static void parse_objective(struct csa *csa) { /* parse objective sense */ int k, len; /* parse the keyword 'minimize' or 'maximize' */ if (csa->token == T_MINIMIZE) glp_set_obj_dir(csa->P, GLP_MIN); else if (csa->token == T_MAXIMIZE) glp_set_obj_dir(csa->P, GLP_MAX); else xassert(csa != csa); scan_token(csa); /* parse objective name */ if (csa->token == T_NAME && csa->c == ':') { /* objective name is followed by a colon */ glp_set_obj_name(csa->P, csa->image); scan_token(csa); xassert(csa->token == T_COLON); scan_token(csa); } else { /* objective name is not specified; use default */ glp_set_obj_name(csa->P, "obj"); } /* parse linear form */ len = parse_linear_form(csa); for (k = 1; k <= len; k++) glp_set_obj_coef(csa->P, csa->ind[k], csa->val[k]); return; }
void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names) { glp_tree *tree = dest->tree; glp_bfcp bfcp; int i, j, len, *ind; double *val; if (tree != NULL && tree->reason != 0) xerror("glp_copy_prob: operation not allowed\n"); if (dest == prob) xerror("glp_copy_prob: copying problem object to itself not al" "lowed\n"); if (!(names == GLP_ON || names == GLP_OFF)) xerror("glp_copy_prob: names = %d; invalid parameter\n", names); glp_erase_prob(dest); if (names && prob->name != NULL) glp_set_prob_name(dest, prob->name); if (names && prob->obj != NULL) glp_set_obj_name(dest, prob->obj); dest->dir = prob->dir; dest->c0 = prob->c0; if (prob->m > 0) glp_add_rows(dest, prob->m); if (prob->n > 0) glp_add_cols(dest, prob->n); glp_get_bfcp(prob, &bfcp); glp_set_bfcp(dest, &bfcp); dest->pbs_stat = prob->pbs_stat; dest->dbs_stat = prob->dbs_stat; dest->obj_val = prob->obj_val; dest->some = prob->some; dest->ipt_stat = prob->ipt_stat; dest->ipt_obj = prob->ipt_obj; dest->mip_stat = prob->mip_stat; dest->mip_obj = prob->mip_obj; for (i = 1; i <= prob->m; i++) { GLPROW *to = dest->row[i]; GLPROW *from = prob->row[i]; if (names && from->name != NULL) glp_set_row_name(dest, i, from->name); to->type = from->type; to->lb = from->lb; to->ub = from->ub; to->rii = from->rii; to->stat = from->stat; to->prim = from->prim; to->dual = from->dual; to->pval = from->pval; to->dval = from->dval; to->mipx = from->mipx; } ind = xcalloc(1+prob->m, sizeof(int)); val = xcalloc(1+prob->m, sizeof(double)); for (j = 1; j <= prob->n; j++) { GLPCOL *to = dest->col[j]; GLPCOL *from = prob->col[j]; if (names && from->name != NULL) glp_set_col_name(dest, j, from->name); to->kind = from->kind; to->type = from->type; to->lb = from->lb; to->ub = from->ub; to->coef = from->coef; len = glp_get_mat_col(prob, j, ind, val); glp_set_mat_col(dest, j, len, ind, val); to->sjj = from->sjj; to->stat = from->stat; to->prim = from->prim; to->dual = from->dual; to->pval = from->pval; to->dval = from->dval; to->mipx = from->mipx; } xfree(ind); xfree(val); return; }
void npp_build_prob(NPP *npp, glp_prob *prob) { /* build resultant (preprocessed) problem */ NPPROW *row; NPPCOL *col; NPPAIJ *aij; int i, j, type, len, *ind; double dir, *val; glp_erase_prob(prob); glp_set_prob_name(prob, npp->name); glp_set_obj_name(prob, npp->obj); glp_set_obj_dir(prob, npp->orig_dir); if (npp->orig_dir == GLP_MIN) dir = +1.0; else if (npp->orig_dir == GLP_MAX) dir = -1.0; else xassert(npp != npp); glp_set_obj_coef(prob, 0, dir * npp->c0); /* build rows */ for (row = npp->r_head; row != NULL; row = row->next) { row->temp = i = glp_add_rows(prob, 1); glp_set_row_name(prob, i, row->name); if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) type = GLP_FR; else if (row->ub == +DBL_MAX) type = GLP_LO; else if (row->lb == -DBL_MAX) type = GLP_UP; else if (row->lb != row->ub) type = GLP_DB; else type = GLP_FX; glp_set_row_bnds(prob, i, type, row->lb, row->ub); } /* build columns and the constraint matrix */ ind = xcalloc(1+prob->m, sizeof(int)); val = xcalloc(1+prob->m, sizeof(double)); for (col = npp->c_head; col != NULL; col = col->next) { j = glp_add_cols(prob, 1); glp_set_col_name(prob, j, col->name); #if 0 glp_set_col_kind(prob, j, col->kind); #else glp_set_col_kind(prob, j, col->is_int ? GLP_IV : GLP_CV); #endif if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) type = GLP_FR; else if (col->ub == +DBL_MAX) type = GLP_LO; else if (col->lb == -DBL_MAX) type = GLP_UP; else if (col->lb != col->ub) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(prob, j, type, col->lb, col->ub); glp_set_obj_coef(prob, j, dir * col->coef); len = 0; for (aij = col->ptr; aij != NULL; aij = aij->c_next) { len++; ind[len] = aij->row->temp; val[len] = aij->val; } glp_set_mat_col(prob, j, len, ind, val); } xfree(ind); xfree(val); /* resultant problem has been built */ npp->m = prob->m; npp->n = prob->n; npp->nnz = prob->nnz; npp->row_ref = xcalloc(1+npp->m, sizeof(int)); npp->col_ref = xcalloc(1+npp->n, sizeof(int)); for (row = npp->r_head, i = 0; row != NULL; row = row->next) npp->row_ref[++i] = row->i; for (col = npp->c_head, j = 0; col != NULL; col = col->next) npp->col_ref[++j] = col->j; /* transformed problem segment is no longer needed */ dmp_delete_pool(npp->pool), npp->pool = NULL; npp->name = npp->obj = NULL; npp->c0 = 0.0; npp->r_head = npp->r_tail = NULL; npp->c_head = npp->c_tail = NULL; return; }
void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob) { /* build LP/MIP problem instance from the model */ int m, n, i, j, t, kind, type, len, *ind; double lb, ub, *val; if (tran->phase != 3) xerror("glp_mpl_build_prob: invalid call sequence\n"); /* erase the problem object */ glp_erase_prob(prob); /* set problem name */ glp_set_prob_name(prob, mpl_get_prob_name(tran)); /* build rows (constraints) */ m = mpl_get_num_rows(tran); if (m > 0) glp_add_rows(prob, m); for (i = 1; i <= m; i++) { /* set row name */ glp_set_row_name(prob, i, mpl_get_row_name(tran, i)); /* set row bounds */ type = mpl_get_row_bnds(tran, i, &lb, &ub); switch (type) { case MPL_FR: type = GLP_FR; break; case MPL_LO: type = GLP_LO; break; case MPL_UP: type = GLP_UP; break; case MPL_DB: type = GLP_DB; break; case MPL_FX: type = GLP_FX; break; default: xassert(type != type); } if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = GLP_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } glp_set_row_bnds(prob, i, type, lb, ub); /* warn about non-zero constant term */ if (mpl_get_row_c0(tran, i) != 0.0) xprintf("glp_mpl_build_prob: row %s; constant term %.12g ig" "nored\n", mpl_get_row_name(tran, i), mpl_get_row_c0(tran, i)); } /* build columns (variables) */ n = mpl_get_num_cols(tran); if (n > 0) glp_add_cols(prob, n); for (j = 1; j <= n; j++) { /* set column name */ glp_set_col_name(prob, j, mpl_get_col_name(tran, j)); /* set column kind */ kind = mpl_get_col_kind(tran, j); switch (kind) { case MPL_NUM: break; case MPL_INT: case MPL_BIN: glp_set_col_kind(prob, j, GLP_IV); break; default: xassert(kind != kind); } /* set column bounds */ type = mpl_get_col_bnds(tran, j, &lb, &ub); switch (type) { case MPL_FR: type = GLP_FR; break; case MPL_LO: type = GLP_LO; break; case MPL_UP: type = GLP_UP; break; case MPL_DB: type = GLP_DB; break; case MPL_FX: type = GLP_FX; break; default: xassert(type != type); } if (kind == MPL_BIN) { if (type == GLP_FR || type == GLP_UP || lb < 0.0) lb = 0.0; if (type == GLP_FR || type == GLP_LO || ub > 1.0) ub = 1.0; type = GLP_DB; } if (type == GLP_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = GLP_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } glp_set_col_bnds(prob, j, type, lb, ub); } /* load the constraint matrix */ ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { len = mpl_get_mat_row(tran, i, ind, val); glp_set_mat_row(prob, i, len, ind, val); } /* build objective function (the first objective is used) */ for (i = 1; i <= m; i++) { kind = mpl_get_row_kind(tran, i); if (kind == MPL_MIN || kind == MPL_MAX) { /* set objective name */ glp_set_obj_name(prob, mpl_get_row_name(tran, i)); /* set optimization direction */ glp_set_obj_dir(prob, kind == MPL_MIN ? GLP_MIN : GLP_MAX); /* set constant term */ glp_set_obj_coef(prob, 0, mpl_get_row_c0(tran, i)); /* set objective coefficients */ len = mpl_get_mat_row(tran, i, ind, val); for (t = 1; t <= len; t++) glp_set_obj_coef(prob, ind[t], val[t]); break; } } /* free working arrays */ xfree(ind); xfree(val); return; }
void lpx_set_obj_name(LPX *lp, const char *name) { /* assign (change) objective function name */ glp_set_obj_name(lp, name); return; }
int glp_read_prob(glp_prob *P, int flags, const char *fname) { DMX _csa, *csa = &_csa; int mip, m, n, nnz, ne, i, j, k, type, kind, ret, *ln = NULL, *ia = NULL, *ja = NULL; double lb, ub, temp, *ar = NULL; char *rf = NULL, *cf = NULL; if (P == NULL || P->magic != GLP_PROB_MAGIC) xerror("glp_read_prob: P = %p; invalid problem object\n", P); if (flags != 0) xerror("glp_read_prob: flags = %d; invalid parameter\n", flags); if (fname == NULL) xerror("glp_read_prob: fname = %d; invalid parameter\n", fname); glp_erase_prob(P); if (setjmp(csa->jump)) { ret = 1; goto done; } csa->fname = fname; csa->fp = NULL; csa->count = 0; csa->c = '\n'; csa->field[0] = '\0'; csa->empty = csa->nonint = 0; xprintf("Reading problem data from '%s'...\n", fname); csa->fp = glp_open(fname, "r"); if (csa->fp == NULL) { xprintf("Unable to open '%s' - %s\n", fname, get_err_msg()); longjmp(csa->jump, 1); } /* read problem line */ read_designator(csa); if (strcmp(csa->field, "p") != 0) error(csa, "problem line missing or invalid"); read_field(csa); if (strcmp(csa->field, "lp") == 0) mip = 0; else if (strcmp(csa->field, "mip") == 0) mip = 1; else error(csa, "wrong problem designator; 'lp' or 'mip' expected"); read_field(csa); if (strcmp(csa->field, "min") == 0) glp_set_obj_dir(P, GLP_MIN); else if (strcmp(csa->field, "max") == 0) glp_set_obj_dir(P, GLP_MAX); else error(csa, "objective sense missing or invalid"); read_field(csa); if (!(str2int(csa->field, &m) == 0 && m >= 0)) error(csa, "number of rows missing or invalid"); read_field(csa); if (!(str2int(csa->field, &n) == 0 && n >= 0)) error(csa, "number of columns missing or invalid"); read_field(csa); if (!(str2int(csa->field, &nnz) == 0 && nnz >= 0)) error(csa, "number of constraint coefficients missing or inval" "id"); if (m > 0) { glp_add_rows(P, m); for (i = 1; i <= m; i++) glp_set_row_bnds(P, i, GLP_FX, 0.0, 0.0); } if (n > 0) { glp_add_cols(P, n); for (j = 1; j <= n; j++) { if (!mip) glp_set_col_bnds(P, j, GLP_LO, 0.0, 0.0); else glp_set_col_kind(P, j, GLP_BV); } } end_of_line(csa); /* allocate working arrays */ rf = xcalloc(1+m, sizeof(char)); memset(rf, 0, 1+m); cf = xcalloc(1+n, sizeof(char)); memset(cf, 0, 1+n); ln = xcalloc(1+nnz, sizeof(int)); ia = xcalloc(1+nnz, sizeof(int)); ja = xcalloc(1+nnz, sizeof(int)); ar = xcalloc(1+nnz, sizeof(double)); /* read descriptor lines */ ne = 0; for (;;) { read_designator(csa); if (strcmp(csa->field, "i") == 0) { /* row descriptor */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(1 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (strcmp(csa->field, "f") == 0) type = GLP_FR; else if (strcmp(csa->field, "l") == 0) type = GLP_LO; else if (strcmp(csa->field, "u") == 0) type = GLP_UP; else if (strcmp(csa->field, "d") == 0) type = GLP_DB; else if (strcmp(csa->field, "s") == 0) type = GLP_FX; else error(csa, "row type missing or invalid"); if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { read_field(csa); if (str2num(csa->field, &lb) != 0) error(csa, "row lower bound/fixed value missing or in" "valid"); } else lb = 0.0; if (type == GLP_UP || type == GLP_DB) { read_field(csa); if (str2num(csa->field, &ub) != 0) error(csa, "row upper bound missing or invalid"); } else ub = 0.0; if (rf[i] & 0x01) error(csa, "duplicate row descriptor"); glp_set_row_bnds(P, i, type, lb, ub), rf[i] |= 0x01; } else if (strcmp(csa->field, "j") == 0) { /* column descriptor */ read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!(1 <= j && j <= n)) error(csa, "column number out of range"); if (!mip) kind = GLP_CV; else { read_field(csa); if (strcmp(csa->field, "c") == 0) kind = GLP_CV; else if (strcmp(csa->field, "i") == 0) kind = GLP_IV; else if (strcmp(csa->field, "b") == 0) { kind = GLP_IV; type = GLP_DB, lb = 0.0, ub = 1.0; goto skip; } else error(csa, "column kind missing or invalid"); } read_field(csa); if (strcmp(csa->field, "f") == 0) type = GLP_FR; else if (strcmp(csa->field, "l") == 0) type = GLP_LO; else if (strcmp(csa->field, "u") == 0) type = GLP_UP; else if (strcmp(csa->field, "d") == 0) type = GLP_DB; else if (strcmp(csa->field, "s") == 0) type = GLP_FX; else error(csa, "column type missing or invalid"); if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { read_field(csa); if (str2num(csa->field, &lb) != 0) error(csa, "column lower bound/fixed value missing or" " invalid"); } else lb = 0.0; if (type == GLP_UP || type == GLP_DB) { read_field(csa); if (str2num(csa->field, &ub) != 0) error(csa, "column upper bound missing or invalid"); } else ub = 0.0; skip: if (cf[j] & 0x01) error(csa, "duplicate column descriptor"); glp_set_col_kind(P, j, kind); glp_set_col_bnds(P, j, type, lb, ub), cf[j] |= 0x01; } else if (strcmp(csa->field, "a") == 0) { /* coefficient descriptor */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(0 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!((i == 0 ? 0 : 1) <= j && j <= n)) error(csa, "column number out of range"); read_field(csa); if (i == 0) { if (str2num(csa->field, &temp) != 0) error(csa, "objective %s missing or invalid", j == 0 ? "constant term" : "coefficient"); if (cf[j] & 0x10) error(csa, "duplicate objective %s", j == 0 ? "constant term" : "coefficient"); glp_set_obj_coef(P, j, temp), cf[j] |= 0x10; } else { if (str2num(csa->field, &temp) != 0) error(csa, "constraint coefficient missing or invalid" ); if (ne == nnz) error(csa, "too many constraint coefficient descripto" "rs"); ln[++ne] = csa->count; ia[ne] = i, ja[ne] = j, ar[ne] = temp; } } else if (strcmp(csa->field, "n") == 0) { /* symbolic name descriptor */ read_field(csa); if (strcmp(csa->field, "p") == 0) { /* problem name */ read_field(csa); if (P->name != NULL) error(csa, "duplicate problem name"); glp_set_prob_name(P, csa->field); } else if (strcmp(csa->field, "z") == 0) { /* objective name */ read_field(csa); if (P->obj != NULL) error(csa, "duplicate objective name"); glp_set_obj_name(P, csa->field); } else if (strcmp(csa->field, "i") == 0) { /* row name */ read_field(csa); if (str2int(csa->field, &i) != 0) error(csa, "row number missing or invalid"); if (!(1 <= i && i <= m)) error(csa, "row number out of range"); read_field(csa); if (P->row[i]->name != NULL) error(csa, "duplicate row name"); glp_set_row_name(P, i, csa->field); } else if (strcmp(csa->field, "j") == 0) { /* column name */ read_field(csa); if (str2int(csa->field, &j) != 0) error(csa, "column number missing or invalid"); if (!(1 <= j && j <= n)) error(csa, "column number out of range"); read_field(csa); if (P->col[j]->name != NULL) error(csa, "duplicate column name"); glp_set_col_name(P, j, csa->field); } else error(csa, "object designator missing or invalid"); } else if (strcmp(csa->field, "e") == 0) break; else error(csa, "line designator missing or invalid"); end_of_line(csa); } if (ne < nnz) error(csa, "too few constraint coefficient descriptors"); xassert(ne == nnz); k = glp_check_dup(m, n, ne, ia, ja); xassert(0 <= k && k <= nnz); if (k > 0) { csa->count = ln[k]; error(csa, "duplicate constraint coefficient"); } glp_load_matrix(P, ne, ia, ja, ar); /* print some statistics */ if (P->name != NULL) xprintf("Problem: %s\n", P->name); if (P->obj != NULL) xprintf("Objective: %s\n", P->obj); xprintf("%d row%s, %d column%s, %d non-zero%s\n", m, m == 1 ? "" : "s", n, n == 1 ? "" : "s", nnz, nnz == 1 ? "" : "s"); if (glp_get_num_int(P) > 0) { int ni = glp_get_num_int(P); int nb = glp_get_num_bin(P); if (ni == 1) { if (nb == 0) xprintf("One variable is integer\n"); else xprintf("One variable is binary\n"); } else { xprintf("%d integer variables, ", ni); if (nb == 0) xprintf("none"); else if (nb == 1) xprintf("one"); else if (nb == ni) xprintf("all"); else xprintf("%d", nb); xprintf(" of which %s binary\n", nb == 1 ? "is" : "are"); } } xprintf("%d lines were read\n", csa->count); /* problem data has been successfully read */ glp_sort_matrix(P); ret = 0; done: if (csa->fp != NULL) glp_close(csa->fp); if (rf != NULL) xfree(rf); if (cf != NULL) xfree(cf); if (ln != NULL) xfree(ln); if (ia != NULL) xfree(ia); if (ja != NULL) xfree(ja); if (ar != NULL) xfree(ar); if (ret) glp_erase_prob(P); return ret; }
int main(int argc, char * argv[]) { int i,j; time(&initial); srand(SEED); /* Default values */ outFile = stdout; maxAlpha = 2; maxIter = 100; maxTime = 30; randomSeed = SEED; simpleOutput = 0; /* Read arguments */ if( argc > 7 ) argc = 7; switch(argc) { case 7: simpleOutput = atoi(argv[6]); case 6: if( !(randomSeed = atoi(argv[5])) ) leave(argv[0]); case 5: if( !(maxTime = atoi(argv[4])) ) leave(argv[0]); case 4: if( !(maxIter = atoi(argv[3])) ) leave(argv[0]); case 3: if( !(maxAlpha = atoi(argv[2])) ) leave(argv[0]); case 2: if( simpleOutput ) { if( !(outFile = fopen(argv[1],"a")) ) leave(argv[0]); break; } if( !(outFile = fopen(argv[1],"w")) ) leave(argv[0]); } readInput(stdin); /* Initiate positions */ for( i = 0 ; i < n ; ++i ) { pOrd[i].ideal = planes[i].ideal; pOrd[i].pos = i; } qsort (pOrd, n, sizeof(struct planeOrder), compIdealT); for( i = 0 ; i < n ; ++i ) { planes[pOrd[i].pos].pos = i; } /* Create lp instance */ glp_prob * Prob; Prob = glp_create_prob(); glp_set_prob_name(Prob, "Airplane Landing Problem"); glp_set_obj_name(Prob, "Cost"); /* Create basic constraints */ for( i = 0 ; i < n ; ++i ) { addBasicRestriction(Prob,i); } glp_create_index(Prob); /* Create separation constraints and order variables (&ij) if necessary */ for( i = 0 ; i < n ; ++i ) { for( j = i+1 ; j < n ; ++j ) { if( planes[i].latest >= planes[j].earliest && planes[j].latest >= planes[i].earliest ) { addOrderConstraint(Prob,i,j); } else if ( planes[i].latest < planes[j].earliest && planes[i].latest + planes[i].sep[j] >= planes[j].earliest ) { addSeparationConstraint(Prob, i, j); } else if ( planes[j].latest < planes[i].earliest && planes[j].latest + planes[j].sep[i] >= planes[i].earliest ) { addSeparationConstraint(Prob, j, i); } } } /* Write problem in MPS format so glpsol can (try to) solve it */ glp_write_mps(Prob, GLP_MPS_FILE, NULL,"mpsProblem.txt"); glp_delete_index(Prob); glp_create_index(Prob); /* GRASP */ /* Data to handle glp solving, time checking and solution generating */ glp_smcp * param = malloc(sizeof(glp_smcp)); glp_init_smcp(param); param->msg_lev = GLP_MSG_ERR; int solution[MAXSIZE], timeAux[MAXSIZE], t; double currResult = DBL_MAX, bestResult = DBL_MAX; alpha = 0; time_t start, curr; time(&start); for( t = 0 ; t < maxIter ; ++t ) { /* Greedy solution generation */ while(createSolution(solution,timeAux,0)) alpha = n; /* Building the right constraints */ mapSolution(Prob,solution); /* Solving with glpsol */ param->presolve = GLP_ON; glp_simplex(Prob,param); param->presolve = GLP_OFF; currResult = glp_get_obj_val(Prob); /* Local search using the first increase */ for( i = 0 ; i < n-1 ; ++i ) { /* Swap two adjacent planes */ swapConstraint(Prob,i,solution,0); glp_simplex(Prob,param); /* Check for improvements */ if( GLP_OPT == glp_get_status(Prob) && glp_get_obj_val(Prob) < currResult ) { currResult = glp_get_obj_val(Prob); /* Changing the solution */ int swp; swp = solution[i]; solution[i] = solution[i+1]; solution[i+1] = swp; /* Restarting */ i = -1; } else swapConstraint(Prob,i,solution,1); } /* Checking improvements */ if( bestResult > currResult ) { bestResult = currResult; for( i = 0 ; i < n ; ++i ) planes[solution[i]].pos = i; } /* Choosing alpha */ alpha = rand()%(maxAlpha+1); /* Is our time up? */ time(&curr); if( difftime(curr,start) > maxTime ) break; } /* Print Answer */ printResult(Prob, stdout); if( outFile ) { printResult(Prob, outFile); fclose(outFile); } return 0; }
void c_glp_set_obj_name(glp_prob *lp, const char *name){ glp_set_obj_name(lp, name); }