void TransformState::getProjMatrix(mat4& projMatrix) const { double halfFov = std::atan(0.5 / getAltitude()); double topHalfSurfaceDistance = std::sin(halfFov) * getAltitude() / std::sin(M_PI / 2.0f - getPitch() - halfFov); // Calculate z value of the farthest fragment that should be rendered. double farZ = std::cos(M_PI / 2.0f - getPitch()) * topHalfSurfaceDistance + getAltitude(); matrix::perspective(projMatrix, 2.0f * std::atan((size.height / 2.0f) / getAltitude()), double(size.width) / size.height, 0.1, farZ); matrix::translate(projMatrix, projMatrix, 0, 0, -getAltitude()); // After the rotateX, z values are in pixel units. Convert them to // altitude unites. 1 altitude unit = the screen height. const bool flippedY = viewportMode == ViewportMode::FlippedY; matrix::scale(projMatrix, projMatrix, 1, flippedY ? 1 : -1, 1.0f / (rotatedNorth() ? size.width : size.height)); using NO = NorthOrientation; switch (getNorthOrientation()) { case NO::Rightwards: matrix::rotate_y(projMatrix, projMatrix, getPitch()); break; case NO::Downwards: matrix::rotate_x(projMatrix, projMatrix, -getPitch()); break; case NO::Leftwards: matrix::rotate_y(projMatrix, projMatrix, -getPitch()); break; default: matrix::rotate_x(projMatrix, projMatrix, getPitch()); break; } matrix::rotate_z(projMatrix, projMatrix, getAngle() + getNorthOrientationAngle()); matrix::translate(projMatrix, projMatrix, pixel_x() - size.width / 2.0f, pixel_y() - size.height / 2.0f, 0); }
void TransformState::getProjMatrix(mat4& projMatrix, uint16_t nearZ) const { if (size.isEmpty()) { return; } // Find the distance from the center point [width/2, height/2] to the // center top point [width/2, 0] in Z units, using the law of sines. // 1 Z unit is equivalent to 1 horizontal px at the center of the map // (the distance between[width/2, height/2] and [width/2 + 1, height/2]) const double halfFov = getFieldOfView() / 2.0; const double groundAngle = M_PI / 2.0 + getPitch(); const double topHalfSurfaceDistance = std::sin(halfFov) * getCameraToCenterDistance() / std::sin(M_PI - groundAngle - halfFov); // Calculate z distance of the farthest fragment that should be rendered. const double furthestDistance = std::cos(M_PI / 2 - getPitch()) * topHalfSurfaceDistance + getCameraToCenterDistance(); // Add a bit extra to avoid precision problems when a fragment's distance is exactly `furthestDistance` const double farZ = furthestDistance * 1.01; matrix::perspective(projMatrix, getFieldOfView(), double(size.width) / size.height, nearZ, farZ); const bool flippedY = viewportMode == ViewportMode::FlippedY; matrix::scale(projMatrix, projMatrix, 1, flippedY ? 1 : -1, 1); matrix::translate(projMatrix, projMatrix, 0, 0, -getCameraToCenterDistance()); using NO = NorthOrientation; switch (getNorthOrientation()) { case NO::Rightwards: matrix::rotate_y(projMatrix, projMatrix, getPitch()); break; case NO::Downwards: matrix::rotate_x(projMatrix, projMatrix, -getPitch()); break; case NO::Leftwards: matrix::rotate_y(projMatrix, projMatrix, -getPitch()); break; default: matrix::rotate_x(projMatrix, projMatrix, getPitch()); break; } matrix::rotate_z(projMatrix, projMatrix, getAngle() + getNorthOrientationAngle()); matrix::translate(projMatrix, projMatrix, pixel_x() - size.width / 2.0f, pixel_y() - size.height / 2.0f, 0); matrix::scale(projMatrix, projMatrix, 1, 1, 1.0 / Projection::getMetersPerPixelAtLatitude(getLatLng(LatLng::Unwrapped).latitude(), getZoom())); }
void TransformState::getProjMatrix(mat4& projMatrix, uint16_t nearZ, bool aligned) const { if (size.isEmpty()) { return; } // Find the distance from the center point [width/2, height/2] to the // center top point [width/2, 0] in Z units, using the law of sines. // 1 Z unit is equivalent to 1 horizontal px at the center of the map // (the distance between[width/2, height/2] and [width/2 + 1, height/2]) const double halfFov = getFieldOfView() / 2.0; const double groundAngle = M_PI / 2.0 + getPitch(); const double topHalfSurfaceDistance = std::sin(halfFov) * getCameraToCenterDistance() / std::sin(M_PI - groundAngle - halfFov); // Calculate z distance of the farthest fragment that should be rendered. const double furthestDistance = std::cos(M_PI / 2 - getPitch()) * topHalfSurfaceDistance + getCameraToCenterDistance(); // Add a bit extra to avoid precision problems when a fragment's distance is exactly `furthestDistance` const double farZ = furthestDistance * 1.01; matrix::perspective(projMatrix, getFieldOfView(), double(size.width) / size.height, nearZ, farZ); const bool flippedY = viewportMode == ViewportMode::FlippedY; matrix::scale(projMatrix, projMatrix, 1, flippedY ? 1 : -1, 1); matrix::translate(projMatrix, projMatrix, 0, 0, -getCameraToCenterDistance()); using NO = NorthOrientation; switch (getNorthOrientation()) { case NO::Rightwards: matrix::rotate_y(projMatrix, projMatrix, getPitch()); break; case NO::Downwards: matrix::rotate_x(projMatrix, projMatrix, -getPitch()); break; case NO::Leftwards: matrix::rotate_y(projMatrix, projMatrix, -getPitch()); break; default: matrix::rotate_x(projMatrix, projMatrix, getPitch()); break; } matrix::rotate_z(projMatrix, projMatrix, getAngle() + getNorthOrientationAngle()); const double dx = pixel_x() - size.width / 2.0f, dy = pixel_y() - size.height / 2.0f; matrix::translate(projMatrix, projMatrix, dx, dy, 0); if (axonometric) { // mat[11] controls perspective projMatrix[11] = 0; // mat[8], mat[9] control x-skew, y-skew projMatrix[8] = xSkew; projMatrix[9] = ySkew; } matrix::scale(projMatrix, projMatrix, 1, 1, 1.0 / Projection::getMetersPerPixelAtLatitude(getLatLng(LatLng::Unwrapped).latitude(), getZoom())); // Make a second projection matrix that is aligned to a pixel grid for rendering raster tiles. // We're rounding the (floating point) x/y values to achieve to avoid rendering raster images to fractional // coordinates. Additionally, we adjust by half a pixel in either direction in case that viewport dimension // is an odd integer to preserve rendering to the pixel grid. We're rotating this shift based on the angle // of the transformation so that 0°, 90°, 180°, and 270° rasters are crisp, and adjust the shift so that // it is always <= 0.5 pixels. if (aligned) { const float xShift = float(size.width % 2) / 2, yShift = float(size.height % 2) / 2; const double angleCos = std::cos(angle), angleSin = std::sin(angle); double devNull; const float dxa = -std::modf(dx, &devNull) + angleCos * xShift + angleSin * yShift; const float dya = -std::modf(dy, &devNull) + angleCos * yShift + angleSin * xShift; matrix::translate(projMatrix, projMatrix, dxa > 0.5 ? dxa - 1 : dxa, dya > 0.5 ? dya - 1 : dya, 0); } }