예제 #1
0
/*------------------------------------------------------------------------
 *  gettime  -  Get xinu time in seconds past Jan 1, 1970
 *------------------------------------------------------------------------
 */
status	gettime(
	  uint32  *timvar		/* Location to store the result	*/
	)
{
	uint32	now;			/* Current time (UCT)		*/
	int32	retval;			/* Return value from call	*/

	/* Get current time in UCT representation (GMT) */

	retval = getutime(&now);
	if (retval == SYSERR) {
		return SYSERR;
	}

	/* Adjust to xinu time and store result */

	*timvar = utim2ltim(now);
	return OK;
}
예제 #2
0
파일: gettime.c 프로젝트: jhngzhu/OS-Pipe
/*------------------------------------------------------------------------
 *  gettime  -  get local time in seconds past Jan 1, 1970
 *------------------------------------------------------------------------
 */
status	gettime(
	  uint32  *timvar		/* location to store the result	*/
	)
{
	uint32	now;			/* current time (UCT)		*/
	int32	retval;			/* return value from call	*/

	/* Get current time in UCT representation (GMT) */

	retval = getutime(&now);
	if (retval == SYSERR) {
		return SYSERR;
	}

	/* Adjust to local time and store result */

	*timvar = utim2ltim(now) + (Date.dt_daylight ? SECPERHR: 0);
	return OK;
}
예제 #3
0
파일: test_helper.c 프로젝트: ghuntley/axel
static void test_getutime() {
	long long t1 = getutime();
	long long t2 = getutime();
	
	CU_ASSERT_TRUE(t2 >= t1);
}
예제 #4
0
double bundle_solve (bundle_t *bundle, int max_iterations, int max_qp_iterations, double subgnorm_opt_tol, double linerr_opt_tol, double z_cutoff, 
		void *data, double (*bundle_callback) (void*, double*, double*), 
		double init_scale, double acceptable_model_exactness, double *init_x, double init_z, double *init_subg)
	/* 
	 * Maximizes a convex non-differentiable function using the bundle method, until reaching a value or iteration threshold (z_cutoff and max_iterations, respectively), or until fulfilling optimality criteria (see subgnorm_opt_tol and linerr_opt_tol):
	 * - max_qp_iterations: maximum enumerations of mask to solve QP
	 * - subgnorm_opt_tol: threshold below which a subgradient norm are deemed to be zero,
	 * - linerr_opt_tol: threshold below which a linearization error is deemed to be zero, 
	 * - z_cutoff: threshold above which z no longer needs to be maximized any further,
	 * - data: a pointer passed on to bundle_callback (see bundle_step),
	 * - init_scale: initial QP penalty,
	 * - acceptable_model_exactness: if the ratio between actual and predicted improvement is above this value, then the bundle method performs a major step,
	 * - init_x: initial values for best_x, may be NULL in which case 0 is used,
	 * - init_z: initial value for best_z, ignored if init_x or init_subg are NULL,
	 * - init_subg: subgradient at init_x, may be NULL.
	 */
{
	int i;
	bundle_status_t status;

	// initialize the bundle 
	if (NULL == init_x) {
		for (i = 0; i < bundle->n; i++)
			bundle->best_x[i] = 0.0;
		bundle->actual_z = bundle_callback(data, bundle->best_x, &bundle->a[0]);
	}
	else {
		memcpy(bundle->best_x, init_x, bundle->n * sizeof(double));
		if (NULL == init_subg) {
			bundle->actual_z = bundle_callback(data, bundle->best_x, &bundle->a[0]);
		}
		else {
			memcpy(&bundle->a[0], init_subg, bundle->n * sizeof(double));
			bundle->actual_z = init_z;
		}
	}
	bundle->max_z = bundle->best_z = bundle->actual_z;
	memcpy(bundle->max_x, bundle->best_x, bundle->n * sizeof(double));
	memcpy(bundle->best_subg, &bundle->a[0], bundle->n * sizeof(double));
	bundle->m = 1;
	bundle->most_recent_i = 0;
	bundle->b[0] = bundle->actual_z;
	bundle->aat[0] = ddot(bundle->n, &bundle->a[0], &bundle->a[0]);
	bundle->scale = init_scale;
	bundle->time_bundle = bundle->time_qp = bundle->time_callback = 0.0;
	//printf("it: 0\tpen: %f\tmax: %f\n", bundle->scale, bundle->actual_z);

	// find a maximum within max_iterations or until greater than z_cutoff
	bundle->time_bundle -= getutime(1);
	for (bundle->n_iterations = 1; bundle->n_iterations < max_iterations; bundle->n_iterations++) {
		// perform bundle step
		status = bundle_step(bundle, max_qp_iterations, subgnorm_opt_tol, linerr_opt_tol, z_cutoff, data, bundle_callback, init_scale, acceptable_model_exactness); 

		// check for termination criteria
		if (bundle_status_cutoff == status || bundle_status_optimal == status || bundle_status_tolerably_optimal == status)
			break;
	}
	bundle->time_bundle += getutime(1);

	// terminate the bundle search
	return bundle->max_z;
}
예제 #5
0
bundle_status_t bundle_step (bundle_t *bundle, int max_qp_iterations, double subgnorm_opt_tol, double linerr_opt_tol, double z_cutoff, void* data, double (*bundle_callback) (void*, double*, double*), double init_scale, double acceptable_model_exactness)
	/*
	 * Performs one iteration of the bundle method:
	 * - max_qp_iterations: maximum enumerations of mask to solve QP
	 * - subgnorm_opt_tol: threshold below which a subgradient norm are deemed to be zero,
	 * - linerr_opt_tol: threshold below which a linearization error is deemed to be zero, 
	 * - z_cutoff: threshold above which z no longer needs to be maximized any further,
	 * - data: a pointer passed on to bundle_callback,
	 * - double bundle_callback(void *data, double *x, double *subg): must evalute and return z at x, writing the subgradient at x in subg.
	 * - init_scale: initial penalty parameter
	 * - acceptable_model_exactness: if the ratio between actual and predicted improvement is above this value, then the bundle method performs a major step,
	 */
{
	int new_subg_i = -1;
	double roh;
	double previous_best_z = bundle->best_z;
	double *new_subg = NULL;
	double subg_delta, linerr_opt_delta, agg_subg_square;
	int i;


	//printf("it: %i\tpen: %f\t", bundle->n_iterations, bundle->scale);
	
	// guess where the x yielding the optimal z lies
	bundle->time_qp -= getutime(1);
	bundle->guessed_z = bundle_guess(bundle, max_qp_iterations);
	bundle->time_qp += getutime(1);
	linerr_opt_delta = bundle->agg_b - bundle->best_z;
	agg_subg_square = ddot(bundle->n, bundle->agg_subg, bundle->agg_subg);

	//printf("z-est: %f ", bundle->guessed_z);

	// update the bundle
	new_subg_i = bundle_update(bundle, agg_subg_square);

	// evaluate guessed x and subgradient at guessed x
	new_subg = &bundle->a[new_subg_i * bundle->n];
	bundle->time_callback -= getutime(1);
	bundle->actual_z = bundle_callback(data, bundle->x, new_subg);
	bundle->time_callback += getutime(1);

	// update maximums
	if (bundle->actual_z > bundle->max_z) {
		bundle->max_z = bundle->actual_z;
		memcpy(bundle->max_x, bundle->x, bundle->n * sizeof(double));
		if (bundle->max_z >= z_cutoff) {
			//printf("(%f)*\tcutoff\n", bundle->actual_z);
			return bundle_status_cutoff;
		}
	}

	//printf("(%f)%c\t", bundle->actual_z, (bundle->actual_z == bundle->max_z) ? '*' : ' ');

	// update A.A^T with new subgradient
	for (i = 0; i < bundle->m; i++) 
		bundle->aat[i * bundle->max_m + new_subg_i] = bundle->aat[new_subg_i * bundle->max_m + i] = ddot(bundle->n, &bundle->a[i * bundle->n], new_subg);

	// check for optimality, i.e. if new subgradient is a null vector
	if (bundle->aat[new_subg_i * bundle->max_m + new_subg_i] < bundle->epsilon) {
		//printf("optimal\n");
		return bundle_status_optimal;
	}
	//printf("agg.err: %f\tagg.norm: %f\t", linerr_opt_delta, sqrt(agg_subg_square));
	if (linerr_opt_delta <= linerr_opt_tol && agg_subg_square <= subgnorm_opt_tol * subgnorm_opt_tol) {
		//printf("optimal withing tolerances\n");
		return bundle_status_tolerably_optimal;
	}

	// check improvement
	roh = (bundle->actual_z - previous_best_z) / (bundle->guessed_z - previous_best_z + bundle->epsilon); 
	//printf("roh: %.2f\t", roh);
	if (roh >= acceptable_model_exactness) {
		// Major Step
		// update penalization parameter bundle->scale
		daxpy(bundle->n, -1.0, new_subg, bundle->best_subg);
		subg_delta = ddot(bundle->n, bundle->best_subg, bundle->best_subg);
		bundle->scale = (subg_delta == 0.0) ? init_scale : (1.0 / (1.0 / bundle->scale  +  ddot(bundle->n, bundle->kkt_x, bundle->best_subg) / subg_delta));
		// center the penalized QP to new maximum
		bundle->best_z = bundle->actual_z;
		memcpy(bundle->best_x, bundle->x, bundle->n * sizeof(double));
		memcpy(bundle->best_subg, new_subg, bundle->n * sizeof(double));
		// update QP rhs for new center
		memcpy(bundle->b, bundle->next_b, bundle->max_m * sizeof(double));
		bundle->b[new_subg_i] = bundle->actual_z;
		// the most recent subgradient may not be active
		bundle->most_recent_i = -1;
		//printf("major step\n");
		return bundle_status_major_step;
	}
	else {
		// Minor Step
		// update rhs for new subgradient for existing center
		bundle->b[new_subg_i] = bundle->actual_z - ddot(bundle->n, new_subg, bundle->kkt_x);
		//printf("\n");
		// the most recent subgradient is certainly active
		bundle->most_recent_i = new_subg_i;
		return bundle_status_minor_step;
	}
}
예제 #6
0
double bundle_guess (bundle_t* bundle, int max_qp_iterations)
	/*
	 * Guesses where the x giving the estimated best z lies by solving the penalized bundle QP.
	 *
	 * If the resolution of the QP takes more than max_qp_iterations mask guesses, it is aborted,
	 *   and the bundle is repopulated as if it were aggregated in the previous bundle iteration,
	 *   in other words reduced to only 2 subgradients, the previous aggregate and the previous evaluated subgradient.
	 *   The QP is then solved anew, and completely.
	 * The procedure then computes x, the aggregate subgradient and the linearization error for this QP.
	 *
	 */
{
	int solved;
	int i, n_iter = max_qp_iterations;

	bundle->time_qp -= getutime(1);
	bundle->kkt_z = INFINITY;
	solved = bundle_qp_solve(bundle, 0ULL, bundle->m, &n_iter);

	if (!solved) {
		bundle->time_qp += getutime(1);
		++bundle->n_iterations;
		//printf("trim\nit: %i\tpen: %f\t", bundle->n_iterations, bundle->scale);
		// trim a
		if (bundle->m != 2)
			memcpy(&bundle->a[bundle->n], &bundle->a[(bundle->m - 1) * bundle->n], bundle->n * sizeof(double));
		memcpy(&bundle->a[0], bundle->agg_subg, bundle->n * sizeof(double));
		// recompute aat
		bundle->aat[0] = ddot(bundle->n, bundle->agg_subg, bundle->agg_subg);
		bundle->aat[bundle->max_m + 1] = bundle->aat[(bundle->m - 1) * bundle->max_m + bundle->m - 1];
		bundle->aat[1] = bundle->aat[bundle->max_m] = ddot(bundle->n, bundle->agg_subg, &bundle->a[bundle->n]);
		// trim b
		bundle->b[0] = (bundle->most_recent_i == -1) ? bundle->agg_next_b : bundle->agg_b;
		bundle->b[1] = bundle->b[bundle->m - 1];
		// update bundle information and solve again
		bundle->most_recent_i = -1;
		bundle->m = 2;
		bundle->time_qp -= getutime(1);
		n_iter = (max_qp_iterations < 3) ? 3 : max_qp_iterations;
		bundle->kkt_z = INFINITY;
		solved = bundle_qp_solve(bundle, 0ULL, bundle->m, &n_iter);
		assert(solved);
	}
	
	// compute the aggregate subgradient using BLAS (in bundle->agg_subg[])
	bundle->agg_b = bundle->agg_next_b = 0.0;
	bzero(bundle->agg_subg, bundle->n * sizeof(double));
	for (i = 0; i < bundle->kkt_m; i++) {
		daxpy(bundle->n, bundle->kkt_mul[i], &bundle->a[bundle->kkt_i[i] * bundle->n], bundle->agg_subg);
		bundle->agg_b += bundle->kkt_mul[i] * bundle->b[bundle->kkt_i[i]];
		bundle->agg_next_b += bundle->kkt_mul[i] * bundle->next_b[bundle->kkt_i[i]];
	}
	// compute local x 
	memcpy(bundle->kkt_x, bundle->agg_subg, bundle->n * sizeof(double));
	dscal(bundle->n, 1.0 / bundle->scale, bundle->kkt_x);
	// compute global x
	memcpy(bundle->x, bundle->best_x, bundle->n * sizeof(double));
	daxpy(bundle->n, 1.0, bundle->kkt_x, bundle->x);

	bundle->time_qp += getutime(1);
	// return guessed z
	return bundle->kkt_mul[bundle->kkt_m];
}
예제 #7
0
파일: rwhod.c 프로젝트: dancrossnyc/xinu68k
//------------------------------------------------------------------------
// rwhod - Periodically clean cache and (optionally) send rwho packets
//------------------------------------------------------------------------
PROCESS
rwhod(void)
{
	int i, j;
	struct rwent *rwptr;
	struct rwent *myptr;
	struct rwhopac *rpacptr;
	struct rw_who *rwwptr;
	struct epacket *packet;
	IPaddr mynet;
	long now;
	int len;
	int ps;

	// Initialize rwho information

	Rwho.rwnent = 1;
	Rwho.rwsend = TRUE;
	getutime(&Rwho.rwbtime);
	myptr = &Rwho.rwcache[0];
	getname(myptr->rwmach, RMACLEN);
	myptr->rwboot = myptr->rwlast = myptr->rwslast = Rwho.rwbtime;
	for (i = 0; i < 3; i++)
		myptr->rwload[i] = 0L;
	myptr->rwusers = 1;

	getnet(mynet);
	for (; TRUE; sleep(RWDELAY)) {
		getutime(&now);
		myptr->rwlast = myptr->rwslast = now;
		ps = disable();
		for (i = 0; i < Rwho.rwnent; i++) {
			rwptr = &Rwho.rwcache[i];
			if (now - rwptr->rwlast > RWMAXDT) {
				Rwho.rwnent--;
				for (j = i--; j < Rwho.rwnent; j++)
					Rwho.rwcache[j] =
					    Rwho.rwcache[j + 1];
			}
		}
		restore(ps);
		if (!Rwho.rwsend)
			continue;
		packet = (struct epacket *)getbuf(Net.netpool);
		rpacptr = (struct rwhopac *)
		    ((struct udp *)
		     (((struct ip *)packet->ep_data)->i_data))->u_data;
		rpacptr->rw_vers = RWVERSION;
		rpacptr->rw_type = RWSTATUS;
		rpacptr->rw_sndtim = hl2net(now);
		rpacptr->rw_rtim = 0L;
		getname(rpacptr->rw_host, sizeof(rpacptr->rw_host));
		for (j = 0; j < RWNLOAD; j++)
			rpacptr->rw_load[j] = 0L;
		rpacptr->rw_btim = hl2net(Rwho.rwbtime);
		len = RWMINP;
		if (marked(Shl.shmark) && Shl.shused) {
			rwwptr = &rpacptr->rw_rww[0];
			strlcpy(rwwptr->rw_tty, "Console", RWNLEN);
			strncpy(rwwptr->rw_nam, Shl.shuser, RWNLEN);
			rwwptr->rw_ton = hl2net(Shl.shlogon);
			rwwptr->rw_idle = hl2net(now - Shl.shlast);
			len += sizeof(struct rw_who);
		}
		udpsend(mynet, URWHO, URWHO, packet, len);
	}
}