 = 2 * H. */ fp_dbl(r->z, t3); } } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); fp_free(t6); } }