static ssize_t cifs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; ssize_t written; int rc; written = generic_file_aio_write(iocb, iov, nr_segs, pos); if (CIFS_I(inode)->clientCanCacheAll) return written; rc = filemap_fdatawrite(inode->i_mapping); if (rc) cFYI(1, "cifs_file_aio_write: %d rc on %p inode", rc, inode); return written; }
static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; if (file->f_flags & O_APPEND) { struct dentry *dentry = file->f_dentry; struct gfs2_inode *ip = GFS2_I(dentry->d_inode); struct gfs2_holder gh; int ret; ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); if (ret) return ret; gfs2_glock_dq_uninit(&gh); } return generic_file_aio_write(iocb, iov, nr_segs, pos); }
static ssize_t cifs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t written; int rc; written = generic_file_aio_write(iocb, iov, nr_segs, pos); if (CIFS_CACHE_WRITE(CIFS_I(inode))) return written; rc = filemap_fdatawrite(inode->i_mapping); if (rc) cifs_dbg(FYI, "cifs_file_aio_write: %d rc on %p inode\n", rc, inode); return written; }
static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct dentry * dentry = iocb->ki_filp->f_dentry; struct inode * inode = dentry->d_inode; ssize_t result; size_t count = iov_length(iov, nr_segs); #ifdef CONFIG_NFS_DIRECTIO if (iocb->ki_filp->f_flags & O_DIRECT) return nfs_file_direct_write(iocb, iov, nr_segs, pos); #endif dfprintk(VFS, "nfs: write(%s/%s(%ld), %lu@%Ld)\n", dentry->d_parent->d_name.name, dentry->d_name.name, inode->i_ino, (unsigned long) count, (long long) pos); result = -EBUSY; if (IS_SWAPFILE(inode)) goto out_swapfile; /* * O_APPEND implies that we must revalidate the file length. */ if (iocb->ki_filp->f_flags & O_APPEND) { result = nfs_revalidate_file_size(inode, iocb->ki_filp); if (result) goto out; } result = count; if (!count) goto out; nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, count); result = generic_file_aio_write(iocb, iov, nr_segs, pos); out: return result; out_swapfile: printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); goto out; }
static ssize_t udf_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t ppos) { ssize_t retval; struct file *file = iocb->ki_filp; struct inode *inode = file->f_path.dentry->d_inode; int err, pos; size_t count = iocb->ki_left; struct udf_inode_info *iinfo = UDF_I(inode); down_write(&iinfo->i_data_sem); if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { if (file->f_flags & O_APPEND) pos = inode->i_size; else pos = ppos; if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + pos + count)) { err = udf_expand_file_adinicb(inode); if (err) { udf_debug("udf_expand_adinicb: err=%d\n", err); return err; } } else { if (pos + count > inode->i_size) iinfo->i_lenAlloc = pos + count; else iinfo->i_lenAlloc = inode->i_size; up_write(&iinfo->i_data_sem); } } else up_write(&iinfo->i_data_sem); retval = generic_file_aio_write(iocb, iov, nr_segs, ppos); if (retval > 0) mark_inode_dirty(inode); return retval; }
/* * Write to a file (through the page cache). */ static ssize_t nfs_file_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos) { struct dentry * dentry = iocb->ki_filp->f_dentry; struct inode * inode = dentry->d_inode; ssize_t result; #ifdef CONFIG_NFS_DIRECTIO if (iocb->ki_filp->f_flags & O_DIRECT) return nfs_file_direct_write(iocb, buf, count, pos); #endif dfprintk(VFS, "nfs: write(%s/%s(%ld), %lu@%lu)\n", dentry->d_parent->d_name.name, dentry->d_name.name, inode->i_ino, (unsigned long) count, (unsigned long) pos); result = -EBUSY; if (IS_SWAPFILE(inode)) goto out_swapfile; /* * O_APPEND implies that we must revalidate the file length. */ if (iocb->ki_filp->f_flags & O_APPEND) { result = nfs_revalidate_file_size(inode, iocb->ki_filp); if (result) goto out; } nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); result = count; if (!count) goto out; result = generic_file_aio_write(iocb, buf, count, pos); out: return result; out_swapfile: printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); goto out; }
static ssize_t udf_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t ppos) { ssize_t retval; struct file *file = iocb->ki_filp; struct inode *inode = file->f_path.dentry->d_inode; int err, pos; size_t count = iocb->ki_left; if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { if (file->f_flags & O_APPEND) pos = inode->i_size; else pos = ppos; if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + pos + count)) { udf_expand_file_adinicb(inode, pos + count, &err); if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) { udf_debug("udf_expand_adinicb: err=%d\n", err); return err; } } else { if (pos + count > inode->i_size) UDF_I_LENALLOC(inode) = pos + count; else UDF_I_LENALLOC(inode) = inode->i_size; } } retval = generic_file_aio_write(iocb, iov, nr_segs, ppos); if (retval > 0) mark_inode_dirty(inode); return retval; }
static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = vma->vm_file->f_path.dentry->d_inode; struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_alloc_parms ap = { .aflags = 0, }; unsigned long last_index; u64 pos = page->index << PAGE_CACHE_SHIFT; unsigned int data_blocks, ind_blocks, rblocks; int alloc_required = 0; struct gfs2_holder gh; loff_t size; int ret; sb_start_pagefault(inode->i_sb); /* Update file times before taking page lock */ file_update_time(vma->vm_file); ret = get_write_access(inode); if (ret) goto out; ret = gfs2_rs_alloc(ip); if (ret) goto out_write_access; gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); ret = gfs2_glock_nq(&gh); if (ret) goto out_uninit; set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); set_bit(GIF_SW_PAGED, &ip->i_flags); gfs2_size_hint(inode, pos, PAGE_CACHE_SIZE); ret = gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE, &alloc_required); if (ret) goto out_unlock; if (!alloc_required) { lock_page(page); if (!PageUptodate(page) || page->mapping != inode->i_mapping) { ret = -EAGAIN; unlock_page(page); } goto out_unlock; } ret = gfs2_rindex_update(sdp); if (ret) goto out_unlock; ret = gfs2_quota_lock_check(ip); if (ret) goto out_unlock; gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks); ap.target = data_blocks + ind_blocks; ret = gfs2_inplace_reserve(ip, &ap); if (ret) goto out_quota_unlock; rblocks = RES_DINODE + ind_blocks; if (gfs2_is_jdata(ip)) rblocks += data_blocks ? data_blocks : 1; if (ind_blocks || data_blocks) { rblocks += RES_STATFS + RES_QUOTA; rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); } ret = gfs2_trans_begin(sdp, rblocks, 0); if (ret) goto out_trans_fail; lock_page(page); ret = -EINVAL; size = i_size_read(inode); last_index = (size - 1) >> PAGE_CACHE_SHIFT; /* Check page index against inode size */ if (size == 0 || (page->index > last_index)) goto out_trans_end; ret = -EAGAIN; /* If truncated, we must retry the operation, we may have raced * with the glock demotion code. */ if (!PageUptodate(page) || page->mapping != inode->i_mapping) goto out_trans_end; /* Unstuff, if required, and allocate backing blocks for page */ ret = 0; if (gfs2_is_stuffed(ip)) ret = gfs2_unstuff_dinode(ip, page); if (ret == 0) ret = gfs2_allocate_page_backing(page); out_trans_end: if (ret) unlock_page(page); gfs2_trans_end(sdp); out_trans_fail: gfs2_inplace_release(ip); out_quota_unlock: gfs2_quota_unlock(ip); out_unlock: gfs2_glock_dq(&gh); out_uninit: gfs2_holder_uninit(&gh); if (ret == 0) { set_page_dirty(page); wait_for_stable_page(page); } out_write_access: put_write_access(inode); out: sb_end_pagefault(inode->i_sb); return block_page_mkwrite_return(ret); } static const struct vm_operations_struct gfs2_vm_ops = { .fault = filemap_fault, .page_mkwrite = gfs2_page_mkwrite, }; /** * gfs2_mmap - * @file: The file to map * @vma: The VMA which described the mapping * * There is no need to get a lock here unless we should be updating * atime. We ignore any locking errors since the only consequence is * a missed atime update (which will just be deferred until later). * * Returns: 0 */ static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); if (!(file->f_flags & O_NOATIME) && !IS_NOATIME(&ip->i_inode)) { struct gfs2_holder i_gh; int error; error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return error; /* grab lock to update inode */ gfs2_glock_dq_uninit(&i_gh); file_accessed(file); } vma->vm_ops = &gfs2_vm_ops; vma->vm_flags |= VM_CAN_NONLINEAR; return 0; } /** * gfs2_open - open a file * @inode: the inode to open * @file: the struct file for this opening * * Returns: errno */ static int gfs2_open(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_holder i_gh; struct gfs2_file *fp; int error; fp = kzalloc(sizeof(struct gfs2_file), GFP_KERNEL); if (!fp) return -ENOMEM; mutex_init(&fp->f_fl_mutex); gfs2_assert_warn(GFS2_SB(inode), !file->private_data); file->private_data = fp; if (S_ISREG(ip->i_inode.i_mode)) { error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) goto fail; if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) { error = -EOVERFLOW; goto fail_gunlock; } gfs2_glock_dq_uninit(&i_gh); } return 0; fail_gunlock: gfs2_glock_dq_uninit(&i_gh); fail: file->private_data = NULL; kfree(fp); return error; } /** * gfs2_release - called to close a struct file * @inode: the inode the struct file belongs to * @file: the struct file being closed * * Returns: errno */ static int gfs2_release(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); kfree(file->private_data); file->private_data = NULL; if (!(file->f_mode & FMODE_WRITE)) return 0; gfs2_rs_delete(ip); return 0; } /** * gfs2_fsync - sync the dirty data for a file (across the cluster) * @file: the file that points to the dentry * @start: the start position in the file to sync * @end: the end position in the file to sync * @datasync: set if we can ignore timestamp changes * * The VFS will flush data for us. We only need to worry * about metadata here. * * Returns: errno */ static int gfs2_fsync(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; int sync_state = inode->i_state & I_DIRTY; struct gfs2_inode *ip = GFS2_I(inode); int ret; if (!gfs2_is_jdata(ip)) sync_state &= ~I_DIRTY_PAGES; if (datasync) sync_state &= ~I_DIRTY_SYNC; if (sync_state) { ret = sync_inode_metadata(inode, 1); if (ret) return ret; if (gfs2_is_jdata(ip)) filemap_write_and_wait(inode->i_mapping); gfs2_ail_flush(ip->i_gl, 1); } return 0; } /** * gfs2_file_aio_write - Perform a write to a file * @iocb: The io context * @iov: The data to write * @nr_segs: Number of @iov segments * @pos: The file position * * We have to do a lock/unlock here to refresh the inode size for * O_APPEND writes, otherwise we can land up writing at the wrong * offset. There is still a race, but provided the app is using its * own file locking, this will make O_APPEND work as expected. * */ static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; size_t writesize = iov_length(iov, nr_segs); struct dentry *dentry = file->f_dentry; struct gfs2_inode *ip = GFS2_I(dentry->d_inode); struct gfs2_sbd *sdp; int ret; sdp = GFS2_SB(file->f_mapping->host); ret = gfs2_rs_alloc(ip); if (ret) return ret; gfs2_size_hint(file->f_dentry->d_inode, pos, writesize); if (file->f_flags & O_APPEND) { struct gfs2_holder gh; ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); if (ret) return ret; gfs2_glock_dq_uninit(&gh); } return generic_file_aio_write(iocb, iov, nr_segs, pos); } static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, struct file *out, loff_t *ppos, size_t len, unsigned int flags) { int error; struct inode *inode = out->f_mapping->host; struct gfs2_inode *ip = GFS2_I(inode); error = gfs2_rs_alloc(ip); if (error) return (ssize_t)error; gfs2_size_hint(inode, *ppos, len); return generic_file_splice_write(pipe, out, ppos, len, flags); }
static ssize_t ext4_file_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_path.dentry->d_inode; ssize_t ret; int err; /* * If we have encountered a bitmap-format file, the size limit * is smaller than s_maxbytes, which is for extent-mapped files. */ if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); size_t length = iov_length(iov, nr_segs); if (pos > sbi->s_bitmap_maxbytes) return -EFBIG; if (pos + length > sbi->s_bitmap_maxbytes) { nr_segs = iov_shorten((struct iovec *)iov, nr_segs, sbi->s_bitmap_maxbytes - pos); } } ret = generic_file_aio_write(iocb, iov, nr_segs, pos); /* * Skip flushing if there was an error, or if nothing was written. */ if (ret <= 0) return ret; /* * If the inode is IS_SYNC, or is O_SYNC and we are doing data * journalling then we need to make sure that we force the transaction * to disk to keep all metadata uptodate synchronously. */ if (file->f_flags & O_SYNC) { /* * If we are non-data-journaled, then the dirty data has * already been flushed to backing store by generic_osync_inode, * and the inode has been flushed too if there have been any * modifications other than mere timestamp updates. * * Open question --- do we care about flushing timestamps too * if the inode is IS_SYNC? */ if (!ext4_should_journal_data(inode)) return ret; goto force_commit; } /* * So we know that there has been no forced data flush. If the inode * is marked IS_SYNC, we need to force one ourselves. */ if (!IS_SYNC(inode)) return ret; /* * Open question #2 --- should we force data to disk here too? If we * don't, the only impact is that data=writeback filesystems won't * flush data to disk automatically on IS_SYNC, only metadata (but * historically, that is what ext2 has done.) */ force_commit: err = ext4_force_commit(inode->i_sb); if (err) return err; return ret; }
static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_alloc_parms ap = { .aflags = 0, }; unsigned long last_index; u64 pos = page->index << PAGE_CACHE_SHIFT; unsigned int data_blocks, ind_blocks, rblocks; struct gfs2_holder gh; loff_t size; int ret; sb_start_pagefault(inode->i_sb); /* Update file times before taking page lock */ file_update_time(vma->vm_file); ret = get_write_access(inode); if (ret) goto out; ret = gfs2_rs_alloc(ip); if (ret) goto out_write_access; gfs2_size_hint(vma->vm_file, pos, PAGE_CACHE_SIZE); gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); ret = gfs2_glock_nq(&gh); if (ret) goto out_uninit; set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); set_bit(GIF_SW_PAGED, &ip->i_flags); if (!gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE)) { lock_page(page); if (!PageUptodate(page) || page->mapping != inode->i_mapping) { ret = -EAGAIN; unlock_page(page); } goto out_unlock; } ret = gfs2_rindex_update(sdp); if (ret) goto out_unlock; ret = gfs2_quota_lock_check(ip); if (ret) goto out_unlock; gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks); ap.target = data_blocks + ind_blocks; ret = gfs2_inplace_reserve(ip, &ap); if (ret) goto out_quota_unlock; rblocks = RES_DINODE + ind_blocks; if (gfs2_is_jdata(ip)) rblocks += data_blocks ? data_blocks : 1; if (ind_blocks || data_blocks) { rblocks += RES_STATFS + RES_QUOTA; rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); } ret = gfs2_trans_begin(sdp, rblocks, 0); if (ret) goto out_trans_fail; lock_page(page); ret = -EINVAL; size = i_size_read(inode); last_index = (size - 1) >> PAGE_CACHE_SHIFT; /* Check page index against inode size */ if (size == 0 || (page->index > last_index)) goto out_trans_end; ret = -EAGAIN; /* If truncated, we must retry the operation, we may have raced * with the glock demotion code. */ if (!PageUptodate(page) || page->mapping != inode->i_mapping) goto out_trans_end; /* Unstuff, if required, and allocate backing blocks for page */ ret = 0; if (gfs2_is_stuffed(ip)) ret = gfs2_unstuff_dinode(ip, page); if (ret == 0) ret = gfs2_allocate_page_backing(page); out_trans_end: if (ret) unlock_page(page); gfs2_trans_end(sdp); out_trans_fail: gfs2_inplace_release(ip); out_quota_unlock: gfs2_quota_unlock(ip); out_unlock: gfs2_glock_dq(&gh); out_uninit: gfs2_holder_uninit(&gh); if (ret == 0) { set_page_dirty(page); wait_for_stable_page(page); } out_write_access: put_write_access(inode); out: sb_end_pagefault(inode->i_sb); return block_page_mkwrite_return(ret); } static const struct vm_operations_struct gfs2_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = gfs2_page_mkwrite, .remap_pages = generic_file_remap_pages, }; /** * gfs2_mmap - * @file: The file to map * @vma: The VMA which described the mapping * * There is no need to get a lock here unless we should be updating * atime. We ignore any locking errors since the only consequence is * a missed atime update (which will just be deferred until later). * * Returns: 0 */ static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); if (!(file->f_flags & O_NOATIME) && !IS_NOATIME(&ip->i_inode)) { struct gfs2_holder i_gh; int error; error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return error; /* grab lock to update inode */ gfs2_glock_dq_uninit(&i_gh); file_accessed(file); } vma->vm_ops = &gfs2_vm_ops; return 0; } /** * gfs2_open_common - This is common to open and atomic_open * @inode: The inode being opened * @file: The file being opened * * This maybe called under a glock or not depending upon how it has * been called. We must always be called under a glock for regular * files, however. For other file types, it does not matter whether * we hold the glock or not. * * Returns: Error code or 0 for success */ int gfs2_open_common(struct inode *inode, struct file *file) { struct gfs2_file *fp; int ret; if (S_ISREG(inode->i_mode)) { ret = generic_file_open(inode, file); if (ret) return ret; } fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); if (!fp) return -ENOMEM; mutex_init(&fp->f_fl_mutex); gfs2_assert_warn(GFS2_SB(inode), !file->private_data); file->private_data = fp; return 0; } /** * gfs2_open - open a file * @inode: the inode to open * @file: the struct file for this opening * * After atomic_open, this function is only used for opening files * which are already cached. We must still get the glock for regular * files to ensure that we have the file size uptodate for the large * file check which is in the common code. That is only an issue for * regular files though. * * Returns: errno */ static int gfs2_open(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_holder i_gh; int error; bool need_unlock = false; if (S_ISREG(ip->i_inode.i_mode)) { error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return error; need_unlock = true; } error = gfs2_open_common(inode, file); if (need_unlock) gfs2_glock_dq_uninit(&i_gh); return error; } /** * gfs2_release - called to close a struct file * @inode: the inode the struct file belongs to * @file: the struct file being closed * * Returns: errno */ static int gfs2_release(struct inode *inode, struct file *file) { struct gfs2_inode *ip = GFS2_I(inode); kfree(file->private_data); file->private_data = NULL; if (!(file->f_mode & FMODE_WRITE)) return 0; gfs2_rs_delete(ip, &inode->i_writecount); return 0; } /** * gfs2_fsync - sync the dirty data for a file (across the cluster) * @file: the file that points to the dentry * @start: the start position in the file to sync * @end: the end position in the file to sync * @datasync: set if we can ignore timestamp changes * * We split the data flushing here so that we don't wait for the data * until after we've also sent the metadata to disk. Note that for * data=ordered, we will write & wait for the data at the log flush * stage anyway, so this is unlikely to make much of a difference * except in the data=writeback case. * * If the fdatawrite fails due to any reason except -EIO, we will * continue the remainder of the fsync, although we'll still report * the error at the end. This is to match filemap_write_and_wait_range() * behaviour. * * Returns: errno */ static int gfs2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; int sync_state = inode->i_state & I_DIRTY; struct gfs2_inode *ip = GFS2_I(inode); int ret = 0, ret1 = 0; if (mapping->nrpages) { ret1 = filemap_fdatawrite_range(mapping, start, end); if (ret1 == -EIO) return ret1; } if (!gfs2_is_jdata(ip)) sync_state &= ~I_DIRTY_PAGES; if (datasync) sync_state &= ~I_DIRTY_SYNC; if (sync_state) { ret = sync_inode_metadata(inode, 1); if (ret) return ret; if (gfs2_is_jdata(ip)) filemap_write_and_wait(mapping); gfs2_ail_flush(ip->i_gl, 1); } if (mapping->nrpages) ret = filemap_fdatawait_range(mapping, start, end); return ret ? ret : ret1; } /** * gfs2_file_aio_write - Perform a write to a file * @iocb: The io context * @iov: The data to write * @nr_segs: Number of @iov segments * @pos: The file position * * We have to do a lock/unlock here to refresh the inode size for * O_APPEND writes, otherwise we can land up writing at the wrong * offset. There is still a race, but provided the app is using its * own file locking, this will make O_APPEND work as expected. * */ static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; size_t writesize = iov_length(iov, nr_segs); struct gfs2_inode *ip = GFS2_I(file_inode(file)); int ret; ret = gfs2_rs_alloc(ip); if (ret) return ret; gfs2_size_hint(file, pos, writesize); if (file->f_flags & O_APPEND) { struct gfs2_holder gh; ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); if (ret) return ret; gfs2_glock_dq_uninit(&gh); } return generic_file_aio_write(iocb, iov, nr_segs, pos); } static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, int mode) { struct gfs2_inode *ip = GFS2_I(inode); struct buffer_head *dibh; int error; loff_t size = len; unsigned int nr_blks; sector_t lblock = offset >> inode->i_blkbits; error = gfs2_meta_inode_buffer(ip, &dibh); if (unlikely(error)) return error; gfs2_trans_add_meta(ip->i_gl, dibh); if (gfs2_is_stuffed(ip)) { error = gfs2_unstuff_dinode(ip, NULL); if (unlikely(error)) goto out; } while (len) { struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 }; bh_map.b_size = len; set_buffer_zeronew(&bh_map); error = gfs2_block_map(inode, lblock, &bh_map, 1); if (unlikely(error)) goto out; len -= bh_map.b_size; nr_blks = bh_map.b_size >> inode->i_blkbits; lblock += nr_blks; if (!buffer_new(&bh_map)) continue; if (unlikely(!buffer_zeronew(&bh_map))) { error = -EIO; goto out; } } if (offset + size > inode->i_size && !(mode & FALLOC_FL_KEEP_SIZE)) i_size_write(inode, offset + size); mark_inode_dirty(inode); out: brelse(dibh); return error; } static void calc_max_reserv(struct gfs2_inode *ip, loff_t max, loff_t *len, unsigned int *data_blocks, unsigned int *ind_blocks) { const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); unsigned int max_blocks = ip->i_rgd->rd_free_clone; unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); for (tmp = max_data; tmp > sdp->sd_diptrs;) { tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); max_data -= tmp; } /* This calculation isn't the exact reverse of gfs2_write_calc_reserve, so it might end up with fewer data blocks */ if (max_data <= *data_blocks) return; *data_blocks = max_data; *ind_blocks = max_blocks - max_data; *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; if (*len > max) { *len = max; gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); } } static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_alloc_parms ap = { .aflags = 0, }; unsigned int data_blocks = 0, ind_blocks = 0, rblocks; loff_t bytes, max_bytes; int error; const loff_t pos = offset; const loff_t count = len; loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; loff_t max_chunk_size = UINT_MAX & bsize_mask; struct gfs2_holder gh; next = (next + 1) << sdp->sd_sb.sb_bsize_shift; /* We only support the FALLOC_FL_KEEP_SIZE mode */ if (mode & ~FALLOC_FL_KEEP_SIZE) return -EOPNOTSUPP; offset &= bsize_mask; len = next - offset; bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; if (!bytes) bytes = UINT_MAX; bytes &= bsize_mask; if (bytes == 0) bytes = sdp->sd_sb.sb_bsize; error = gfs2_rs_alloc(ip); if (error) return error; mutex_lock(&inode->i_mutex); gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); error = gfs2_glock_nq(&gh); if (unlikely(error)) goto out_uninit; gfs2_size_hint(file, offset, len); while (len > 0) { if (len < bytes) bytes = len; if (!gfs2_write_alloc_required(ip, offset, bytes)) { len -= bytes; offset += bytes; continue; } error = gfs2_quota_lock_check(ip); if (error) goto out_unlock; retry: gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); ap.target = data_blocks + ind_blocks; error = gfs2_inplace_reserve(ip, &ap); if (error) { if (error == -ENOSPC && bytes > sdp->sd_sb.sb_bsize) { bytes >>= 1; bytes &= bsize_mask; if (bytes == 0) bytes = sdp->sd_sb.sb_bsize; goto retry; } goto out_qunlock; } max_bytes = bytes; calc_max_reserv(ip, (len > max_chunk_size)? max_chunk_size: len, &max_bytes, &data_blocks, &ind_blocks); rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); if (gfs2_is_jdata(ip)) rblocks += data_blocks ? data_blocks : 1; error = gfs2_trans_begin(sdp, rblocks, PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize); if (error) goto out_trans_fail; error = fallocate_chunk(inode, offset, max_bytes, mode); gfs2_trans_end(sdp); if (error) goto out_trans_fail; len -= max_bytes; offset += max_bytes; gfs2_inplace_release(ip); gfs2_quota_unlock(ip); } if (error == 0) error = generic_write_sync(file, pos, count); goto out_unlock; out_trans_fail: gfs2_inplace_release(ip); out_qunlock: gfs2_quota_unlock(ip); out_unlock: gfs2_glock_dq(&gh); out_uninit: gfs2_holder_uninit(&gh); mutex_unlock(&inode->i_mutex); return error; } #ifdef CONFIG_GFS2_FS_LOCKING_DLM /** * gfs2_setlease - acquire/release a file lease * @file: the file pointer * @arg: lease type * @fl: file lock * * We don't currently have a way to enforce a lease across the whole * cluster; until we do, disable leases (by just returning -EINVAL), * unless the administrator has requested purely local locking. * * Locking: called under i_lock * * Returns: errno */ static int gfs2_setlease(struct file *file, long arg, struct file_lock **fl) { return -EINVAL; } /** * gfs2_lock - acquire/release a posix lock on a file * @file: the file pointer * @cmd: either modify or retrieve lock state, possibly wait * @fl: type and range of lock * * Returns: errno */ static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) { struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); struct lm_lockstruct *ls = &sdp->sd_lockstruct; if (!(fl->fl_flags & FL_POSIX)) return -ENOLCK; if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) return -ENOLCK; if (cmd == F_CANCELLK) { /* Hack: */ cmd = F_SETLK; fl->fl_type = F_UNLCK; } if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { if (fl->fl_type == F_UNLCK) posix_lock_file_wait(file, fl); return -EIO; } if (IS_GETLK(cmd)) return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); else if (fl->fl_type == F_UNLCK) return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); else return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); } static int do_flock(struct file *file, int cmd, struct file_lock *fl) { struct gfs2_file *fp = file->private_data; struct gfs2_holder *fl_gh = &fp->f_fl_gh; struct gfs2_inode *ip = GFS2_I(file_inode(file)); struct gfs2_glock *gl; unsigned int state; int flags; int error = 0; state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY) | GL_EXACT | GL_NOCACHE; mutex_lock(&fp->f_fl_mutex); gl = fl_gh->gh_gl; if (gl) { if (fl_gh->gh_state == state) goto out; flock_lock_file_wait(file, &(struct file_lock){.fl_type = F_UNLCK}); gfs2_glock_dq_wait(fl_gh); gfs2_holder_reinit(state, flags, fl_gh); } else { error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, &gfs2_flock_glops, CREATE, &gl); if (error) goto out; gfs2_holder_init(gl, state, flags, fl_gh); gfs2_glock_put(gl); } error = gfs2_glock_nq(fl_gh); if (error) { gfs2_holder_uninit(fl_gh); if (error == GLR_TRYFAILED) error = -EAGAIN; } else { error = flock_lock_file_wait(file, fl); gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); } out: mutex_unlock(&fp->f_fl_mutex); return error; }
static ssize_t lustre_generic_file_write(struct file *file, struct ccc_io *vio, loff_t *ppos) { return generic_file_aio_write(vio->cui_iocb, vio->cui_iov, vio->cui_nrsegs, *ppos); }
ssize_t xixfs_file_aio_write( struct kiocb *iocb, #if LINUX_VERSION_2_6_19_REPLACE_INTERFACE const struct iovec *iov, unsigned long count, #else const char __user *buf, size_t count, #endif loff_t pos ) { ssize_t RC = 0; int64 index = 0; struct address_space *mapping = iocb->ki_filp->f_mapping; struct inode *inode = mapping->host; PXIXFS_LINUX_FCB pFCB = NULL; PXIXFS_LINUX_VCB pVCB = NULL; XIXCORE_ASSERT(inode); pVCB = XIXFS_SB(inode->i_sb); XIXFS_ASSERT_VCB(pVCB); pFCB = XIXFS_I(inode); XIXFS_ASSERT_FCB(pFCB); DebugTrace(DEBUG_LEVEL_ERROR, (DEBUG_TARGET_FCB|DEBUG_TARGET_VFSAPIT), ("ENTER xixfs_file_aio_write .\n")); if(pVCB->XixcoreVcb.IsVolumeWriteProtected){ DebugTrace(DEBUG_LEVEL_ERROR, DEBUG_TARGET_ALL, ("ERROR xixfs_file_aio_write : is read only .\n")); return -EPERM; } XIXCORE_ASSERT(pFCB->XixcoreFcb.FCBType == FCB_TYPE_FILE); if(XIXCORE_TEST_FLAGS( pFCB->XixcoreFcb.FCBFlags, XIXCORE_FCB_CHANGE_DELETED )){ DebugTrace(DEBUG_LEVEL_ERROR, DEBUG_TARGET_ALL, ("ERROR DELETED FILE \n")); return -EPERM; } if( pFCB->XixcoreFcb.HasLock == INODE_FILE_LOCK_HAS) { index =(int64) pos; #if LINUX_VERSION_2_6_19_REPLACE_INTERFACE RC = generic_file_aio_write(iocb, iov, count, pos); #else RC = generic_file_aio_write(iocb, buf, count, pos); #endif if(RC > 0) { if(pFCB->XixcoreFcb.WriteStartOffset == -1) { pFCB->XixcoreFcb.WriteStartOffset = index; XIXCORE_SET_FLAGS(pFCB->XixcoreFcb.FCBFlags, XIXCORE_FCB_MODIFIED_FILE_SIZE); } if(pFCB->XixcoreFcb.WriteStartOffset > index ){ pFCB->XixcoreFcb.WriteStartOffset = index; XIXCORE_SET_FLAGS(pFCB->XixcoreFcb.FCBFlags, XIXCORE_FCB_MODIFIED_FILE_SIZE); } return RC; } } else { return -EPERM; } DebugTrace(DEBUG_LEVEL_ERROR, (DEBUG_TARGET_FCB|DEBUG_TARGET_VFSAPIT), ("EXIT xixfs_file_aio_write .\n")); return RC; }