예제 #1
0
파일: mipsi.c 프로젝트: stepinto/mipsi
static void print_ins(struct ins *i) {
	char *s;

	if (i->label > 0)
		printf("L%d:\t", i->label);
	else
		printf("\t");

	printf("%s\t", get_opcode_name(i->op));
	switch (i->type) {
		case R_TYPE:
			printf("%s, %s, %s", get_reg_name(i->un.r.rd),
					get_reg_name(i->un.r.rs),
					get_reg_name(i->un.r.rt));
			break;
		case I_TYPE:
			if (i->op == OP_LW || i->op == OP_SW)
				printf("%s, %d (%s)", get_reg_name(i->un.i.rt),
						i->un.i.imm, get_reg_name(i->un.i.rs));
			else
				printf("%s, %s, %d", get_reg_name(i->un.i.rt),
						get_reg_name(i->un.i.rs), i->un.i.imm);
			break;
		case J_TYPE:
			printf("%d", i->un.j.imm);
			break;
	}
}
예제 #2
0
파일: dissem.cpp 프로젝트: doniexun/UnderC
void dissemble(PFBlock fb)
{
 Opcodes opcode;
 int rmode,rdata, k = 0;
 string name;
 Instruction *pi = fb->pstart;
 while (pi != end_of_code) {
    opcode = (Opcodes)pi->opcode;   
	// *add 1.2.4 HALT+data is not always a breakpoint!
    // (it is used as a NOP + <any useful tag data>)
    if (opcode == HALT) {
        if (pi->data < MAX_BREAKPOINTS) {
          Breakpoint *pb = Breakpoint::from_id(pi->data);
          Instruction ai = pb->saved_instruction();
          std::cout << "*";
          opcode = (Opcodes)ai.opcode;
          rmode = ai.rmode;  rdata = ai.data;
        } else { opcode = NOP; rdata = pi->data; }
    } else {
      rmode  = pi->rmode;  rdata  = pi->data;
    }
    name =  get_opcode_name(opcode);
    std::cout << k++ << ' ' <<  name << '\t';
    if (opcode == CCALL || opcode == CALL || opcode == CALLD || opcode == CALLN) {
       FBlock* pfb;
       void *data = data_ptr(rdata);
       if (opcode == CALLN)
           pfb = Builtin::imported_fblock_from_function((void*)((NFBlock *)data)->pfn);
       else pfb = PFBlock(data_ptr(rdata));     
      if (pfb) Function::from_fun_block(pfb)->dump(std::cout);      
    } else 
    if (opcode == JSWITCH) {
      int *swb = (int *)data_ptr(rdata);
      int sz = *swb++;
      int def = *swb++;
      std::cout << '(' << sz << ',' << def << ") ";
      for (int i = 0; i < sz; i++) std::cout << *swb++ << ' ' << *swb++ << ' ';
    }
    else
    if (opcode == TOSD || opcode == TPODS) {
       PClass pc = *(PClass *)data_ptr(rdata);
       std::cout << pc->name();
    }
    else {
     if (rmode) 
      switch(rmode) {
      case DIRECT: std::cout << "D ";  break;
      case SREL:   std::cout << "R ";  break;
      case OREL:   std::cout << "S ";  break;
     }
     if (rdata != 0) std::cout << rdata;
   }
   std::cout << std::endl;  
   if (opcode == RET || opcode == RETI || opcode == RETD) break;
   pi++;
 }
}
예제 #3
0
/**
 * Dump an instruction.
 */
static void
tc_dump_inst(struct toy_compiler *tc, const struct toy_inst *inst)
{
   const char *name;
   int i;

   name = get_opcode_name(inst->opcode);

   ilo_printf("  %s", name);

   if (inst->opcode == GEN6_OPCODE_NOP) {
      ilo_printf("\n");
      return;
   }

   if (inst->saturate)
      ilo_printf(".sat");

   name = get_cond_modifier_name(inst->opcode, inst->cond_modifier);
   if (name)
      ilo_printf(".%s", name);

   ilo_printf(" ");

   tc_dump_dst(tc, inst->dst);

   for (i = 0; i < Elements(inst->src); i++) {
      if (tsrc_is_null(inst->src[i]))
         break;

      ilo_printf(", ");
      tc_dump_src(tc, inst->src[i]);
   }

   ilo_printf("\n");
}
예제 #4
0
파일: interp.c 프로젝트: plesner/neutrino
// Runs the given stack within the given ambience until a condition is
// encountered or evaluation completes. This function also bails on and leaves
// it to the surrounding code to report error messages.
static value_t run_stack_pushing_signals(value_t ambience, value_t stack) {
    CHECK_FAMILY(ofAmbience, ambience);
    CHECK_FAMILY(ofStack, stack);
    runtime_t *runtime = get_ambience_runtime(ambience);
    frame_t frame = open_stack(stack);
    code_cache_t cache;
    code_cache_refresh(&cache, &frame);
    E_BEGIN_TRY_FINALLY();
    while (true) {
        opcode_t opcode = (opcode_t) read_short(&cache, &frame, 0);
        TOPIC_INFO(Interpreter, "Opcode: %s (%i)", get_opcode_name(opcode),
                   opcode_counter++);
        IF_EXPENSIVE_CHECKS_ENABLED(MAYBE_INTERRUPT());
        switch (opcode) {
        case ocPush: {
            value_t value = read_value(&cache, &frame, 1);
            frame_push_value(&frame, value);
            frame.pc += kPushOperationSize;
            break;
        }
        case ocPop: {
            size_t count = read_short(&cache, &frame, 1);
            for (size_t i = 0; i < count; i++)
                frame_pop_value(&frame);
            frame.pc += kPopOperationSize;
            break;
        }
        case ocCheckStackHeight: {
            size_t expected = read_short(&cache, &frame, 1);
            size_t height = frame.stack_pointer - frame.frame_pointer;
            CHECK_EQ("stack height", expected, height);
            frame.pc += kCheckStackHeightOperationSize;
            break;
        }
        case ocNewArray: {
            size_t length = read_short(&cache, &frame, 1);
            E_TRY_DEF(array, new_heap_array(runtime, length));
            for (size_t i = 0; i < length; i++) {
                value_t element = frame_pop_value(&frame);
                set_array_at(array, length - i - 1, element);
            }
            frame_push_value(&frame, array);
            frame.pc += kNewArrayOperationSize;
            break;
        }
        case ocInvoke: {
            // Look up the method in the method space.
            value_t tags = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofCallTags, tags);
            value_t fragment = read_value(&cache, &frame, 2);
            CHECK_FAMILY(ofModuleFragment, fragment);
            value_t helper = read_value(&cache, &frame, 3);
            CHECK_FAMILY(ofSignatureMap, helper);
            value_t arg_map;
            value_t method = lookup_method_full(ambience, fragment, tags, &frame,
                                                helper, &arg_map);
            if (in_condition_cause(ccLookupError, method)) {
                log_lookup_error(method, tags, &frame);
                E_RETURN(method);
            }
            // The lookup may have failed with a different condition. Check for that.
            E_TRY(method);
            E_TRY_DEF(code_block, ensure_method_code(runtime, method));
            // We should now have done everything that can fail so we advance the
            // pc over this instruction. In reality we haven't, the frame push op
            // below can fail so we should really push the next frame before
            // storing the pc for this one. Laters.
            frame.pc += kInvokeOperationSize;
            // Push a new activation.
            E_TRY(push_stack_frame(runtime, stack, &frame,
                                   get_code_block_high_water_mark(code_block), arg_map));
            frame_set_code_block(&frame, code_block);
            code_cache_refresh(&cache, &frame);
            break;
        }
        case ocSignalContinue:
        case ocSignalEscape: {
            // Look up the method in the method space.
            value_t tags = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofCallTags, tags);
            frame.pc += kSignalEscapeOperationSize;
            value_t arg_map = whatever();
            value_t handler = whatever();
            value_t method = lookup_signal_handler_method(ambience, tags, &frame,
                             &handler, &arg_map);
            bool is_escape = (opcode == ocSignalEscape);
            if (in_condition_cause(ccLookupError, method)) {
                if (is_escape) {
                    // There was no handler for this so we have to escape out of the
                    // interpreter altogether. Push the signal frame onto the stack to
                    // record the state of it for the enclosing code.
                    E_TRY(push_stack_frame(runtime, stack, &frame, 1, nothing()));
                    // The stack tracing code expects all frames to have a valid code block
                    // object. The rest makes less of a difference.
                    frame_set_code_block(&frame, ROOT(runtime, empty_code_block));
                    E_RETURN(new_signal_condition(is_escape));
                } else {
                    // There was no handler but this is not an escape so we skip over
                    // the post-handler goto to the default block.
                    CHECK_EQ("signal not followed by goto", ocGoto,
                             read_short(&cache, &frame, 0));
                    frame.pc += kGotoOperationSize;
                }
            } else {
                // We found a method. Invoke it.
                E_TRY(method);
                E_TRY_DEF(code_block, ensure_method_code(runtime, method));
                E_TRY(push_stack_frame(runtime, stack, &frame,
                                       get_code_block_high_water_mark(code_block), arg_map));
                frame_set_code_block(&frame, code_block);
                CHECK_TRUE("subject not null", is_null(frame_get_argument(&frame, 0)));
                frame_set_argument(&frame, 0, handler);
                code_cache_refresh(&cache, &frame);
            }
            break;
        }
        case ocGoto: {
            size_t delta = read_short(&cache, &frame, 1);
            frame.pc += delta;
            break;
        }
        case ocDelegateToLambda:
        case ocDelegateToBlock: {
            // This op only appears in the lambda and block delegator methods.
            // They should never be executed because the delegation happens during
            // method lookup. If we hit here something's likely wrong with the
            // lookup process.
            UNREACHABLE("delegate to lambda");
            return new_condition(ccWat);
        }
        case ocBuiltin: {
            value_t wrapper = read_value(&cache, &frame, 1);
            builtin_method_t impl = (builtin_method_t) get_void_p_value(wrapper);
            builtin_arguments_t args;
            builtin_arguments_init(&args, runtime, &frame);
            E_TRY_DEF(result, impl(&args));
            frame_push_value(&frame, result);
            frame.pc += kBuiltinOperationSize;
            break;
        }
        case ocBuiltinMaybeEscape: {
            value_t wrapper = read_value(&cache, &frame, 1);
            builtin_method_t impl = (builtin_method_t) get_void_p_value(wrapper);
            builtin_arguments_t args;
            builtin_arguments_init(&args, runtime, &frame);
            value_t result = impl(&args);
            if (in_condition_cause(ccSignal, result)) {
                // The builtin failed. Find the appropriate signal handler and call
                // it. The invocation record is at the top of the stack.
                value_t tags = frame_pop_value(&frame);
                CHECK_FAMILY(ofCallTags, tags);
                value_t arg_map = whatever();
                value_t handler = whatever();
                value_t method = lookup_signal_handler_method(ambience, tags, &frame,
                                 &handler, &arg_map);
                if (in_condition_cause(ccLookupError, method)) {
                    // Push the record back onto the stack to it's available to back
                    // tracing.
                    frame_push_value(&frame, tags);
                    frame.pc += kBuiltinMaybeEscapeOperationSize;
                    // There was no handler for this so we have to escape out of the
                    // interpreter altogether. Push the signal frame onto the stack to
                    // record the state of it for the enclosing code.
                    E_TRY(push_stack_frame(runtime, stack, &frame, 1, nothing()));
                    // The stack tracing code expects all frames to have a valid code block
                    // object. The rest makes less of a difference.
                    frame_set_code_block(&frame, ROOT(runtime, empty_code_block));
                    E_RETURN(new_signal_condition(true));
                }
                // Either found a signal or encountered a different condition.
                E_TRY(method);
                // Skip forward to the point we want the signal to return to, the
                // leave-or-fire-barrier op that will do the leaving.
                size_t dest_offset = read_short(&cache, &frame, 2);
                frame.pc += dest_offset;
                // Run the handler.
                E_TRY_DEF(code_block, ensure_method_code(runtime, method));
                E_TRY(push_stack_frame(runtime, stack, &frame,
                                       get_code_block_high_water_mark(code_block), arg_map));
                frame_set_code_block(&frame, code_block);
                CHECK_TRUE("subject not null", is_null(frame_get_argument(&frame, 0)));
                frame_set_argument(&frame, 0, handler);
                code_cache_refresh(&cache, &frame);
            } else {
                // The builtin didn't cause a condition so we can just keep going.
                E_TRY(result);
                frame_push_value(&frame, result);
                frame.pc += kBuiltinMaybeEscapeOperationSize;
            }
            break;
        }
        case ocReturn: {
            value_t result = frame_pop_value(&frame);
            frame_pop_within_stack_piece(&frame);
            code_cache_refresh(&cache, &frame);
            frame_push_value(&frame, result);
            break;
        }
        case ocStackBottom: {
            value_t result = frame_pop_value(&frame);
            validate_stack_on_normal_exit(&frame);
            E_RETURN(result);
        }
        case ocStackPieceBottom: {
            value_t top_piece = frame.stack_piece;
            value_t result = frame_pop_value(&frame);
            value_t next_piece = get_stack_piece_previous(top_piece);
            set_stack_top_piece(stack, next_piece);
            frame = open_stack(stack);
            code_cache_refresh(&cache, &frame);
            frame_push_value(&frame, result);
            break;
        }
        case ocSlap: {
            value_t value = frame_pop_value(&frame);
            size_t argc = read_short(&cache, &frame, 1);
            for (size_t i = 0; i < argc; i++)
                frame_pop_value(&frame);
            frame_push_value(&frame, value);
            frame.pc += kSlapOperationSize;
            break;
        }
        case ocNewReference: {
            // Create the reference first so that if it fails we haven't clobbered
            // the stack yet.
            E_TRY_DEF(ref, new_heap_reference(runtime, nothing()));
            value_t value = frame_pop_value(&frame);
            set_reference_value(ref, value);
            frame_push_value(&frame, ref);
            frame.pc += kNewReferenceOperationSize;
            break;
        }
        case ocSetReference: {
            value_t ref = frame_pop_value(&frame);
            CHECK_FAMILY(ofReference, ref);
            value_t value = frame_peek_value(&frame, 0);
            set_reference_value(ref, value);
            frame.pc += kSetReferenceOperationSize;
            break;
        }
        case ocGetReference: {
            value_t ref = frame_pop_value(&frame);
            CHECK_FAMILY(ofReference, ref);
            value_t value = get_reference_value(ref);
            frame_push_value(&frame, value);
            frame.pc += kGetReferenceOperationSize;
            break;
        }
        case ocLoadLocal: {
            size_t index = read_short(&cache, &frame, 1);
            value_t value = frame_get_local(&frame, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadLocalOperationSize;
            break;
        }
        case ocLoadGlobal: {
            value_t ident = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofIdentifier, ident);
            value_t fragment = read_value(&cache, &frame, 2);
            CHECK_FAMILY(ofModuleFragment, fragment);
            value_t module = get_module_fragment_module(fragment);
            E_TRY_DEF(value, module_lookup_identifier(runtime, module,
                      get_identifier_stage(ident), get_identifier_path(ident)));
            frame_push_value(&frame, value);
            frame.pc += kLoadGlobalOperationSize;
            break;
        }
        case ocLoadArgument: {
            size_t param_index = read_short(&cache, &frame, 1);
            value_t value = frame_get_argument(&frame, param_index);
            frame_push_value(&frame, value);
            frame.pc += kLoadArgumentOperationSize;
            break;
        }
        case ocLoadRefractedArgument: {
            size_t param_index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t value = frame_get_argument(&home, param_index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedArgumentOperationSize;
            break;
        }
        case ocLoadRefractedLocal: {
            size_t index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t value = frame_get_local(&home, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedLocalOperationSize;
            break;
        }
        case ocLoadLambdaCapture: {
            size_t index = read_short(&cache, &frame, 1);
            value_t subject = frame_get_argument(&frame, 0);
            CHECK_FAMILY(ofLambda, subject);
            value_t value = get_lambda_capture(subject, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadLambdaCaptureOperationSize;
            break;
        }
        case ocLoadRefractedCapture: {
            size_t index = read_short(&cache, &frame, 1);
            size_t block_depth = read_short(&cache, &frame, 2);
            value_t subject = frame_get_argument(&frame, 0);
            frame_t home = frame_empty();
            get_refractor_refracted_frame(subject, block_depth, &home);
            value_t lambda = frame_get_argument(&home, 0);
            CHECK_FAMILY(ofLambda, lambda);
            value_t value = get_lambda_capture(lambda, index);
            frame_push_value(&frame, value);
            frame.pc += kLoadRefractedLocalOperationSize;
            break;
        }
        case ocLambda: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            size_t capture_count = read_short(&cache, &frame, 2);
            value_t captures;
            E_TRY_DEF(lambda, new_heap_lambda(runtime, space, nothing()));
            if (capture_count == 0) {
                captures = ROOT(runtime, empty_array);
                frame.pc += kLambdaOperationSize;
            } else {
                E_TRY_SET(captures, new_heap_array(runtime, capture_count));
                // The pc gets incremented here because it is after we've done all
                // the allocation but before anything has been popped off the stack.
                // This way all the above is idempotent, and the below is guaranteed
                // to succeed.
                frame.pc += kLambdaOperationSize;
                for (size_t i = 0; i < capture_count; i++)
                    set_array_at(captures, i, frame_pop_value(&frame));
            }
            set_lambda_captures(lambda, captures);
            frame_push_value(&frame, lambda);
            break;
        }
        case ocCreateBlock: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            // Create the block object.
            E_TRY_DEF(block, new_heap_block(runtime, nothing()));
            // Create the stack section that describes the block.
            value_t section = frame_alloc_derived_object(&frame, get_genus_descriptor(dgBlockSection));
            set_barrier_state_payload(section, block);
            refraction_point_init(section, &frame);
            set_block_section_methodspace(section, space);
            set_block_section(block, section);
            value_validate(block);
            value_validate(section);
            // Push the block object.
            frame_push_value(&frame, block);
            frame.pc += kCreateBlockOperationSize;
            break;
        }
        case ocCreateEnsurer: {
            value_t code_block = read_value(&cache, &frame, 1);
            value_t section = frame_alloc_derived_object(&frame,
                              get_genus_descriptor(dgEnsureSection));
            set_barrier_state_payload(section, code_block);
            refraction_point_init(section, &frame);
            value_validate(section);
            frame_push_value(&frame, section);
            frame.pc += kCreateEnsurerOperationSize;
            break;
        }
        case ocCallEnsurer: {
            value_t value = frame_pop_value(&frame);
            value_t shard = frame_pop_value(&frame);
            frame_push_value(&frame, value);
            frame_push_value(&frame, shard);
            CHECK_GENUS(dgEnsureSection, shard);
            value_t code_block = get_barrier_state_payload(shard);
            CHECK_FAMILY(ofCodeBlock, code_block);
            // Unregister the barrier before calling it, otherwise if we leave
            // by escaping we'll end up calling it over again.
            barrier_state_unregister(shard, stack);
            frame.pc += kCallEnsurerOperationSize;
            value_t argmap = ROOT(runtime, array_of_zero);
            push_stack_frame(runtime, stack, &frame,
                             get_code_block_high_water_mark(code_block), argmap);
            frame_set_code_block(&frame, code_block);
            code_cache_refresh(&cache, &frame);
            break;
        }
        case ocDisposeEnsurer: {
            // Discard the result of the ensure block. If an ensure blocks needs
            // to return a useful value it can do it via an escape.
            frame_pop_value(&frame);
            value_t shard = frame_pop_value(&frame);
            CHECK_GENUS(dgEnsureSection, shard);
            value_t value = frame_pop_value(&frame);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgEnsureSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeEnsurerOperationSize;
            break;
        }
        case ocInstallSignalHandler: {
            value_t space = read_value(&cache, &frame, 1);
            CHECK_FAMILY(ofMethodspace, space);
            size_t dest_offset = read_short(&cache, &frame, 2);
            // Allocate the derived object that's going to hold the signal handler
            // state.
            value_t section = frame_alloc_derived_object(&frame,
                              get_genus_descriptor(dgSignalHandlerSection));
            // Initialize the handler.
            set_barrier_state_payload(section, space);
            refraction_point_init(section, &frame);
            // Bring the frame state to the point we'll want to escape to (modulo
            // the destination offset).
            frame_push_value(&frame, section);
            frame.pc += kInstallSignalHandlerOperationSize;
            // Finally capture the escape state.
            capture_escape_state(section, &frame, dest_offset);
            value_validate(section);
            break;
        }
        case ocUninstallSignalHandler: {
            // The result has been left at the top of the stack.
            value_t value = frame_pop_value(&frame);
            value_t section = frame_pop_value(&frame);
            CHECK_GENUS(dgSignalHandlerSection, section);
            barrier_state_unregister(section, stack);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgSignalHandlerSection));
            frame_push_value(&frame, value);
            frame.pc += kUninstallSignalHandlerOperationSize;
            break;
        }
        case ocCreateEscape: {
            size_t dest_offset = read_short(&cache, &frame, 1);
            // Create an initially empty escape object.
            E_TRY_DEF(escape, new_heap_escape(runtime, nothing()));
            // Allocate the escape section on the stack, hooking the barrier into
            // the barrier chain.
            value_t section = frame_alloc_derived_object(&frame, get_genus_descriptor(dgEscapeSection));
            // Point the state and object to each other.
            set_barrier_state_payload(section, escape);
            set_escape_section(escape, section);
            // Get execution ready for the next operation.
            frame_push_value(&frame, escape);
            frame.pc += kCreateEscapeOperationSize;
            // This is the execution state the escape will escape to (modulo the
            // destination offset) so this is what we want to capture.
            capture_escape_state(section, &frame,
                                 dest_offset);
            break;
        }
        case ocLeaveOrFireBarrier: {
            size_t argc = read_short(&cache, &frame, 1);
            // At this point the handler has been set as the subject of the call
            // to the handler method. Above the arguments are also two scratch
            // stack entries.
            value_t handler = frame_peek_value(&frame, argc + 2);
            CHECK_GENUS(dgSignalHandlerSection, handler);
            if (maybe_fire_next_barrier(&cache, &frame, runtime, stack, handler)) {
                // Pop the scratch entries off.
                frame_pop_value(&frame);
                frame_pop_value(&frame);
                // Pop the value off.
                value_t value = frame_pop_value(&frame);
                // Escape to the handler's home.
                restore_escape_state(&frame, stack, handler);
                code_cache_refresh(&cache, &frame);
                // Push the value back on, now in the handler's home frame.
                frame_push_value(&frame, value);
            } else {
                // If a barrier was fired we'll want to let the interpreter loop
                // around again so just break without touching .pc.
            }
            break;
        }
        case ocFireEscapeOrBarrier: {
            value_t escape = frame_get_argument(&frame, 0);
            CHECK_FAMILY(ofEscape, escape);
            value_t section = get_escape_section(escape);
            // Fire the next barrier or, if there are no more barriers, apply the
            // escape.
            if (maybe_fire_next_barrier(&cache, &frame, runtime, stack, section)) {
                value_t value = frame_get_argument(&frame, 2);
                restore_escape_state(&frame, stack, section);
                code_cache_refresh(&cache, &frame);
                frame_push_value(&frame, value);
            } else {
                // If a barrier was fired we'll want to let the interpreter loop
                // around again so just break without touching .pc.
            }
            break;
        }
        case ocDisposeEscape: {
            value_t value = frame_pop_value(&frame);
            value_t escape = frame_pop_value(&frame);
            CHECK_FAMILY(ofEscape, escape);
            value_t section = get_escape_section(escape);
            value_validate(section);
            barrier_state_unregister(section, stack);
            on_escape_section_exit(section);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgEscapeSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeEscapeOperationSize;
            break;
        }
        case ocDisposeBlock: {
            value_t value = frame_pop_value(&frame);
            value_t block = frame_pop_value(&frame);
            CHECK_FAMILY(ofBlock, block);
            value_t section = get_block_section(block);
            barrier_state_unregister(section, stack);
            on_block_section_exit(section);
            frame_destroy_derived_object(&frame, get_genus_descriptor(dgBlockSection));
            frame_push_value(&frame, value);
            frame.pc += kDisposeBlockOperationSize;
            break;
        }
        default:
            ERROR("Unexpected opcode %i", opcode);
            UNREACHABLE("unexpected opcode");
            break;
        }
    }
    E_FINALLY();
    close_frame(&frame);
    E_END_TRY_FINALLY();
}
예제 #5
0
floatf sm_run(StackMachine *sm, SMOpCode *codes, int codelen) {
#if 0
  float registers[9]={0}; //hrm, wonder if compiler will put these in actual registers for me. . .
  SMOpCode *curcode = codes;
  
  sm->registers = registers;
  
  #ifdef DEBUG_SM
  printf("\n\nStarting run: %i %p %p\n", codelen, curcode, sm);
  #endif
  
  while (curcode < codes + codelen) {
    #ifdef DEBUG_SM
    printf("%s %i %i %i %p %p : %d\n", get_opcode_name(curcode->code), curcode->arg1, curcode->arg2, curcode->arg3, sm->func_table, func_table, sm->stackcur);
    #endif
    
    if (sm->exception) {
      fprintf(stderr, "Detected exception;\n");
      fprintf(stderr, "Exception: %s\n", sm->except_msg);
      break;
    }
    
    switch(curcode->code) {
      case PUSH: //args: register to push onto stack #register 7 is /dev/null?
        sm->stack[sm->stackcur++] = sm->registers[curcode->arg1];
        break;
      case POP: //args: register to pop stack value onto
        sm->registers[curcode->arg1] = sm->stack[--sm->stackcur];
        break;
      case PUSH_GLOBAL:
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        sm->stack[sm->stackcur++] = sm->stack[loc];
        break;
      }
      case LOAD_GLOBAL:
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        sm->stack[sm->stackcur-1] = sm->stack[loc];
        break;
      }
      case REG_TO_STK: //args: location in stack, register to load into stack
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        sm->stack[sm->stackcur-1-loc] = sm->registers[curcode->arg3];
        break;
      }
      case CONST_TO_REG: //[register, index in constant table]
        sm->registers[curcode->arg1] = sm->constants[curcode->arg2];
        break;
      case CONST_TO_STK: //[stack (two args), index in constant table]
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        
        sm->stack[sm->stackcur-1-loc] = sm->constants[curcode->arg3];
        break;
      }
      case ABS_STK_TO_REG:
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        
        sm->registers[curcode->arg3] = sm->stack[loc];
        break;
      }
      case STK_TO_REG: //args: location in stack, register to load stack entry into
      {
        int loc = curcode->arg1 | curcode->arg2<<16;
        sm->registers[curcode->arg3] = sm->stack[sm->stackcur-1-loc];
        break;
      }
      case MUL: //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] * sm->registers[curcode->arg2];
        break;
      case DIV: //args: [register a:register b:register out]
        if (sm->registers[curcode->arg2] == 0.0)
          sm->registers[curcode->arg3] = 0.0;
        else
          sm->registers[curcode->arg3] = sm->registers[curcode->arg1] / sm->registers[curcode->arg2];
        break;
      case ADD: //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] + sm->registers[curcode->arg2];
        break;
      case SUB: //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] - sm->registers[curcode->arg2];
        break;
      case GT:  //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] > sm->registers[curcode->arg2];
        break;
      case LT:  //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] < sm->registers[curcode->arg2];
        break;
      case GTE: //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] >= sm->registers[curcode->arg2];
        break;
      case LTE: //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] <= sm->registers[curcode->arg2];
        break;
      case EQ:  //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = sm->registers[curcode->arg1] == sm->registers[curcode->arg2];
        break;
      case LOGICAL_NEGATE: //args: [register a:register out]
        sm->registers[curcode->arg2] = sm->registers[curcode->arg1] == 0.0;
        break;
      case NEGATE: //args: [register a:register out]
        sm->registers[curcode->arg2] = -sm->registers[curcode->arg1];
        break;
      case POW:   //args: [register a:register b:register out]
        sm->registers[curcode->arg3] = pow(sm->registers[curcode->arg1], sm->registers[curcode->arg2]);
        break;
      case FUNC_CALL: //args: [func name id]
        sm->func_table = func_table;
        
        #ifdef DEBUG_SM
        printf("  %p %d\n", sm->func_table, sm->totfunc);
        printf("    %p\n", sm->func_table + curcode->arg1);
        printf("  %s %p\n", sm->func_table[curcode->arg1].name, sm->func_table[curcode->arg1].function);
        #endif
        
        sm->func_table[curcode->arg1].function(sm);
        //return value from called function should now be on stack
        //the called function also popped the arguments, itself
        break;
      default:
        printf("Unimplemented opcode %d!\n", curcode->code);
        break;
      
    }
    curcode++;
  }
  
  sm->registers = NULL;
  return sm->stack[sm->stackcur-1];
#endif 
  return; //0.0;
}