static int test4(gs_state * pgs, gs_memory_t * mem) { gs_c_param_list list; float resv[2]; gs_param_float_array ares; int code; gx_device *dev = gs_currentdevice(pgs); gs_c_param_list_write(&list, mem); resv[0] = resv[1] = 100; ares.data = resv; ares.size = 2; ares.persistent = true; code = param_write_float_array((gs_param_list *) & list, "HWResolution", &ares); if (code < 0) { lprintf1("Writing HWResolution failed: %d\n", code); gs_abort(mem); } gs_c_param_list_read(&list); code = gs_putdeviceparams(dev, (gs_param_list *) & list); gs_c_param_list_release(&list); if (code < 0) { lprintf1("Setting HWResolution failed: %d\n", code); gs_abort(mem); } gs_initmatrix(pgs); gs_initclip(pgs); if (code == 1) { code = (*dev_proc(dev, open_device)) (dev); if (code < 0) { lprintf1("Reopening device failed: %d\n", code); gs_abort(mem); } } gs_moveto(pgs, 0.0, 72.0); gs_rlineto(pgs, 72.0, 0.0); gs_rlineto(pgs, 0.0, 72.0); gs_closepath(pgs); gs_stroke(pgs); return 0; }
/* and fraction (in nanoseconds). */ void gp_get_realtime(long *pdt) { struct timeval tp; if (gettimeofday(&tp) == -1) { lprintf("Ghostscript: gettimeofday failed!\n"); gs_abort(NULL); } /* tp.tv_sec is #secs since Jan 1, 1970 */ pdt[0] = tp.tv_sec; /* Some Unix systems (e.g., Interactive 3.2 r3.0) return garbage */ /* in tp.tv_usec. Try to filter out the worst of it here. */ pdt[1] = tp.tv_usec >= 0 && tp.tv_usec < 1000000 ? tp.tv_usec * 1000 : 0; #ifdef DEBUG_CLOCK printf("tp.tv_sec = %d tp.tv_usec = %d pdt[0] = %ld pdt[1] = %ld\n", tp.tv_sec, tp.tv_usec, pdt[0], pdt[1]); #endif }
/* Remove the marks at the same time. */ static void refs_compact(const gs_memory_t *mem, obj_header_t * pre, obj_header_t * dpre, uint size) { ref_packed *dest; ref_packed *src; ref_packed *end; uint new_size; /* The next switch controls an optimization for the loop termination condition. It was useful during the development, when some assumptions were temporary wrong. We keep it for records. */ src = (ref_packed *) (pre + 1); end = (ref_packed *) ((byte *) src + size); /* * We know that a block of refs always ends with a * full-size ref, so we only need to check for reaching the end * of the block when we see one of those. */ if (dpre == pre) /* Loop while we don't need to copy. */ for (;;) { if (r_is_packed(src)) { if (!r_has_pmark(src)) break; if_debug1('8', " [8]packed ref 0x%lx \"copied\"\n", (ulong) src); *src &= ~lp_mark; src++; } else { /* full-size ref */ ref *const pref = (ref *)src; if (!r_has_attr(pref, l_mark)) break; if_debug1('8', " [8]ref 0x%lx \"copied\"\n", (ulong) src); r_clear_attrs(pref, l_mark); src += packed_per_ref; } } else *dpre = *pre; dest = (ref_packed *) ((char *)dpre + ((char *)src - (char *)pre)); for (;;) { if (r_is_packed(src)) { if (r_has_pmark(src)) { if_debug2('8', " [8]packed ref 0x%lx copied to 0x%lx\n", (ulong) src, (ulong) dest); *dest++ = *src & ~lp_mark; } src++; } else { /* full-size ref */ if (r_has_attr((ref *) src, l_mark)) { ref rtemp; if_debug2('8', " [8]ref 0x%lx copied to 0x%lx\n", (ulong) src, (ulong) dest); /* We can't just use ref_assign_inline, */ /* because the source and destination */ /* might overlap! */ ref_assign_inline(&rtemp, (ref *) src); r_clear_attrs(&rtemp, l_mark); ref_assign_inline((ref *) dest, &rtemp); src += packed_per_ref; dest += packed_per_ref; } else { /* check for end of block */ src += packed_per_ref; if (src >= end) break; } } } new_size = (byte *) dest - (byte *) (dpre + 1) + sizeof(ref); #ifdef DEBUG /* Check that the relocation came out OK. */ /* NOTE: this check only works within a single chunk. */ if ((byte *) src - (byte *) dest != r_size((ref *) src - 1) + sizeof(ref)) { lprintf3("Reloc error for refs 0x%lx: reloc = %lu, stored = %u\n", (ulong) dpre, (ulong) ((byte *) src - (byte *) dest), (uint) r_size((ref *) src - 1)); gs_abort(mem); } #endif /* Pad to a multiple of sizeof(ref). */ while (new_size & (sizeof(ref) - 1)) *dest++ = pt_tag(pt_integer), new_size += sizeof(ref_packed); /* We want to make the newly freed space into a free block, */ /* but we can only do this if we have enough room. */ if (size - new_size < sizeof(obj_header_t)) { /* Not enough room. Pad to original size. */ while (new_size < size) *dest++ = pt_tag(pt_integer), new_size += sizeof(ref_packed); } else { obj_header_t *pfree = (obj_header_t *) ((ref *) dest + 1); pfree->o_alone = 0; pfree->o_size = size - new_size - sizeof(obj_header_t); pfree->o_type = &st_bytes; } /* Re-create the final ref. */ r_set_type((ref *) dest, t_integer); dpre->o_size = new_size; }
static int test10(gs_state * pgs, gs_memory_t * mem) { gs_c_param_list list; gs_param_string nstr, OFstr; gs_param_float_array PSa; gs_param_float_array HWRa; gs_param_int_array HWSa; int HWSize[2]; float HWResolution[2], PageSize[2]; long MaxBitmap; int code; gx_device *dev = gs_currentdevice(pgs); float xlate_x, xlate_y; gs_rect cliprect; gs_c_param_list_write(&list, mem); code = gs_getdeviceparams(dev, (gs_param_list *) & list); if (code < 0) { lprintf1("getdeviceparams failed! code = %d\n", code); gs_abort(mem); } gs_c_param_list_read(&list); code = param_read_string((gs_param_list *) & list, "Name", &nstr); if (code < 0) { lprintf1("reading Name failed! code = %d\n", code); gs_abort(mem); } code = param_read_int_array((gs_param_list *) & list, "HWSize", &HWSa); if (code < 0) { lprintf1("reading HWSize failed! code = %d\n", code); gs_abort(mem); } emprintf3(mem, "HWSize[%d] = [ %d, %d ]\n", HWSa.size, HWSa.data[0], HWSa.data[1]); code = param_read_float_array((gs_param_list *) & list, "HWResolution", &HWRa); if (code < 0) { lprintf1("reading Resolution failed! code = %d\n", code); gs_abort(mem); } emprintf3(mem, "HWResolution[%d] = [ %f, %f ]\n", HWRa.size, HWRa.data[0], HWRa.data[1]); code = param_read_float_array((gs_param_list *) & list, "PageSize", &PSa); if (code < 0) { lprintf1("reading PageSize failed! code = %d\n", code); gs_abort(mem); } emprintf3(mem, "PageSize[%d] = [ %f, %f ]\n", PSa.size, PSa.data[0], PSa.data[1]); code = param_read_long((gs_param_list *) & list, "MaxBitmap", &MaxBitmap); if (code < 0) { lprintf1("reading MaxBitmap failed! code = %d\n", code); gs_abort(mem); } emprintf1(mem, "MaxBitmap = %ld\n", MaxBitmap); /* Switch to param list functions to "write" */ gs_c_param_list_write(&list, mem); /* Always set the PageSize. */ PageSize[0] = 72.0 * ypage_wid; PageSize[1] = 72.0 * xpage_len; PSa.data = PageSize; code = param_write_float_array((gs_param_list *) & list, "PageSize", &PSa); if (nstr.data[0] != 'v') { /* Set the OutputFile string file name */ OFstr.persistent = false; OFstr.data = outfile; OFstr.size = strlen(outfile); code = param_write_string((gs_param_list *) & list, "OutputFile", &OFstr); if (code < 0) { lprintf1("setting OutputFile name failed, code=%d\n", code); gs_abort(mem); } if (nstr.data[0] == 'x') { HWResolution[0] = HWResolution[1] = 72.0; } else { HWResolution[0] = HWResolution[1] = 360.0; } HWRa.data = HWResolution; HWSize[0] = (int)(HWResolution[0] * ypage_wid); HWSize[1] = (int)(HWResolution[1] * xpage_len); emprintf3(mem, "\tHWSize = [%d,%d], HWResolution = %f dpi\n", HWSize[0], HWSize[1], HWResolution[0]); HWSa.data = HWSize; code = param_write_float_array((gs_param_list *) & list, "HWResolution", &HWRa); code = param_write_int_array((gs_param_list *) & list, "HWSize", &HWSa); MaxBitmap = 1000000L; code = param_write_long((gs_param_list *) & list, "MaxBitmap", &MaxBitmap); } gs_c_param_list_read(&list); code = gs_putdeviceparams(dev, (gs_param_list *) & list); emprintf1(mem, "putdeviceparams: code=%d\n", code); gs_c_param_list_release(&list); /* note: initgraphics no longer resets the color or color space */ gs_erasepage(pgs); gs_initgraphics(pgs); { gs_color_space *cs = gs_cspace_new_DeviceGray(mem); gs_setcolorspace(pgs, cs); gs_setcolorspace(pgs, cs); gs_decrement(cs, "test10 DeviceGray"); } gs_clippath(pgs); gs_pathbbox(pgs, &cliprect); emprintf4(mem, "\tcliprect = [[%g,%g],[%g,%g]]\n", cliprect.p.x, cliprect.p.y, cliprect.q.x, cliprect.q.y); gs_newpath(pgs); switch (((rotate_value + 270) / 90) & 3) { default: case 0: /* 0 = 360 degrees in PS == 90 degrees in printer */ xlate_x = cliprect.p.x; xlate_y = cliprect.p.y; break; case 1: /* 90 degrees in PS = 180 degrees printer */ xlate_x = cliprect.q.x; xlate_y = cliprect.p.y; break; case 2: /* 180 degrees in PS == 270 degrees in printer */ xlate_x = cliprect.q.x; xlate_y = cliprect.q.y; break; case 3: /* 270 degrees in PS == 0 degrees in printer */ xlate_x = cliprect.p.x; xlate_y = cliprect.q.y; break; } emprintf2(mem, "translate origin to [ %f, %f ]\n", xlate_x, xlate_y); gs_translate(pgs, xlate_x, xlate_y); /* further move (before rotate) by user requested amount */ gs_translate(pgs, 72.0 * (float)xmove_origin, 72.0 * (float)ymove_origin); gs_rotate(pgs, (float)rotate_value + 270.0); gs_scale(pgs, scale_x * 72.0 / 2032.0, scale_y * 72.0 / 2032.0); gs_setlinecap(pgs, gs_cap_butt); gs_setlinejoin(pgs, gs_join_bevel); gs_setfilladjust(pgs, 0.0, 0.0); capture_exec(pgs); return 0; }
int main(int argc, const char *argv[]) { char achar = '0'; gs_memory_t *mem; gs_state *pgs; const gx_device *const *list; gx_device *dev; gx_device_bbox *bbdev; int code; gp_init(); mem = gs_malloc_init(); gs_lib_init1(mem); if (argc < 2 || (achar = argv[1][0]) < '1' || achar > '0' + countof(tests) - 1 ) { lprintf1("Usage: gslib 1..%c\n", '0' + (char)countof(tests) - 1); gs_abort(mem); } gs_debug['@'] = 1; gs_debug['?'] = 1; /*gs_debug['B'] = 1; *//****** PATCH ******/ /*gs_debug['L'] = 1; *//****** PATCH ******/ /* * gs_iodev_init must be called after the rest of the inits, for * obscure reasons that really should be documented! */ gs_iodev_init(mem); /****** WRONG ******/ gs_lib_device_list(&list, NULL); gs_copydevice(&dev, list[0], mem); check_device_separable(dev); gx_device_fill_in_procs(dev); bbdev = gs_alloc_struct_immovable(mem, gx_device_bbox, &st_device_bbox, "bbox"); gx_device_bbox_init(bbdev, dev, mem); code = dev_proc(dev, get_profile)(dev, &bbdev->icc_struct); rc_increment(bbdev->icc_struct); /* Print out the device name just to test the gsparam.c API. */ { gs_c_param_list list; gs_param_string nstr; gs_c_param_list_write(&list, mem); code = gs_getdeviceparams(dev, (gs_param_list *) & list); if (code < 0) { lprintf1("getdeviceparams failed! code = %d\n", code); gs_abort(mem); } gs_c_param_list_read(&list); code = param_read_string((gs_param_list *) & list, "Name", &nstr); if (code < 0) { lprintf1("reading Name failed! code = %d\n", code); gs_abort(mem); } dputs("Device name = "); debug_print_string(nstr.data, nstr.size); dputs("\n"); gs_c_param_list_release(&list); } /* * If this is a device that takes an OutputFile, set the OutputFile * to "-" in the copy. */ { gs_c_param_list list; gs_param_string nstr; gs_c_param_list_write(&list, mem); param_string_from_string(nstr, "-"); code = param_write_string((gs_param_list *)&list, "OutputFile", &nstr); if (code < 0) { lprintf1("writing OutputFile failed! code = %d\n", code); gs_abort(mem); } gs_c_param_list_read(&list); code = gs_putdeviceparams(dev, (gs_param_list *)&list); gs_c_param_list_release(&list); if (code < 0 && code != gs_error_undefined) { lprintf1("putdeviceparams failed! code = %d\n", code); gs_abort(mem); } } dev = (gx_device *) bbdev; pgs = gs_state_alloc(mem); gs_setdevice_no_erase(pgs, dev); /* can't erase yet */ { gs_point dpi; gs_screen_halftone ht; gs_dtransform(pgs, 72.0, 72.0, &dpi); ht.frequency = min(fabs(dpi.x), fabs(dpi.y)) / 16.001; ht.angle = 0; ht.spot_function = odsf; gs_setscreen(pgs, &ht); } /* gsave and grestore (among other places) assume that */ /* there are at least 2 gstates on the graphics stack. */ /* Ensure that now. */ gs_gsave(pgs); gs_erasepage(pgs); code = (*tests[achar - '1']) (pgs, mem); gs_output_page(pgs, 1, 1); { gs_rect bbox; gx_device_bbox_bbox(bbdev, &bbox); dprintf4("Bounding box: [%g %g %g %g]\n", bbox.p.x, bbox.p.y, bbox.q.x, bbox.q.y); } if (code) dprintf1("**** Test returned code = %d.\n", code); dputs("Done. Press <enter> to exit."); fgetc(mem->gs_lib_ctx->fstdin); gs_lib_finit(0, 0, mem); return 0; #undef mem }