SparseWeightMatrix klle_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, const Neighbors& neighbors, PairwiseCallback callback, DefaultScalarType shift) { timed_context context("KLLE weight computation"); const unsigned int k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve((k*k+2*k+1)*(end-begin)); RandomAccessIterator iter; RandomAccessIterator iter_begin = begin, iter_end = end; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseVector dots(k); DenseVector rhs = DenseVector::Ones(k); DenseVector weights; for (RandomAccessIterator iter=iter_begin; iter!=iter_end; ++iter) { DefaultScalarType kernel_value = callback(*iter,*iter); const LocalNeighbors& current_neighbors = neighbors[iter-begin]; for (unsigned int i=0; i<k; ++i) dots[i] = callback(*iter, begin[current_neighbors[i]]); for (unsigned int i=0; i<k; ++i) { for (unsigned int j=i; j<k; ++j) gram_matrix(i,j) = kernel_value - dots(i) - dots(j) + callback(begin[current_neighbors[i]],begin[current_neighbors[j]]); } DefaultScalarType trace = gram_matrix.trace(); gram_matrix.diagonal().array() += 1e-3*trace; weights = gram_matrix.selfadjointView<Eigen::Upper>().ldlt().solve(rhs); weights /= weights.sum(); sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,1.0+shift)); for (unsigned int i=0; i<k; ++i) { sparse_triplets.push_back(SparseTriplet(current_neighbors[i],iter-begin, -weights[i])); sparse_triplets.push_back(SparseTriplet(iter-begin,current_neighbors[i], -weights[i])); for (unsigned int j=0; j<k; ++j) sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j], +weights(i)*weights(j))); } } SparseWeightMatrix weight_matrix(end-begin,end-begin); weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end()); return weight_matrix; }
SparseWeightMatrix kltsa_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, const Neighbors& neighbors, PairwiseCallback callback, unsigned int target_dimension, DefaultScalarType shift, bool partial_eigendecomposer=false) { timed_context context("KLTSA weight matrix computation"); const unsigned int k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve((k*k+k+1)*(end-begin)); RandomAccessIterator iter; RandomAccessIterator iter_begin = begin, iter_end = end; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseVector col_means(k), row_means(k); DenseVector rhs = DenseVector::Ones(k); DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1); G.col(0).setConstant(1/sqrt(DefaultScalarType(k))); DefaultDenseSelfAdjointEigenSolver solver; RESTRICT_ALLOC; //#pragma omp parallel for private(iter,gram_matrix,G) for (iter=iter_begin; iter<iter_end; ++iter) { const LocalNeighbors& current_neighbors = neighbors[iter-begin]; for (unsigned int i=0; i<k; ++i) { for (unsigned int j=i; j<k; ++j) { DefaultScalarType kij = callback(begin[current_neighbors[i]],begin[current_neighbors[j]]); gram_matrix(i,j) = kij; gram_matrix(j,i) = kij; } } col_means = gram_matrix.colwise().mean(); DefaultScalarType grand_mean = gram_matrix.mean(); gram_matrix.array() += grand_mean; gram_matrix.rowwise() -= col_means.transpose(); gram_matrix.colwise() -= col_means; UNRESTRICT_ALLOC; if (partial_eigendecomposer) { G.rightCols(target_dimension).noalias() = eigen_embedding<DenseMatrix,DenseMatrixOperation>(ARPACK,gram_matrix,target_dimension,0).first; } else { solver.compute(gram_matrix); G.rightCols(target_dimension).noalias() = solver.eigenvectors().rightCols(target_dimension); } RESTRICT_ALLOC; gram_matrix.noalias() = G * G.transpose(); sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,shift)); for (unsigned int i=0; i<k; ++i) { sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[i],1.0)); for (unsigned int j=0; j<k; ++j) sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j], -gram_matrix(i,j))); } } UNRESTRICT_ALLOC; SparseWeightMatrix weight_matrix(end-begin,end-begin); weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end()); return weight_matrix; }
SparseWeightMatrix hlle_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, const Neighbors& neighbors, PairwiseCallback callback, unsigned int target_dimension) { timed_context context("KLTSA weight matrix computation"); const unsigned int k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve(k*k*(end-begin)); RandomAccessIterator iter_begin = begin, iter_end = end; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseVector col_means(k), row_means(k); DenseVector rhs = DenseVector::Ones(k); DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1); RandomAccessIterator iter; for (iter=iter_begin; iter!=iter_end; ++iter) { const LocalNeighbors& current_neighbors = neighbors[iter-begin]; for (unsigned int i=0; i<k; ++i) { for (unsigned int j=i; j<k; ++j) { DefaultScalarType kij = callback(begin[current_neighbors[i]],begin[current_neighbors[j]]); gram_matrix(i,j) = kij; gram_matrix(j,i) = kij; } } for (unsigned int i=0; i<k; ++i) { col_means[i] = gram_matrix.col(i).mean(); row_means[i] = gram_matrix.row(i).mean(); } DefaultScalarType grand_mean = gram_matrix.mean(); gram_matrix.array() += grand_mean; gram_matrix.rowwise() -= col_means.transpose(); gram_matrix.colwise() -= row_means; DefaultDenseSelfAdjointEigenSolver sae_solver; sae_solver.compute(gram_matrix); G.col(0).setConstant(1/sqrt(DefaultScalarType(k))); G.rightCols(target_dimension).noalias() = sae_solver.eigenvectors().rightCols(target_dimension); gram_matrix = G * G.transpose(); sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,1e-8)); for (unsigned int i=0; i<k; ++i) { sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[i],1.0)); for (unsigned int j=0; j<k; ++j) sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j], -gram_matrix(i,j))); } } SparseWeightMatrix weight_matrix(end-begin,end-begin); weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end()); return weight_matrix; };
SparseWeightMatrix tangent_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, const Neighbors& neighbors, PairwiseCallback callback, const IndexType target_dimension, const ScalarType shift, const bool partial_eigendecomposer=false) { timed_context context("KLTSA weight matrix computation"); const IndexType k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve((k*k+2*k+1)*(end-begin)); #pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none) { IndexType index_iter; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseVector rhs = DenseVector::Ones(k); DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1); G.col(0).setConstant(1/sqrt(static_cast<ScalarType>(k))); DenseSelfAdjointEigenSolver solver; SparseTriplets local_triplets; local_triplets.reserve(k*k+2*k+1); #pragma omp for nowait for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++) { const LocalNeighbors& current_neighbors = neighbors[index_iter]; for (IndexType i=0; i<k; ++i) { for (IndexType j=i; j<k; ++j) { ScalarType kij = callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]); gram_matrix(i,j) = kij; gram_matrix(j,i) = kij; } } centerMatrix(gram_matrix); //UNRESTRICT_ALLOC; #ifdef TAPKEE_WITH_ARPACK if (partial_eigendecomposer) { G.rightCols(target_dimension).noalias() = eigendecomposition<DenseMatrix,DenseMatrixOperation>(Arpack,gram_matrix,target_dimension,0).first; } else #endif { solver.compute(gram_matrix); G.rightCols(target_dimension).noalias() = solver.eigenvectors().rightCols(target_dimension); } //RESTRICT_ALLOC; gram_matrix.noalias() = G * G.transpose(); SparseTriplet diagonal_triplet(index_iter,index_iter,shift); local_triplets.push_back(diagonal_triplet); for (IndexType i=0; i<k; ++i) { SparseTriplet neighborhood_diagonal_triplet(current_neighbors[i],current_neighbors[i],1.0); local_triplets.push_back(neighborhood_diagonal_triplet); for (IndexType j=0; j<k; ++j) { SparseTriplet tangent_triplet(current_neighbors[i],current_neighbors[j],-gram_matrix(i,j)); local_triplets.push_back(tangent_triplet); } } #pragma omp critical { copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets)); } local_triplets.clear(); } } return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin); }
SparseWeightMatrix hessian_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, const Neighbors& neighbors, PairwiseCallback callback, const IndexType target_dimension) { timed_context context("Hessian weight matrix computation"); const IndexType k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve(k*k*(end-begin)); const IndexType dp = target_dimension*(target_dimension+1)/2; #pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none) { IndexType index_iter; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseMatrix Yi(k,1+target_dimension+dp); SparseTriplets local_triplets; local_triplets.reserve(k*k+2*k+1); #pragma omp for nowait for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++) { const LocalNeighbors& current_neighbors = neighbors[index_iter]; for (IndexType i=0; i<k; ++i) { for (IndexType j=i; j<k; ++j) { ScalarType kij = callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]); gram_matrix(i,j) = kij; gram_matrix(j,i) = kij; } } centerMatrix(gram_matrix); DenseSelfAdjointEigenSolver sae_solver; sae_solver.compute(gram_matrix); Yi.col(0).setConstant(1.0); Yi.block(0,1,k,target_dimension).noalias() = sae_solver.eigenvectors().rightCols(target_dimension); IndexType ct = 0; for (IndexType j=0; j<target_dimension; ++j) { for (IndexType p=0; p<target_dimension-j; ++p) { Yi.col(ct+p+1+target_dimension).noalias() = Yi.col(j+1).cwiseProduct(Yi.col(j+p+1)); } ct += ct + target_dimension - j; } for (IndexType i=0; i<static_cast<IndexType>(Yi.cols()); i++) { for (IndexType j=0; j<i; j++) { ScalarType r = Yi.col(i).dot(Yi.col(j)); Yi.col(i) -= r*Yi.col(j); } ScalarType norm = Yi.col(i).norm(); Yi.col(i) *= (1.f / norm); } for (IndexType i=0; i<dp; i++) { ScalarType colsum = Yi.col(1+target_dimension+i).sum(); if (colsum > 1e-4) Yi.col(1+target_dimension+i).array() /= colsum; } // reuse gram matrix storage m'kay? gram_matrix.noalias() = Yi.rightCols(dp)*(Yi.rightCols(dp).transpose()); for (IndexType i=0; i<k; ++i) { for (IndexType j=0; j<k; ++j) { SparseTriplet hessian_triplet(current_neighbors[i],current_neighbors[j],gram_matrix(i,j)); local_triplets.push_back(hessian_triplet); } } #pragma omp critical { copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets)); } local_triplets.clear(); } } return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin); }
SparseWeightMatrix linear_weight_matrix(const RandomAccessIterator& begin, const RandomAccessIterator& end, const Neighbors& neighbors, PairwiseCallback callback, const ScalarType shift, const ScalarType trace_shift) { timed_context context("KLLE weight computation"); const IndexType k = neighbors[0].size(); SparseTriplets sparse_triplets; sparse_triplets.reserve((k*k+2*k+1)*(end-begin)); #pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none) { IndexType index_iter; DenseMatrix gram_matrix = DenseMatrix::Zero(k,k); DenseVector dots(k); DenseVector rhs = DenseVector::Ones(k); DenseVector weights; SparseTriplets local_triplets; local_triplets.reserve(k*k+2*k+1); //RESTRICT_ALLOC; #pragma omp for nowait for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++) { ScalarType kernel_value = callback.kernel(begin[index_iter],begin[index_iter]); const LocalNeighbors& current_neighbors = neighbors[index_iter]; for (IndexType i=0; i<k; ++i) dots[i] = callback.kernel(begin[index_iter], begin[current_neighbors[i]]); for (IndexType i=0; i<k; ++i) { for (IndexType j=i; j<k; ++j) gram_matrix(i,j) = kernel_value - dots(i) - dots(j) + callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]); } ScalarType trace = gram_matrix.trace(); gram_matrix.diagonal().array() += trace_shift*trace; weights = gram_matrix.selfadjointView<Eigen::Upper>().ldlt().solve(rhs); weights /= weights.sum(); SparseTriplet diagonal_triplet(index_iter,index_iter,1.0+shift); local_triplets.push_back(diagonal_triplet); for (IndexType i=0; i<k; ++i) { SparseTriplet row_side_triplet(current_neighbors[i],index_iter,-weights[i]); SparseTriplet col_side_triplet(index_iter,current_neighbors[i],-weights[i]); local_triplets.push_back(row_side_triplet); local_triplets.push_back(col_side_triplet); for (IndexType j=0; j<k; ++j) { SparseTriplet cross_triplet(current_neighbors[i],current_neighbors[j],weights(i)*weights(j)); local_triplets.push_back(cross_triplet); } } #pragma omp critical { copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets)); } local_triplets.clear(); } //UNRESTRICT_ALLOC; } return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin); }