int _cpufeature(int cpufeature) { u32_t cpuid_feature_edx = 0; int proc; proc = getprocessor(); /* If processor supports CPUID and its CPUID supports enough * parameters, retrieve EDX feature flags to test against. */ if(proc >= 586) { u32_t params, a, b, c, d; _cpuid(0, ¶ms, &b, &c, &d); if(params > 0) { _cpuid(1, &a, &b, &c, &cpuid_feature_edx); } } switch(cpufeature) { case _CPUF_I386_PSE: return cpuid_feature_edx & CPUID1_EDX_PSE; case _CPUF_I386_PGE: return cpuid_feature_edx & CPUID1_EDX_PGE; } return 0; }
int _cpufeature(int cpufeature) { u32_t eax, ebx, ecx, edx; int proc; eax = ebx = ecx = edx = 0; proc = getprocessor(); /* If processor supports CPUID and its CPUID supports enough * parameters, retrieve EDX feature flags to test against. */ if(proc >= 586) { eax = 0; _cpuid(&eax, &ebx, &ecx, &edx); if(eax > 0) { eax = 1; _cpuid(&eax, &ebx, &ecx, &edx); } } switch(cpufeature) { case _CPUF_I386_PSE: return edx & CPUID1_EDX_PSE; case _CPUF_I386_PGE: return edx & CPUID1_EDX_PGE; case _CPUF_I386_APIC_ON_CHIP: return edx & CPUID1_EDX_APIC_ON_CHIP; case _CPUF_I386_TSC: return edx & CPUID1_EDX_TSC; case _CPUF_I386_FPU: return edx & CPUID1_EDX_FPU; #define SSE_FULL_EDX (CPUID1_EDX_FXSR | CPUID1_EDX_SSE | CPUID1_EDX_SSE2) #define SSE_FULL_ECX (CPUID1_ECX_SSE3 | CPUID1_ECX_SSSE3 | \ CPUID1_ECX_SSE4_1 | CPUID1_ECX_SSE4_2) case _CPUF_I386_SSE1234_12: return (edx & SSE_FULL_EDX) == SSE_FULL_EDX && (ecx & SSE_FULL_ECX) == SSE_FULL_ECX; case _CPUF_I386_FXSR: return edx & CPUID1_EDX_FXSR; case _CPUF_I386_SSE: return edx & CPUID1_EDX_SSE; case _CPUF_I386_SSE2: return edx & CPUID1_EDX_SSE2; case _CPUF_I386_SSE3: return ecx & CPUID1_ECX_SSE3; case _CPUF_I386_SSSE3: return ecx & CPUID1_ECX_SSSE3; case _CPUF_I386_SSE4_1: return ecx & CPUID1_ECX_SSE4_1; case _CPUF_I386_SSE4_2: return ecx & CPUID1_ECX_SSE4_2; case _CPUF_I386_HTT: return edx & CPUID1_EDX_HTT; case _CPUF_I386_HTT_MAX_NUM: return (ebx >> 16) & 0xff; } return 0; }
void main(void) { memset(&boot_params, 0, sizeof(boot_params)); /* processor */ processor = getprocessor(); /* memory map */ get_memory_map(processor); /* Get environment variables from the parameter sector. */ get_parameters(); if (boot_nucleos() < 0) printf("Error while booting kernel\n"); /* @nucleos: only in case of error */ while (1) halt_cpu(); }
/*===========================================================================* * sef_cb_init_fresh * *===========================================================================*/ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info)) { /* Initialize the process manager. * Memory use info is collected from the boot monitor, the kernel, and * all processes compiled into the system image. Initially this information * is put into an array mem_chunks. Elements of mem_chunks are struct memory, * and hold base, size pairs in units of clicks. This array is small, there * should be no more than 8 chunks. After the array of chunks has been built * the contents are used to initialize the hole list. Space for the hole list * is reserved as an array with twice as many elements as the maximum number * of processes allowed. It is managed as a linked list, and elements of the * array are struct hole, which, in addition to storage for a base and size in * click units also contain space for a link, a pointer to another element. */ int s; static struct boot_image image[NR_BOOT_PROCS]; register struct boot_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT }; static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; register struct mproc *rmp; register char *sig_ptr; message mess; /* Initialize process table, including timers. */ for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { init_timer(&rmp->mp_timer); rmp->mp_magic = MP_MAGIC; } /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); sigemptyset(&noign_sset); for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++) sigaddset(&noign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic("get monitor params failed: %d", s); if ((s=sys_getkinfo(&kinfo)) != OK) panic("get kernel info failed: %d", s); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(image))) panic("couldn't get image table: %d", s); procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; strlcpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); (void) sigemptyset(&rmp->mp_ignore); (void) sigemptyset(&rmp->mp_sigmask); (void) sigemptyset(&rmp->mp_catch); if (ip->proc_nr == INIT_PROC_NR) { /* user process */ /* INIT is root, we make it father of itself. This is * not really OK, INIT should have no father, i.e. * a father with pid NO_PID. But PM currently assumes * that mp_parent always points to a valid slot number. */ rmp->mp_parent = INIT_PROC_NR; rmp->mp_procgrp = rmp->mp_pid = INIT_PID; rmp->mp_flags |= IN_USE; /* Set scheduling info */ rmp->mp_scheduler = KERNEL; rmp->mp_nice = get_nice_value(USR_Q); } else { /* system process */ if(ip->proc_nr == RS_PROC_NR) { rmp->mp_parent = INIT_PROC_NR; } else { rmp->mp_parent = RS_PROC_NR; } rmp->mp_pid = get_free_pid(); rmp->mp_flags |= IN_USE | PRIV_PROC; /* RS schedules this process */ rmp->mp_scheduler = NONE; rmp->mp_nice = get_nice_value(SRV_Q); } /* Get kernel endpoint identifier. */ rmp->mp_endpoint = ip->endpoint; /* Tell VFS about this system process. */ mess.m_type = PM_INIT; mess.PM_SLOT = ip->proc_nr; mess.PM_PID = rmp->mp_pid; mess.PM_PROC = rmp->mp_endpoint; if (OK != (s=send(VFS_PROC_NR, &mess))) panic("can't sync up with VFS: %d", s); } } /* Tell VFS that no more system processes follow and synchronize. */ mess.PR_ENDPT = NONE; if (sendrec(VFS_PROC_NR, &mess) != OK || mess.m_type != OK) panic("can't sync up with VFS"); #if defined(__i386__) uts_val.machine[0] = 'i'; strcpy(uts_val.machine + 1, itoa(getprocessor())); #elif defined(__arm__) strcpy(uts_val.machine, "arm"); #endif system_hz = sys_hz(); /* Initialize user-space scheduling. */ sched_init(); return(OK); }