int main(int argc, char **argv)
{
    ros::init (argc, argv, "hsmakata_pick_n_place_demo");
    ros::NodeHandle nh;

    ros::Publisher display_publisher = nh.advertise<moveit_msgs::DisplayTrajectory>("/move_group/display_planned_path", 1, true);

    ros::AsyncSpinner spinner(1);
    spinner.start();

    pub_co = nh.advertise<moveit_msgs::CollisionObject>("collision_object", 10);
    pub_aco = nh.advertise<moveit_msgs::AttachedCollisionObject>("attached_collision_object", 10);
    grasps_marker = nh.advertise<visualization_msgs::MarkerArray>("grasps_marker", 10);

    sub_point = nh.subscribe<visualization_msgs::Marker>("cup_center",1,cb_points);

    moveit::planning_interface::MoveGroup gripper("gripper");
    gripper.setNamedTarget("closed");
    gripper.move();

    moveit::planning_interface::MoveGroup katana("manipulator");
    katana.setNamedTarget("home");
    katana.move();


    ros::spin();


}
예제 #2
0
int main(int argc, char** argv){
  ros::init(argc, argv, "simple_gripper");
  ros::NodeHandle nh;

  left_Gripper gripper(nh);

  gripper.close();

  return 0;
}
예제 #3
0
int main(int argc, char** argv)
{
  ros::init(argc, argv, "gripper_v5_ros_control_node");

  std::vector<std::string> actr_names;
  std::vector<std::string> jnt_names;
  std::vector<std::string> controller_names;
  std::vector<double> reducers;
  int rate_hz;

  if (!(ros::param::get("~actuator_names", actr_names) && ros::param::get("~joint_names", jnt_names) &&
        ros::param::get("~controller_names", controller_names) && ros::param::get("~mechanical_reduction", reducers) &&
        ros::param::get("~control_rate", rate_hz)))
  {
    ROS_ERROR("Couldn't get necessary parameters");
    return 0;
  }

  GripperRosControl gripper(actr_names, jnt_names, controller_names, reducers);
  controller_manager::ControllerManager cm(&gripper);

  // For non-realtime spinner thread
  ros::AsyncSpinner spinner(1);
  spinner.start();

  // Control loop
  ros::Rate rate(rate_hz);
  ros::Time prev_time = ros::Time::now();

  while (ros::ok())
  {
    const ros::Time now = ros::Time::now();
    const ros::Duration elapsed_time = now - prev_time;

    gripper.read();
    cm.update(now, elapsed_time);
    gripper.write();
    prev_time = now;

    rate.sleep();
  }
  spinner.stop();
  gripper.cleanup();

  return 0;
}
예제 #4
0
파일: demo.cpp 프로젝트: sauver/sauver_sys
int main(int argc, char** argv)
{
  // Initialize some global data
  Aria::init();

  // If you want ArLog to print "Verbose" level messages uncomment this:
  //ArLog::init(ArLog::StdOut, ArLog::Verbose);

  // This object parses program options from the command line
  ArArgumentParser parser(&argc, argv);

  // Load some default values for command line arguments from /etc/Aria.args
  // (Linux) or the ARIAARGS environment variable.
  parser.loadDefaultArguments();

  // Central object that is an interface to the robot and its integrated
  // devices, and which manages control of the robot by the rest of the program.
  ArRobot robot;

  // Object that connects to the robot or simulator using program options
  ArRobotConnector robotConnector(&parser, &robot);

  // If the robot has an Analog Gyro, this object will activate it, and 
  // if the robot does not automatically use the gyro to correct heading,
  // this object reads data from it and corrects the pose in ArRobot
  ArAnalogGyro gyro(&robot);

  // Connect to the robot, get some initial data from it such as type and name,
  // and then load parameter files for this robot.
  if (!robotConnector.connectRobot())
  {
    // Error connecting:
    // if the user gave the -help argumentp, then just print out what happened,
    // and continue so options can be displayed later.
    if (!parser.checkHelpAndWarnUnparsed())
    {
      ArLog::log(ArLog::Terse, "Could not connect to robot, will not have parameter file so options displayed later may not include everything");
    }
    // otherwise abort
    else
    {
      ArLog::log(ArLog::Terse, "Error, could not connect to robot.");
      Aria::logOptions();
      Aria::exit(1);
    }
  }

  // Connector for laser rangefinders
  ArLaserConnector laserConnector(&parser, &robot, &robotConnector);

  // Connector for compasses
  ArCompassConnector compassConnector(&parser);

  // Parse the command line options. Fail and print the help message if the parsing fails
  // or if the help was requested with the -help option
  if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed())
  {    
    Aria::logOptions();
    exit(1);
  }

  // Used to access and process sonar range data
  ArSonarDevice sonarDev;
  
  // Used to perform actions when keyboard keys are pressed
  ArKeyHandler keyHandler;
  Aria::setKeyHandler(&keyHandler);

  // ArRobot contains an exit action for the Escape key. It also 
  // stores a pointer to the keyhandler so that other parts of the program can
  // use the same keyhandler.
  robot.attachKeyHandler(&keyHandler);
  printf("You may press escape to exit\n");

  // Attach sonarDev to the robot so it gets data from it.
  robot.addRangeDevice(&sonarDev);

  
  // Start the robot task loop running in a new background thread. The 'true' argument means if it loses
  // connection the task loop stops and the thread exits.
  robot.runAsync(true);

  // Connect to the laser(s) if lasers were configured in this robot's parameter
  // file or on the command line, and run laser processing thread if applicable
  // for that laser class.  (For the purposes of this demo, add all
  // possible lasers to ArRobot's list rather than just the ones that were
  // specified with the connectLaser option (so when you enter laser mode, you
  // can then interactively choose which laser to use from the list which will
  // show both connected and unconnected lasers.)
  if (!laserConnector.connectLasers(false, false, true))
  {
    printf("Could not connect to lasers... exiting\n");
    Aria::exit(2);
  }

  // Create and connect to the compass if the robot has one.
  ArTCM2 *compass = compassConnector.create(&robot);
  if(compass && !compass->blockingConnect()) {
    compass = NULL;
  }
  
  // Sleep for a second so some messages from the initial responses
  // from robots and cameras and such can catch up
  ArUtil::sleep(1000);

  // We need to lock the robot since we'll be setting up these modes
  // while the robot task loop thread is already running, and they 
  // need to access some shared data in ArRobot.
  robot.lock();

  // now add all the modes for this demo
  // these classes are defined in ArModes.cpp in ARIA's source code.
  ArModeLaser laser(&robot, "laser", 'l', 'L');
  ArModeTeleop teleop(&robot, "teleop", 't', 'T');
  ArModeUnguardedTeleop unguardedTeleop(&robot, "unguarded teleop", 'u', 'U');
  ArModeWander wander(&robot, "wander", 'w', 'W');
  ArModeGripper gripper(&robot, "gripper", 'g', 'G');
  ArModeCamera camera(&robot, "camera", 'c', 'C');
  ArModeSonar sonar(&robot, "sonar", 's', 'S');
  ArModeBumps bumps(&robot, "bumps", 'b', 'B');
  ArModePosition position(&robot, "position", 'p', 'P', &gyro);
  ArModeIO io(&robot, "io", 'i', 'I');
  ArModeActs actsMode(&robot, "acts", 'a', 'A');
  ArModeCommand command(&robot, "command", 'd', 'D');
  ArModeTCM2 tcm2(&robot, "tcm2", 'm', 'M', compass);


  // activate the default mode
  teleop.activate();

  // turn on the motors
  robot.comInt(ArCommands::ENABLE, 1);

  robot.unlock();
  
  // Block execution of the main thread here and wait for the robot's task loop
  // thread to exit (e.g. by robot disconnecting, escape key pressed, or OS
  // signal)
  robot.waitForRunExit();

  Aria::exit(0);


}
예제 #5
0
int main(void)
{
  ArSerialConnection con;
  ArRobot robot;
  int ret;
  std::string str;
  ArActionLimiterForwards limiter("speed limiter near", 225, 600, 250);
  ArActionLimiterForwards limiterFar("speed limiter far", 225, 1100, 400);
  ArActionTableSensorLimiter tableLimiter;
  ArActionLimiterBackwards backwardsLimiter;
  ArActionConstantVelocity stop("stop", 0);
  ArSonarDevice sonar;
  ArACTS_1_2 acts;
  ArPTZ *ptz;
  ptz = new ArVCC4(&robot, true);
  ArGripper gripper(&robot);
  
  Acquire acq(&acts, &gripper);
  DriveTo driveTo(&acts, &gripper, ptz);
  DropOff dropOff(&acts, &gripper, ptz);
  PickUp pickUp(&acts, &gripper, ptz);
  

  TakeBlockToWall takeBlock(&robot, &gripper, ptz, &acq, &driveTo, &pickUp,
			    &dropOff, &tableLimiter);

  if (!acts.openPort(&robot))
  {
    printf("Could not connect to acts, exiting\n");
    exit(0);    
  }
  Aria::init();
  
  robot.addRangeDevice(&sonar);
  //con.setBaud(38400);
  if ((ret = con.open()) != 0)
  {
    str = con.getOpenMessage(ret);
    printf("Open failed: %s\n", str.c_str());
    Aria::shutdown();
    return 1;
  }

  robot.setDeviceConnection(&con);
  if (!robot.blockingConnect())
  {
    printf("Could not connect to robot... exiting\n");
    Aria::shutdown();
    return 1;
  }

  ptz->init();
  ArUtil::sleep(8000);
  printf("### 2222\n");
  ptz->panTilt(0, -40);
  printf("### whee\n");
  ArUtil::sleep(8000);
  robot.setAbsoluteMaxTransVel(400);

  robot.setStateReflectionRefreshTime(250);
  robot.comInt(ArCommands::ENABLE, 1);
  robot.comInt(ArCommands::SOUNDTOG, 0);

  ArUtil::sleep(200);
  robot.addAction(&tableLimiter, 100);
  robot.addAction(&limiter, 99);
  robot.addAction(&limiterFar, 98);
  robot.addAction(&backwardsLimiter, 97);
  robot.addAction(&acq, 77);
  robot.addAction(&driveTo, 76);
  robot.addAction(&pickUp, 75);
  robot.addAction(&dropOff, 74);
  robot.addAction(&stop, 30);

  robot.run(true);
  
  Aria::shutdown();
  return 0;
}
예제 #6
0
int main(void)
{
  ArSerialConnection con;
  ArRobot robot;
  int ret;
  std::string str;
  ArActionLimiterForwards limiter("speed limiter near", 300, 600, 250);
  ArActionLimiterForwards limiterFar("speed limiter far", 300, 1100, 400);
  ArActionLimiterBackwards backwardsLimiter;
  ArActionConstantVelocity stop("stop", 0);
  ArActionConstantVelocity backup("backup", -200);
  ArSonarDevice sonar;
  ArACTS_1_2 acts;
  ArSonyPTZ sony(&robot);
  ArGripper gripper(&robot, ArGripper::GENIO);
  
  Acquire acq(&acts, &gripper);
  DriveTo driveTo(&acts, &gripper, &sony);
  PickUp pickUp(&acts, &gripper, &sony);

  TakeBlockToWall takeBlock(&robot, &gripper, &sony, &acq, &driveTo, &pickUp,
			    &backup);

  Aria::init();

   if (!acts.openPort(&robot))
   {
     printf("Could not connect to acts\n");
     exit(1);
   }
  
  robot.addRangeDevice(&sonar);
  //con.setBaud(38400);
  if ((ret = con.open()) != 0)
  {
    str = con.getOpenMessage(ret);
    printf("Open failed: %s\n", str.c_str());
    Aria::shutdown();
    return 1;
  }

  robot.setDeviceConnection(&con);
  if (!robot.blockingConnect())
  {
    printf("Could not connect to robot... exiting\n");
    Aria::shutdown();
    return 1;
  }

  sony.init();
  ArUtil::sleep(1000);
  //robot.setAbsoluteMaxTransVel(400);

  robot.setStateReflectionRefreshTime(250);
  robot.comInt(ArCommands::ENABLE, 1);
  robot.comInt(ArCommands::SOUNDTOG, 0);

  ArUtil::sleep(200);
  robot.addAction(&limiter, 100);
  robot.addAction(&limiterFar, 99);
  robot.addAction(&backwardsLimiter, 98);
  robot.addAction(&acq, 77);
  robot.addAction(&driveTo, 76);
  robot.addAction(&pickUp, 75);
  robot.addAction(&backup, 50);
  robot.addAction(&stop, 30);

  robot.run(true);
  
  Aria::shutdown();
  return 0;
}
int main(int argc, char **argv) 
{

  Aria::init();
  ArRobot robot;
  ArArgumentParser argParser(&argc, argv);
  ArSimpleConnector connector(&argParser);
  ArGripper gripper(&robot);
  ArSonarDevice sonar;
  robot.addRangeDevice(&sonar);

  argParser.loadDefaultArguments();

  if (!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed())
  {
    Aria::logOptions();
    Aria::shutdown();
    return 1;
  }
  
  if (!connector.connectRobot(&robot))
  {
    ArLog::log(ArLog::Terse, "gripperExample: Could not connect to robot... exiting");
    Aria::shutdown();
    return 2;
  }
  ArLog::log(ArLog::Normal, "gripperExample: Connected to robot.");

  ArLog::log(ArLog::Normal, "gripperExample: GripperType=%d", gripper.getType());
  gripper.logState();
  if(gripper.getType() == ArGripper::NOGRIPPER)
  {
    ArLog::log(ArLog::Terse, "gripperExample: Error: Robot does not have a gripper. Exiting.");
    Aria::shutdown();
    return -1;
  }

  // Teleoperation actions with obstacle-collision avoidance
  ArActionLimiterTableSensor tableLimit;
  robot.addAction(&tableLimit, 110);
  ArActionLimiterForwards limitNearAction("near", 300, 600, 250);
  robot.addAction(&limitNearAction, 100);
  ArActionLimiterForwards limitFarAction("far", 300, 1100, 400);
  robot.addAction(&limitFarAction, 90);
  ArActionLimiterBackwards limitBackAction;
  robot.addAction(&limitBackAction, 50);
  ArActionJoydrive joydriveAction("joydrive", 400, 15);
  robot.addAction(&joydriveAction, 40);
  joydriveAction.setStopIfNoButtonPressed(false);
  ArActionKeydrive keydriveAction;
  robot.addAction(&keydriveAction, 30);
  

  // Handlers to control the gripper and print out info (classes defined above)
  PrintGripStatus printStatus(&gripper);
  GripperControlHandler gripControl(&gripper);
  printStatus.addRobotTask(&robot);
  gripControl.addKeyHandlers(&robot);

  // enable motors and run (if we lose connection to the robot, exit)
  ArLog::log(ArLog::Normal, "You may now operate the robot with arrow keys or joystick. Operate the gripper with the u, d, o, c, and page up/page down keys.");
  robot.enableMotors();
  robot.run(true);
  
  Aria::shutdown();
  return 0;
}