예제 #1
0
SparseWeightMatrix klle_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, 
                                      const Neighbors& neighbors, PairwiseCallback callback, DefaultScalarType shift)
{
	timed_context context("KLLE weight computation");
	const unsigned int k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve((k*k+2*k+1)*(end-begin));

	RandomAccessIterator iter;
	RandomAccessIterator iter_begin = begin, iter_end = end;
	DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
	DenseVector dots(k);
	DenseVector rhs = DenseVector::Ones(k);
	DenseVector weights;
	for (RandomAccessIterator iter=iter_begin; iter!=iter_end; ++iter)
	{
		DefaultScalarType kernel_value = callback(*iter,*iter);
		const LocalNeighbors& current_neighbors = neighbors[iter-begin];
		
		for (unsigned int i=0; i<k; ++i)
			dots[i] = callback(*iter, begin[current_neighbors[i]]);

		for (unsigned int i=0; i<k; ++i)
		{
			for (unsigned int j=i; j<k; ++j)
				gram_matrix(i,j) = kernel_value - dots(i) - dots(j) + callback(begin[current_neighbors[i]],begin[current_neighbors[j]]);
		}
		
		DefaultScalarType trace = gram_matrix.trace();
		gram_matrix.diagonal().array() += 1e-3*trace;
		weights = gram_matrix.selfadjointView<Eigen::Upper>().ldlt().solve(rhs);
		weights /= weights.sum();

		sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,1.0+shift));
		for (unsigned int i=0; i<k; ++i)
		{
			sparse_triplets.push_back(SparseTriplet(current_neighbors[i],iter-begin,
			                                        -weights[i]));
			sparse_triplets.push_back(SparseTriplet(iter-begin,current_neighbors[i],
			                                        -weights[i]));
			for (unsigned int j=0; j<k; ++j)
				sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j],
				                                        +weights(i)*weights(j)));
		}
	}

	SparseWeightMatrix weight_matrix(end-begin,end-begin);
	weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end());

	return weight_matrix;
}
예제 #2
0
SparseWeightMatrix kltsa_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, 
                                       const Neighbors& neighbors, PairwiseCallback callback, 
                                       unsigned int target_dimension, DefaultScalarType shift,
                                       bool partial_eigendecomposer=false)
{
	timed_context context("KLTSA weight matrix computation");
	const unsigned int k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve((k*k+k+1)*(end-begin));

	RandomAccessIterator iter;
	RandomAccessIterator iter_begin = begin, iter_end = end;
	DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
	DenseVector col_means(k), row_means(k);
	DenseVector rhs = DenseVector::Ones(k);
	DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1);
	G.col(0).setConstant(1/sqrt(DefaultScalarType(k)));
	DefaultDenseSelfAdjointEigenSolver solver;

	RESTRICT_ALLOC;
//#pragma omp parallel for private(iter,gram_matrix,G)
	for (iter=iter_begin; iter<iter_end; ++iter)
	{
		const LocalNeighbors& current_neighbors = neighbors[iter-begin];
	
		for (unsigned int i=0; i<k; ++i)
		{
			for (unsigned int j=i; j<k; ++j)
			{
				DefaultScalarType kij = callback(begin[current_neighbors[i]],begin[current_neighbors[j]]);
				gram_matrix(i,j) = kij;
				gram_matrix(j,i) = kij;
			}
		}
		
		col_means = gram_matrix.colwise().mean();
		DefaultScalarType grand_mean = gram_matrix.mean();
		gram_matrix.array() += grand_mean;
		gram_matrix.rowwise() -= col_means.transpose();
		gram_matrix.colwise() -= col_means;

		UNRESTRICT_ALLOC;
		if (partial_eigendecomposer)
		{
			G.rightCols(target_dimension).noalias() = eigen_embedding<DenseMatrix,DenseMatrixOperation>(ARPACK,gram_matrix,target_dimension,0).first;
		}
		else
		{
			solver.compute(gram_matrix);
			G.rightCols(target_dimension).noalias() = solver.eigenvectors().rightCols(target_dimension);
		}
		RESTRICT_ALLOC;
		gram_matrix.noalias() = G * G.transpose();
		
		sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,shift));
		for (unsigned int i=0; i<k; ++i)
		{
			sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[i],1.0));
			for (unsigned int j=0; j<k; ++j)
				sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j],
				                                        -gram_matrix(i,j)));
		}
	}
	UNRESTRICT_ALLOC;

	SparseWeightMatrix weight_matrix(end-begin,end-begin);
	weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end());

	return weight_matrix;
}
예제 #3
0
SparseWeightMatrix hlle_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end, 
                                      const Neighbors& neighbors, PairwiseCallback callback, unsigned int target_dimension)
{
	timed_context context("KLTSA weight matrix computation");
	const unsigned int k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve(k*k*(end-begin));

	RandomAccessIterator iter_begin = begin, iter_end = end;
	DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
	DenseVector col_means(k), row_means(k);
	DenseVector rhs = DenseVector::Ones(k);
	DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1);

	RandomAccessIterator iter;
	for (iter=iter_begin; iter!=iter_end; ++iter)
	{
		const LocalNeighbors& current_neighbors = neighbors[iter-begin];
	
		for (unsigned int i=0; i<k; ++i)
		{
			for (unsigned int j=i; j<k; ++j)
			{
				DefaultScalarType kij = callback(begin[current_neighbors[i]],begin[current_neighbors[j]]);
				gram_matrix(i,j) = kij;
				gram_matrix(j,i) = kij;
			}
		}
		
		for (unsigned int i=0; i<k; ++i)
		{
			col_means[i] = gram_matrix.col(i).mean();
			row_means[i] = gram_matrix.row(i).mean();
		}
		DefaultScalarType grand_mean = gram_matrix.mean();
		gram_matrix.array() += grand_mean;
		gram_matrix.rowwise() -= col_means.transpose();
		gram_matrix.colwise() -= row_means;
		
		DefaultDenseSelfAdjointEigenSolver sae_solver;
		sae_solver.compute(gram_matrix);

		G.col(0).setConstant(1/sqrt(DefaultScalarType(k)));
		G.rightCols(target_dimension).noalias() = sae_solver.eigenvectors().rightCols(target_dimension);
		gram_matrix = G * G.transpose();
		
		sparse_triplets.push_back(SparseTriplet(iter-begin,iter-begin,1e-8));
		for (unsigned int i=0; i<k; ++i)
		{
			sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[i],1.0));
			for (unsigned int j=0; j<k; ++j)
				sparse_triplets.push_back(SparseTriplet(current_neighbors[i],current_neighbors[j],
				                                        -gram_matrix(i,j)));
		}
	}

	SparseWeightMatrix weight_matrix(end-begin,end-begin);
	weight_matrix.setFromTriplets(sparse_triplets.begin(),sparse_triplets.end());

	return weight_matrix;
};
예제 #4
0
SparseWeightMatrix tangent_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end,
                                         const Neighbors& neighbors, PairwiseCallback callback,
                                         const IndexType target_dimension, const ScalarType shift,
                                         const bool partial_eigendecomposer=false)
{
	timed_context context("KLTSA weight matrix computation");
	const IndexType k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve((k*k+2*k+1)*(end-begin));

#pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none)
	{
		IndexType index_iter;
		DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
		DenseVector rhs = DenseVector::Ones(k);
		DenseMatrix G = DenseMatrix::Zero(k,target_dimension+1);
		G.col(0).setConstant(1/sqrt(static_cast<ScalarType>(k)));
		DenseSelfAdjointEigenSolver solver;
		SparseTriplets local_triplets;
		local_triplets.reserve(k*k+2*k+1);

#pragma omp for nowait
		for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++)
		{
			const LocalNeighbors& current_neighbors = neighbors[index_iter];

			for (IndexType i=0; i<k; ++i)
			{
				for (IndexType j=i; j<k; ++j)
				{
					ScalarType kij = callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]);
					gram_matrix(i,j) = kij;
					gram_matrix(j,i) = kij;
				}
			}

			centerMatrix(gram_matrix);

			//UNRESTRICT_ALLOC;
#ifdef TAPKEE_WITH_ARPACK
			if (partial_eigendecomposer)
			{
				G.rightCols(target_dimension).noalias() =
					eigendecomposition<DenseMatrix,DenseMatrixOperation>(Arpack,gram_matrix,target_dimension,0).first;
			}
			else
#endif
			{
				solver.compute(gram_matrix);
				G.rightCols(target_dimension).noalias() = solver.eigenvectors().rightCols(target_dimension);
			}
			//RESTRICT_ALLOC;
			gram_matrix.noalias() = G * G.transpose();

			SparseTriplet diagonal_triplet(index_iter,index_iter,shift);
			local_triplets.push_back(diagonal_triplet);
			for (IndexType i=0; i<k; ++i)
			{
				SparseTriplet neighborhood_diagonal_triplet(current_neighbors[i],current_neighbors[i],1.0);
				local_triplets.push_back(neighborhood_diagonal_triplet);

				for (IndexType j=0; j<k; ++j)
				{
					SparseTriplet tangent_triplet(current_neighbors[i],current_neighbors[j],-gram_matrix(i,j));
					local_triplets.push_back(tangent_triplet);
				}
			}
#pragma omp critical
			{
				copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets));
			}

			local_triplets.clear();
		}
	}

	return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin);
}
예제 #5
0
SparseWeightMatrix hessian_weight_matrix(RandomAccessIterator begin, RandomAccessIterator end,
                                         const Neighbors& neighbors, PairwiseCallback callback,
                                         const IndexType target_dimension)
{
	timed_context context("Hessian weight matrix computation");
	const IndexType k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve(k*k*(end-begin));

	const IndexType dp = target_dimension*(target_dimension+1)/2;

#pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none)
	{
		IndexType index_iter;
		DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
		DenseMatrix Yi(k,1+target_dimension+dp);

		SparseTriplets local_triplets;
		local_triplets.reserve(k*k+2*k+1);

#pragma omp for nowait
		for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++)
		{
			const LocalNeighbors& current_neighbors = neighbors[index_iter];

			for (IndexType i=0; i<k; ++i)
			{
				for (IndexType j=i; j<k; ++j)
				{
					ScalarType kij = callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]);
					gram_matrix(i,j) = kij;
					gram_matrix(j,i) = kij;
				}
			}

			centerMatrix(gram_matrix);

			DenseSelfAdjointEigenSolver sae_solver;
			sae_solver.compute(gram_matrix);

			Yi.col(0).setConstant(1.0);
			Yi.block(0,1,k,target_dimension).noalias() = sae_solver.eigenvectors().rightCols(target_dimension);

			IndexType ct = 0;
			for (IndexType j=0; j<target_dimension; ++j)
			{
				for (IndexType p=0; p<target_dimension-j; ++p)
				{
					Yi.col(ct+p+1+target_dimension).noalias() = Yi.col(j+1).cwiseProduct(Yi.col(j+p+1));
				}
				ct += ct + target_dimension - j;
			}

			for (IndexType i=0; i<static_cast<IndexType>(Yi.cols()); i++)
			{
				for (IndexType j=0; j<i; j++)
				{
					ScalarType r = Yi.col(i).dot(Yi.col(j));
					Yi.col(i) -= r*Yi.col(j);
				}
				ScalarType norm = Yi.col(i).norm();
				Yi.col(i) *= (1.f / norm);
			}
			for (IndexType i=0; i<dp; i++)
			{
				ScalarType colsum = Yi.col(1+target_dimension+i).sum();
				if (colsum > 1e-4)
					Yi.col(1+target_dimension+i).array() /= colsum;
			}

			// reuse gram matrix storage m'kay?
			gram_matrix.noalias() = Yi.rightCols(dp)*(Yi.rightCols(dp).transpose());

			for (IndexType i=0; i<k; ++i)
			{
				for (IndexType j=0; j<k; ++j)
				{
					SparseTriplet hessian_triplet(current_neighbors[i],current_neighbors[j],gram_matrix(i,j));
					local_triplets.push_back(hessian_triplet);
				}
			}

			#pragma omp critical
			{
				copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets));
			}

			local_triplets.clear();
		}
	}

	return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin);
}
예제 #6
0
SparseWeightMatrix linear_weight_matrix(const RandomAccessIterator& begin, const RandomAccessIterator& end,
                                        const Neighbors& neighbors, PairwiseCallback callback,
                                        const ScalarType shift, const ScalarType trace_shift)
{
	timed_context context("KLLE weight computation");
	const IndexType k = neighbors[0].size();

	SparseTriplets sparse_triplets;
	sparse_triplets.reserve((k*k+2*k+1)*(end-begin));

#pragma omp parallel shared(begin,end,neighbors,callback,sparse_triplets) default(none)
	{
		IndexType index_iter;
		DenseMatrix gram_matrix = DenseMatrix::Zero(k,k);
		DenseVector dots(k);
		DenseVector rhs = DenseVector::Ones(k);
		DenseVector weights;
		SparseTriplets local_triplets;
		local_triplets.reserve(k*k+2*k+1);

		//RESTRICT_ALLOC;
#pragma omp for nowait
		for (index_iter=0; index_iter<static_cast<IndexType>(end-begin); index_iter++)
		{
			ScalarType kernel_value = callback.kernel(begin[index_iter],begin[index_iter]);
			const LocalNeighbors& current_neighbors = neighbors[index_iter];

			for (IndexType i=0; i<k; ++i)
				dots[i] = callback.kernel(begin[index_iter], begin[current_neighbors[i]]);

			for (IndexType i=0; i<k; ++i)
			{
				for (IndexType j=i; j<k; ++j)
					gram_matrix(i,j) = kernel_value - dots(i) - dots(j) +
					                   callback.kernel(begin[current_neighbors[i]],begin[current_neighbors[j]]);
			}

			ScalarType trace = gram_matrix.trace();
			gram_matrix.diagonal().array() += trace_shift*trace;
			weights = gram_matrix.selfadjointView<Eigen::Upper>().ldlt().solve(rhs);
			weights /= weights.sum();

			SparseTriplet diagonal_triplet(index_iter,index_iter,1.0+shift);
			local_triplets.push_back(diagonal_triplet);
			for (IndexType i=0; i<k; ++i)
			{
				SparseTriplet row_side_triplet(current_neighbors[i],index_iter,-weights[i]);
				SparseTriplet col_side_triplet(index_iter,current_neighbors[i],-weights[i]);
				local_triplets.push_back(row_side_triplet);
				local_triplets.push_back(col_side_triplet);
				for (IndexType j=0; j<k; ++j)
				{
					SparseTriplet cross_triplet(current_neighbors[i],current_neighbors[j],weights(i)*weights(j));
					local_triplets.push_back(cross_triplet);
				}
			}

#pragma omp critical
			{
				copy(local_triplets.begin(),local_triplets.end(),back_inserter(sparse_triplets));
			}

			local_triplets.clear();
		}
		//UNRESTRICT_ALLOC;
	}

	return sparse_matrix_from_triplets(sparse_triplets, end-begin, end-begin);
}