void PlaneSegmentationPclRgbAlgorithm::getBiggestPlaneInliersDownsampling(pcl::PointIndices::Ptr inliers,
									  pcl::ModelCoefficients::Ptr coefficients,
									  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled (new pcl::PointCloud<pcl::PointXYZ>);
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seg (new pcl::PointCloud<pcl::PointXYZ>);
	pcl::PointCloud<pcl::PointXYZ>::Ptr ground_hull (new pcl::PointCloud<pcl::PointXYZ>);
	
	// downsampling
	pcl::VoxelGrid<pcl::PointXYZ> grid_objects_;
	grid_objects_.setLeafSize (pointcloud_downsample_size, pointcloud_downsample_size, pointcloud_downsample_size);
	grid_objects_.setDownsampleAllData (false);
	
	grid_objects_.setInputCloud (cloud);
	grid_objects_.filter (*cloud_downsampled);
	
	// segment plane
	if (choose_plane_by_distance)
		getNearestBigPlaneInliers(inliers, coefficients, cloud_downsampled);
	else
		getBiggestPlaneInliers(inliers, coefficients, cloud_downsampled);
	
	// check if the plane exists
	if (inliers->indices.size() == 0) {
		// if plane doesn't exist a black image will be returned
		ROS_WARN_STREAM("Plane segmentation: couldn't find plane.");
		return;
	}
	
	// copy inliers
	pcl::ProjectInliers<pcl::PointXYZ> proj;
	proj.setModelType(pcl::SACMODEL_PLANE);
	proj.setInputCloud(cloud_downsampled);
	proj.setModelCoefficients(coefficients);
	proj.setIndices (inliers);
	proj.filter(*cloud_seg);
	
	// remove NaN
	pcl::PassThrough<pcl::PointXYZ> pass;
	pass.setInputCloud (cloud_seg);
	pass.filter (*cloud_seg);
	
	// get biggest cluster
	if (plane_clustering)
		cloud_seg = getBiggestClusterPC(cloud_seg);
	
	// Create a Convex Hull representation of the projected inliers
	pcl::ConvexHull<pcl::PointXYZ> chull;
	chull.setInputCloud(cloud_seg);
	chull.setDimension(2);
	chull.reconstruct(*ground_hull);
	
	
	// Extract only those outliers that lie inside the ground plane's convex hull
	pcl::PointIndices::Ptr object_indices (new pcl::PointIndices);
	pcl::ExtractPolygonalPrismData<pcl::PointXYZ> hull_limiter;
	hull_limiter.setInputCloud(cloud);
	hull_limiter.setInputPlanarHull(ground_hull);
	hull_limiter.setHeightLimits(plane_min_height, plane_max_height);
	hull_limiter.segment(*object_indices);
	
	*inliers = *object_indices;
}
예제 #2
0
void PclExtractor::cloudCallback(const Cloud2Msg::ConstPtr& cloud2Msg_input)
{

  boost::mutex::scoped_lock(mutex_);
  sensor_msgs::PointCloud2 output;
  sensor_msgs::PointCloud2 convex_hull;
  sensor_msgs::PointCloud2 object_msg;
  sensor_msgs::PointCloud2 nonObject_msg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::fromROSMsg (*cloud2Msg_input, *cloud);


  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_p(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZ>);

  pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
  
  // *** Normal estimation
  // Create the normal estimation class and pass the input dataset to it
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
  ne.setInputCloud(cloud);
  // Creating the kdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
  ne.setSearchMethod(tree);

  // output dataset
  pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>);

  // use all neighbors in a sphere of radius 3cm
  ne.setRadiusSearch(0.3);

  // compute the features
  ne.compute(*cloud_normals);
  // *** End of normal estimation
  // *** Plane Estimation From Normals Start
  // Create the segmentation object
  pcl::SACSegmentationFromNormals<pcl::PointXYZ, pcl::Normal> seg;
  // Optional
  seg.setOptimizeCoefficients(true);
  // Mandatory
//  seg.setModelType(pcl::SACMODEL_PARALLEL_PLANE);
  seg.setModelType(pcl::SACMODEL_PLANE);
//  seg.setModelType(pcl::SACMODEL_PERPENDICULAR_PLANE);
  //y가 z
//  const Eigen::Vector3f z_axis(0,-1.0,0);
//  seg.setAxis(z_axis);
//  seg.setEpsAngle(seg_setEpsAngle_);
  seg.setMethodType(pcl::SAC_RANSAC);
  seg.setMaxIterations (seg_setMaxIterations_);
  seg.setDistanceThreshold(seg_setDistanceThreshold_);
  seg.setNormalDistanceWeight(seg_setNormalDistanceWeight_);
//  seg.setProbability(seg_probability_);

  seg.setInputCloud((*cloud).makeShared());
  seg.setInputNormals(cloud_normals);
  seg.segment(*inliers, *coefficients);

  std::cerr <<"input: "<<cloud->width*cloud->height<<"Model inliers: " << inliers->indices.size () << std::endl;
  if (inliers->indices.size () == 0)
  {
    ROS_ERROR ("Could not estimate a planar model for the given dataset.");
  }
  // *** End of Plane Estimation
  // *** Plane Estimation Start
  // Create the segmentation object
/*  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  //seg.setOptimizeCoefficients(true);
  // Mandatory
  seg.setModelType(pcl::SACMODEL_PARALLEL_PLANE);
//  seg.setModelType(pcl::SACMODEL_PLANE);
//  seg.setModelType(pcl::SACMODEL_PERPENDICULAR_PLANE);
  //y가 z
  const Eigen::Vector3f z_axis(0,-1.0,0);
  seg.setAxis(z_axis);
  seg.setEpsAngle(seg_setEpsAngle_);
  seg.setMethodType(pcl::SAC_RANSAC);
  seg.setMaxIterations (seg_setMaxIterations_);
  seg.setDistanceThreshold(seg_setDistanceThreshold_);

  seg.setInputCloud((*cloud).makeShared());
  seg.segment(*inliers, *coefficients);

  std::cerr <<"input: "<<cloud->width*cloud->height<<"Model inliers: " << inliers->indices.size () << std::endl;
  if (inliers->indices.size () == 0)
  {
    ROS_ERROR ("Could not estimate a planar model for the given dataset.");
  }
  // *** End of Plane Estimation
*/
  pcl::ExtractIndices<pcl::PointXYZ> extract;
  // Extrat the inliers
  extract.setInputCloud(cloud);
  extract.setIndices(inliers);

  pcl::PointCloud<pcl::PointXYZ>::Ptr ground_hull(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected(new pcl::PointCloud<pcl::PointXYZ>);

  if ((int)inliers->indices.size() > minPoints_)
  {
    extract.setNegative(false);
    extract.filter(*cloud_p);

    pcl::toROSMsg(*cloud_p, output);
    std::cerr << "PointCloud representing the planar component: " 
      << cloud_p->width * cloud_p->height << " data points." << std::endl;

    // Step 3c. Project the ground inliers
    pcl::ProjectInliers<pcl::PointXYZ> proj;
    proj.setModelType(pcl::SACMODEL_PLANE);
    proj.setInputCloud(cloud_p);
    proj.setModelCoefficients(coefficients);
    proj.filter(*cloud_projected);
    // Step 3d. Create a Convex Hull representation of the projected inliers
    pcl::ConvexHull<pcl::PointXYZ> chull;
    //chull.setInputCloud(cloud_p);
    chull.setInputCloud(cloud_projected);
    chull.setDimension(chull_setDimension_);//2D
    chull.reconstruct(*ground_hull);
    pcl::toROSMsg(*ground_hull, convex_hull);
    //pcl::toROSMsg(*ground_hull, convex_hull);
    ROS_INFO ("Convex hull has: %d data points.", (int) ground_hull->points.size ());

    // Publish the data
    plane_pub_.publish (output);
    hull_pub_.publish(convex_hull);

  }
  // Create the filtering object
  extract.setNegative(true);
  extract.filter(*cloud_f);
  ROS_INFO ("Cloud_f has: %d data points.", (int) cloud_f->points.size ());
  // cloud.swap(cloud_f);

  pcl::PointCloud<pcl::PointXYZ>::Ptr object(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr nonObject(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointIndices::Ptr object_indices(new pcl::PointIndices);

  // cloud statictical filter
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloudStatisticalFiltered (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
  sor.setInputCloud(cloud_f);
  sor.setMeanK(sor_setMeanK_);
  sor.setStddevMulThresh(sor_setStddevMulThresh_);
  sor.filter(*cloudStatisticalFiltered);

  pcl::ExtractIndices<pcl::PointXYZ> exObjectIndices;
  //exObjectIndices.setInputCloud(cloud_f);
  exObjectIndices.setInputCloud(cloudStatisticalFiltered);
  exObjectIndices.setIndices(object_indices);
  exObjectIndices.filter(*object);
  exObjectIndices.setNegative(true);
  exObjectIndices.filter(*nonObject);

  ROS_INFO ("Object has: %d data points.", (int) object->points.size ());
  pcl::toROSMsg(*object, object_msg);
  object_pub_.publish(object_msg);
  //pcl::toROSMsg(*nonObject, nonObject_msg);
  //pcl::toROSMsg(*cloud_f, nonObject_msg);
  pcl::toROSMsg(*cloudStatisticalFiltered, nonObject_msg);
  nonObject_pub_.publish(nonObject_msg);
}