예제 #1
0
/*
   Solve the overconstrained linear system   Ma = b   using a least
   squares error (pseudo inverse) approach.
*/
int solve_system (dmat M, dmat a, dmat b)
/*
int       solve_system (M, a, b)
    dmat      M,
              a,
              b;
*/
  {
  dmat	Mt,MtM,Mdag;
  int		error;

  if ((M.ub1 - M.lb1) < (M.ub2 - M.lb2))
    {
    fprintf (stderr, "solve_system: matrix M has more columns than rows\n");
    return (-1);
    }
  Mt = newdmat (M.lb2, M.ub2, M.lb1, M.ub1, &error);
  if (error)
    { fprintf (stderr, "solve_system: unable to allocate matrix M_transpose\n"); return (-1); }
  if (transpose (M, Mt)!=0)
    { fprintf (stderr, "solve_system: unable to transpose matrix M\n"); return (-1); }
  MtM = newdmat (M.lb2, M.ub2, M.lb2, M.ub2, &error);
  if (error)
    { fprintf (stderr, "solve_system: unable to allocate matrix M_transpose_M\n"); return (-1); }
  if (matmul (Mt, M, MtM)!=0)
    { fprintf (stderr, "solve_system: unable to compute matrix product of M_transpose and M\n"); return (-1); }
  if (fabs (matinvert (MtM)) < 0.001)
    {
    fprintf (stderr, "solve_system: determinant of matrix M_transpose_M is too small\n");
    return (-1);
    }
  /*
  if (errno) {
   fprintf (stderr, "solve_system: error during matrix inversion\n");
   return (-1);
  }
  */

  Mdag = newdmat (M.lb2, M.ub2, M.lb1, M.ub1, &error);
  if (error)
    { fprintf (stderr, "solve_system: unable to allocate matrix M_diag\n"); return (-1); }
  if (matmul (MtM, Mt, Mdag)!=0)
    {
    fprintf (stderr, "solve_system: unable to compute matrix product of M_transpose_M and M_transpose\n");
    return (-1);
    }
  if (matmul (Mdag, b, a)!=0)
    {
    fprintf (stderr, "solve_system: unable to compute matrix product of M_diag and b\n");
    return (-1);
    }
  freemat (Mt); freemat (MtM); freemat (Mdag);
  return 0;
  }
예제 #2
0
/*
     Perform the matrix multiplication   c = a*b   where
     a, b, and c are dynamic Iliffe matrices.

     The matrix dimensions must be commensurate.  This means that
     c and a must have the same number of rows; c and b must have
     the same number of columns; and a must have the same  number
     of columns as b has rows.  The actual index origins are
     immaterial.

     If c is the same matrix as a or b, the result will be
     correct at the expense of more time.
*/
int       matmul (dmat a,dmat  b,dmat  c)
    
{
    int       i,
              j,
              k,
              broff,
              croff,
              ccoff,		/* coordinate origin offsets */
              mem_alloced,
              error;

    double    t;

    dmat      d;		/* temporary workspace matrix */

    if (a.ub2 - a.lb2 != b.ub1 - b.lb1
	|| a.ub1 - a.lb1 != c.ub1 - c.lb1
	|| b.ub2 - b.lb2 != c.ub2 - c.lb2) {
	errno = EDOM;
	return (-1);
    }

    if (a.mat_sto != c.mat_sto && b.mat_sto != c.mat_sto) {
	d = c;
	mem_alloced = FALSE;
    } else {
		
	d = newdmat (c.lb1, c.ub1, c.lb2, c.ub2, &error);
	if (error) {
	    fprintf (stderr, "Matmul: out of storage.\n");
	    errno = ENOMEM;
	    return (-1);
	}
	mem_alloced = TRUE;
    }

    broff = b.lb1 - a.lb2;	/* B's row offset from A */
    croff = c.lb1 - a.lb1;	/* C's row offset from A */
    ccoff = c.lb2 - b.lb2;	/* C's column offset from B */
    for (i = a.lb1; i <= a.ub1; i++)
	for (j = b.lb2; j <= b.ub2; j++) {
	    t = 0.0;
	    for (k = a.lb2; k <= a.ub2; k++)
		t += a.el[i][k] * b.el[k + broff][j];
	    d.el[i + croff][j + ccoff] = t;
	}

    if (mem_alloced) {
	for (i = c.lb1; i <= c.ub1; i++)
	    for (j = c.lb2; j <= c.ub2; j++)
		c.el[i][j] = d.el[i][j];
	freemat (d);
    }

    return (0);
}
예제 #3
0
/*
   Generate the transpose of a dynamic Iliffe matrix.
*/
int       transpose (dmat A, dmat ATrans)
    
{
    int       i,
              j,
              rowsize,
              colsize,
              error;

    double  **a = A.el,
            **atrans = ATrans.el,
              temp;

    dmat      TMP;

    rowsize = A.ub1 - A.lb1;
    colsize = A.ub2 - A.lb2;
    if (rowsize < 0 || rowsize != ATrans.ub2 - ATrans.lb2 ||
	colsize < 0 || colsize != ATrans.ub1 - ATrans.lb1) {
	errno = EDOM;
	return (-1);
    }

    if (A.mat_sto == ATrans.mat_sto
	&& A.lb1 == ATrans.lb1
	&& A.lb2 == ATrans.lb2) {
	for (i = 0; i <= rowsize; i++)
	    for (j = i + 1; j <= colsize; j++) {
		temp = a[A.lb1 + i][A.lb2 + j];
		atrans[A.lb1 + i][A.lb2 + j] = a[A.lb1 + j][A.lb2 + i];
		atrans[A.lb1 + j][A.lb2 + i] = temp;
	    }
    } else if (A.mat_sto == ATrans.mat_sto) {
	TMP = newdmat (ATrans.lb1, ATrans.ub1, ATrans.lb2, ATrans.ub2, &error);
	if (error)
	    return (-2);

	for (i = 0; i <= rowsize; i++)
	    for (j = 0; j <= colsize; j++) {
		TMP.el[ATrans.lb1 + j][ATrans.lb2 + i] =
		 a[A.lb1 + i][A.lb2 + j];
	    }

	matcopy (TMP, ATrans);
	freemat (TMP);
    } else {
	for (i = 0; i <= rowsize; i++)
	    for (j = 0; j <= colsize; j++)
		atrans[ATrans.lb1 + j][ATrans.lb2 + i]
		 = a[A.lb1 + i][A.lb2 + j];
    }

    return (0);
}
예제 #4
0
/*
   Solve the overconstrained linear system   Ma = b   using a least
   squares error (pseudo inverse) approach.
*/
int       solve_system (dmat M, dmat a,dmat  b)
    
{
    dmat      Mt,
              MtM,
              Mdag;
	//AfxMessageBox("S1");
    if ((M.ub1 - M.lb1) < (M.ub2 - M.lb2)) {
	fprintf (stderr, "solve_system: matrix M has more columns than rows\n");
	return (-1);
    }

	//AfxMessageBox("S2");
    Mt = newdmat (M.lb2, M.ub2, M.lb1, M.ub1, &errno);
    if (errno) {
	fprintf (stderr, "solve_system: unable to allocate matrix M_transpose\n");
	return (-2);
    }

	//AfxMessageBox("S3");
    transpose (M, Mt);
    if (errno) {
	fprintf (stderr, "solve_system: unable to transpose matrix M\n");
	return (-3);
    }

	//AfxMessageBox("S4");
    MtM = newdmat (M.lb2, M.ub2, M.lb2, M.ub2, &errno);
    if (errno) {
	fprintf (stderr, "solve_system: unable to allocate matrix M_transpose_M\n");
	return (-4);
    }

	//AfxMessageBox("S5");
    matmul (Mt, M, MtM);
    if (errno) {
	fprintf (stderr, "solve_system: unable to compute matrix product of M_transpose and M\n");
	return (-5);
    }
//modified by Dickson
	//AfxMessageBox("S6");
    
	double aa=fabs (matinvert (MtM));
	//AfxMessageBox("S7");
    //if (aa < 0.001) {
	//CString  str;
	//str.Format("determinant=%f",aa);
	//AfxMessageBox("S71");
	//AfxMessageBox(str);
	//AfxMessageBox("S8");
    
    if (aa < 0.001) {
		
	fprintf (stderr, "solve_system: determinant of matrix M_transpose_M is too small\n");
	return (-6);
    }

    if (errno) {
	fprintf (stderr, "solve_system: error during matrix inversion\n");
	return (-7);
    }

    Mdag = newdmat (M.lb2, M.ub2, M.lb1, M.ub1, &errno);
    if (errno) {
	fprintf (stderr, "solve_system: unable to allocate matrix M_diag\n");
	return (-8);
    }

    matmul (MtM, Mt, Mdag);
    if (errno) {
	fprintf (stderr, "solve_system: unable to compute matrix product of M_transpose_M and M_transpose\n");
	return (-9);
    }

    matmul (Mdag, b, a);
    if (errno) {
	fprintf (stderr, "solve_system: unable to compute matrix product of M_diag and b\n");
	return (-10);
    }

    freemat (Mt);
    freemat (MtM);
    freemat (Mdag);

    return 0;
}
/*******************************************************************************
Given a set of matches, compute the "best fitting" homography.

    matches: matching points
    numMatches: number of matching points
    h: returned homography
    isForward: direction of the projection (true = image1 -> image2, false = image2 -> image1)
*******************************************************************************/
bool MainWindow::ComputeHomography(CMatches *matches, int numMatches, double h[3][3], bool isForward)
{
    int error;
    int nEq=numMatches*2;

    dmat M=newdmat(0,nEq,0,7,&error);
    dmat a=newdmat(0,7,0,0,&error);
    dmat b=newdmat(0,nEq,0,0,&error);

    double x0, y0, x1, y1;

    for (int i=0;i<nEq/2;i++)
    {
        if(isForward == false)
        {
            x0 = matches[i].m_X1;
            y0 = matches[i].m_Y1;
            x1 = matches[i].m_X2;
            y1 = matches[i].m_Y2;
        }
        else
        {
            x0 = matches[i].m_X2;
            y0 = matches[i].m_Y2;
            x1 = matches[i].m_X1;
            y1 = matches[i].m_Y1;
        }


        //Eq 1 for corrpoint
        M.el[i*2][0]=x1;
        M.el[i*2][1]=y1;
        M.el[i*2][2]=1;
        M.el[i*2][3]=0;
        M.el[i*2][4]=0;
        M.el[i*2][5]=0;
        M.el[i*2][6]=(x1*x0*-1);
        M.el[i*2][7]=(y1*x0*-1);

        b.el[i*2][0]=x0;
        //Eq 2 for corrpoint
        M.el[i*2+1][0]=0;
        M.el[i*2+1][1]=0;
        M.el[i*2+1][2]=0;
        M.el[i*2+1][3]=x1;
        M.el[i*2+1][4]=y1;
        M.el[i*2+1][5]=1;
        M.el[i*2+1][6]=(x1*y0*-1);
        M.el[i*2+1][7]=(y1*y0*-1);

        b.el[i*2+1][0]=y0;

    }
    int ret=solve_system (M,a,b);
    if (ret!=0)
    {
        freemat(M);
        freemat(a);
        freemat(b);

        return false;
    }
    else
    {
        h[0][0]= a.el[0][0];
        h[0][1]= a.el[1][0];
        h[0][2]= a.el[2][0];

        h[1][0]= a.el[3][0];
        h[1][1]= a.el[4][0];
        h[1][2]= a.el[5][0];

        h[2][0]= a.el[6][0];
        h[2][1]= a.el[7][0];
        h[2][2]= 1;
    }

    freemat(M);
    freemat(a);
    freemat(b);

    return true;
}