/** * handle_simple_irq - Simple and software-decoded IRQs. * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Simple interrupts are either sent from a demultiplexing interrupt * handler or come from hardware, where no interrupt hardware control * is necessary. * * Note: The caller is expected to handle the ack, clear, mask and * unmask issues if necessary. */ void fastcall handle_simple_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; const unsigned int cpu = smp_processor_id(); spin_lock(&desc->lock); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; kstat_cpu(cpu).irqs[irq]++; action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) { if (desc->chip->mask) desc->chip->mask(irq); desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); desc->status |= IRQ_PENDING; goto out_unlock; } desc->status &= ~(IRQ_REPLAY | IRQ_WAITING | IRQ_PENDING); desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; out_unlock: spin_unlock(&desc->lock); }
/** * handle_edge_irq - edge type IRQ handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Interrupt occures on the falling and/or rising edge of a hardware * signal. The occurence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the associated event handler. If this happens it * might be necessary to disable (mask) the interrupt depending on the * controller hardware. This requires to reenable the interrupt inside * of the loop which handles the interrupts which have arrived while * the handler was running. If all pending interrupts are handled, the * loop is left. */ void handle_edge_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); /* * If we're currently running this IRQ, or its disabled, * we shouldn't process the IRQ. Mark it pending, handle * the necessary masking and go out */ if (unlikely((desc->status & (IRQ_INPROGRESS | IRQ_DISABLED)) || !desc->action)) { desc->status |= (IRQ_PENDING | IRQ_MASKED); mask_ack_irq(desc, irq); goto out_unlock; } kstat_incr_irqs_this_cpu(irq, desc); /* Start handling the irq */ if (desc->chip->ack) desc->chip->ack(irq); /* Mark the IRQ currently in progress.*/ desc->status |= IRQ_INPROGRESS; do { struct irqaction *action = desc->action; irqreturn_t action_ret; if (unlikely(!action)) { mask_irq(desc, irq); goto out_unlock; } /* * When another irq arrived while we were handling * one, we could have masked the irq. * Renable it, if it was not disabled in meantime. */ if (unlikely((desc->status & (IRQ_PENDING | IRQ_MASKED | IRQ_DISABLED)) == (IRQ_PENDING | IRQ_MASKED))) { unmask_irq(desc, irq); } desc->status &= ~IRQ_PENDING; raw_spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); raw_spin_lock(&desc->lock); } while ((desc->status & (IRQ_PENDING | IRQ_DISABLED)) == IRQ_PENDING); desc->status &= ~IRQ_INPROGRESS; out_unlock: raw_spin_unlock(&desc->lock); }
/** * handle_simple_irq - Simple and software-decoded IRQs. * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Simple interrupts are either sent from a demultiplexing interrupt * handler or come from hardware, where no interrupt hardware control * is necessary. * * Note: The caller is expected to handle the ack, clear, mask and * unmask issues if necessary. */ void handle_simple_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; out_unlock: spin_unlock(&desc->lock); }
static void do_8259A_IRQ(unsigned int irq, struct pt_regs * regs) { struct irqServer * iServer; struct irqDescriptor *desc = &irq_desc[irq]; { unsigned int status; mask_and_ack_8259A(irq); status = desc->id_status & ~(IRQ_REPLAY | IRQ_WAITING); iServer = NULL; if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { iServer = desc->id_server; status |= IRQ_INPROGRESS; } desc->id_status = status; } /* Exit early if we had no action or it was disabled */ if (!iServer) return; handle_IRQ_event(irq, regs, iServer); { unsigned int status = desc->id_status & ~IRQ_INPROGRESS; desc->id_status = status; if (!(status & IRQ_DISABLED)) enable_8259A_irq(irq); } }
/** * handle_level_irq - Level type irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); /* 调用中断线所属的中断控制的mask_ack函数. 如果没有定义该函数,就调用mask,然后调用ack函数. 总之,对于水平触发的来说,它就是屏蔽当前的中断线,应当当前中断.. 比如ARM来说,就是清除SRCPND、SRCINTPND寄存器的位. */ mask_ack_irq(desc, irq); desc = irq_remap_to_desc(irq, desc); /* 在多处理器的系统上,可能中断已经被另外一个CPU开始处理..但是该CPU也 进入到进入处理..此时另外处理的CPU会设置状态为正在处理当中.. 因此,当前CPU就直接退出。 */ if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * keep it masked and get out of here */ action = desc->action; /* 如果该中断线上没有中断处理函数,那就直接退出. 或者说,该中断线当前状态是DISABLED,也就是要屏蔽掉该中断的..? 但是由于某种原因还产生了中断?不过确实状态就是DISABLED,那也直接退出。 */ if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; //好这里设置为正在处理当中...避免多处理的竞争...哦。这断代码的执行 //是在上锁的状态下的..下面解锁. desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); //处理完成之后..这里要修改当前中断线的状态了..一样是上锁. desc->status &= ~IRQ_INPROGRESS; //该中断线的状态是不屏蔽的,并且有unmask函数..那就调用unmask,它就是 //取消屏蔽该中断线...因为水平电流处理函数在一开始有mask_ack_irq给屏蔽掉了中断线了 if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) desc->chip->unmask(irq); out_unlock: spin_unlock(&desc->lock); }
/** * handle_fasteoi_irq - irq handler for transparent controllers * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; raw_spin_lock(&desc->lock); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * then mask it and get out of here: */ action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) { desc->status |= IRQ_PENDING; mask_irq(desc); goto out; } if (desc->status & IRQ_ONESHOT) mask_irq(desc); desc->status |= IRQ_INPROGRESS; desc->status &= ~IRQ_PENDING; raw_spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); raw_spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; #ifdef CONFIG_IPIPE if (!(desc->status & IRQ_MASKED)) desc->irq_data.chip->irq_unmask(&desc->irq_data); out: #else out: desc->irq_data.chip->irq_eoi(&desc->irq_data); #endif raw_spin_unlock(&desc->lock); }
/** * handle_percpu_IRQ - Per CPU local irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void fastcall handle_percpu_irq(unsigned int irq, struct irq_desc *desc) { irqreturn_t action_ret; kstat_this_cpu.irqs[irq]++; if (desc->chip->ack) desc->chip->ack(irq); action_ret = handle_IRQ_event(irq, desc->action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); if (desc->chip->eoi) desc->chip->eoi(irq); }
/** * handle_percpu_irq - Per CPU local irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void handle_percpu_irq(unsigned int irq, struct irq_desc *desc) { irqreturn_t action_ret; kstat_incr_irqs_this_cpu(irq, desc); if (desc->irq_data.chip->irq_ack) desc->irq_data.chip->irq_ack(&desc->irq_data); action_ret = handle_IRQ_event(irq, desc->action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); if (desc->irq_data.chip->irq_eoi) desc->irq_data.chip->irq_eoi(&desc->irq_data); }
/** * handle_percpu_IRQ - Per CPU local irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void handle_percpu_irq(unsigned int irq, struct irq_desc *desc) { irqreturn_t action_ret; kstat_incr_irqs_this_cpu(irq, desc); if (desc->chip->ack) desc->chip->ack(irq); action_ret = handle_IRQ_event(irq, desc->action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); if (desc->chip->eoi) { desc->chip->eoi(irq); desc = irq_remap_to_desc(irq, desc); } }
/** * handle_fasteoi_irq - irq handler for transparent controllers * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void fastcall handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc) { unsigned int cpu = smp_processor_id(); struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_cpu(cpu).irqs[irq]++; /* * If its disabled or no action available * then mask it and get out of here: */ action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) { desc->status |= IRQ_PENDING; if (desc->chip->mask) desc->chip->mask(irq); goto out; } desc->status |= IRQ_INPROGRESS; desc->status &= ~IRQ_PENDING; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; out: desc->chip->eoi(irq); spin_unlock(&desc->lock); }
/** * handle_level_irq - Level type irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); mask_ack_irq(desc, irq); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * keep it masked and get out of here */ action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) { printk(KERN_ERR "IRQ %d enter bad status!\n", irq); goto out_unlock; } desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; if (unlikely(desc->status & IRQ_ONESHOT)) desc->status |= IRQ_MASKED; else if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) desc->chip->unmask(irq); out_unlock: spin_unlock(&desc->lock); }
static void handle_prio_irq(unsigned int irq, struct irq_desc *desc) { unsigned int cpu = smp_processor_id(); struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); BUG_ON(desc->status & IRQ_INPROGRESS); desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_cpu(cpu).irqs[irq]++; action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_mask; desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); /* XXX: There is no direct way to access noirqdebug, so check * unconditionally for spurious irqs... * Maybe this function should go to kernel/irq/chip.c? */ note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; if (desc->status & IRQ_DISABLED) out_mask: desc->chip->mask(irq); /* ack unconditionally to unmask lower prio irqs */ desc->chip->ack(irq); spin_unlock(&desc->lock); }
/** * handle_level_irq - Level type irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; raw_spin_lock(&desc->lock); #ifndef CONFIG_IPIPE mask_ack_irq(desc); #endif if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * keep it masked and get out of here */ action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; desc->status |= IRQ_INPROGRESS; raw_spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); raw_spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; if (!(desc->status & (IRQ_DISABLED | IRQ_ONESHOT))) unmask_irq(desc); out_unlock: raw_spin_unlock(&desc->lock); }
/** * handle_level_irq - Level type irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(unsigned int irq, struct irq_desc *desc) { unsigned int cpu = smp_processor_id(); struct irqaction *action; irqreturn_t action_ret; spin_lock(&desc->lock); mask_ack_irq(desc, irq); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_cpu(cpu).irqs[irq]++; /* * If its disabled or no action available * keep it masked and get out of here */ action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; desc->status |= IRQ_INPROGRESS; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) desc->chip->unmask(irq); out_unlock: spin_unlock(&desc->lock); }
/* * PIIX4-8259 master/virtual functions to handle interrupt requests * from legacy devices: floppy, parallel, serial, rtc. * * None of these get Cobalt APIC entries, neither do they have IDT * entries. These interrupts are purely virtual and distributed from * the 'master' interrupt source: CO_IRQ_8259. * * When the 8259 interrupts its handler figures out which of these * devices is interrupting and dispatches to its handler. * * CAREFUL: devices see the 'virtual' interrupt only. Thus disable/ * enable_irq gets the right irq. This 'master' irq is never directly * manipulated by any driver. */ static irqreturn_t piix4_master_intr(int irq, void *dev_id) { int realirq; irq_desc_t *desc; unsigned long flags; spin_lock_irqsave(&i8259A_lock, flags); /* Find out what's interrupting in the PIIX4 master 8259 */ outb(0x0c, 0x20); /* OCW3 Poll command */ realirq = inb(0x20); /* * Bit 7 == 0 means invalid/spurious */ if (unlikely(!(realirq & 0x80))) goto out_unlock; realirq &= 7; if (unlikely(realirq == 2)) { outb(0x0c, 0xa0); realirq = inb(0xa0); if (unlikely(!(realirq & 0x80))) goto out_unlock; realirq = (realirq & 7) + 8; } /* mask and ack interrupt */ cached_irq_mask |= 1 << realirq; if (unlikely(realirq > 7)) { inb(0xa1); outb(cached_slave_mask, 0xa1); outb(0x60 + (realirq & 7), 0xa0); outb(0x60 + 2, 0x20); } else { inb(0x21); outb(cached_master_mask, 0x21); outb(0x60 + realirq, 0x20); } spin_unlock_irqrestore(&i8259A_lock, flags); desc = irq_desc + realirq; /* * handle this 'virtual interrupt' as a Cobalt one now. */ kstat_cpu(smp_processor_id()).irqs[realirq]++; if (likely(desc->action != NULL)) handle_IRQ_event(realirq, desc->action); if (!(desc->status & IRQ_DISABLED)) enable_8259A_irq(realirq); return IRQ_HANDLED; out_unlock: spin_unlock_irqrestore(&i8259A_lock, flags); return IRQ_NONE; }
/** * __do_IRQ - original all in one highlevel IRQ handler * @irq: the interrupt number * * __do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). * * This is the original x86 implementation which is used for every * interrupt type. */ unsigned int __do_IRQ(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); struct irqaction *action; unsigned int status; kstat_incr_irqs_this_cpu(irq, desc); if (CHECK_IRQ_PER_CPU(desc->status)) { irqreturn_t action_ret; /* * No locking required for CPU-local interrupts: */ if (desc->chip->ack) desc->chip->ack(irq); if (likely(!(desc->status & IRQ_DISABLED))) { action_ret = handle_IRQ_event(irq, desc->action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); } desc->chip->end(irq); return 1; } spin_lock(&desc->lock); if (desc->chip->ack) desc->chip->ack(irq); /* * REPLAY is when Linux resends an IRQ that was dropped earlier * WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. * Since we set PENDING, if another processor is handling * a different instance of this same irq, the other processor * will take care of it. */ if (unlikely(!action)) goto out; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { irqreturn_t action_ret; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); spin_lock(&desc->lock); if (likely(!(desc->status & IRQ_PENDING))) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->chip->end(irq); spin_unlock(&desc->lock); return 1; }
/** * handle_edge_irq - edge type IRQ handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Interrupt occures on the falling and/or rising edge of a hardware * signal. The occurence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the assosiacted event handler. If this happens it * might be necessary to disable (mask) the interrupt depending on the * controller hardware. This requires to reenable the interrupt inside * of the loop which handles the interrupts which have arrived while * the handler was running. If all pending interrupts are handled, the * loop is left. */ void handle_edge_irq(unsigned int irq, struct irq_desc *desc) { spin_lock(&desc->lock); /* 需要同水平电流处理函数对比,这里并没有调用mask_ack函数,来屏蔽中断线. */ desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); /* * If we're currently running this IRQ, or its disabled, * we shouldn't process the IRQ. Mark it pending, handle * the necessary masking and go out */ /* 如果边缘电平的触发,然后引起了一个中断,处理函数会对该中断线设置为正在处理当中. 也就是IRQ_INPROGRESS标记..此时判断判断IRQ_INPROGRESS如果置位,代表是又一个中断发生了 因为是边缘触发的..那就设置status为PENDING挂机,等待处理. */ if (unlikely((desc->status & (IRQ_INPROGRESS | IRQ_DISABLED)) || !desc->action)) { desc->status |= (IRQ_PENDING | IRQ_MASKED); //已经PENDING了一次处理,这时候特殊处理,屏蔽掉该中断..然后应答该中断线. //上面status设置为IRQ_MASKED,也可以证实这个情况. mask_ack_irq(desc, irq); desc = irq_remap_to_desc(irq, desc); goto out_unlock; } kstat_incr_irqs_this_cpu(irq, desc); /* 当然..更一般的情况是下面这种...它会调用应答ack.!!注意注意...和水平触发的区别来了. 水平触发是mask_ack!!! */ /* Start handling the irq */ if (desc->chip->ack) desc->chip->ack(irq); desc = irq_remap_to_desc(irq, desc); /* Mark the IRQ currently in progress.*/ desc->status |= IRQ_INPROGRESS; do { struct irqaction *action = desc->action; irqreturn_t action_ret; //如果该中断线没有中断处理函数..那屏蔽掉该中断线..然后退出. if (unlikely(!action)) { desc->chip->mask(irq); goto out_unlock; } /* * When another irq arrived while we were handling * one, we could have masked the irq. * Renable it, if it was not disabled in meantime. */ if (unlikely((desc->status & (IRQ_PENDING | IRQ_MASKED | IRQ_DISABLED)) == (IRQ_PENDING | IRQ_MASKED))) { //前面有看到..到中断处理过程中再次引起中断,就会挂机该中断,然后屏蔽中断线. //此时这里,就是重新设置为不屏蔽的.. desc->chip->unmask(irq); desc->status &= ~IRQ_MASKED; } desc->status &= ~IRQ_PENDING; spin_unlock(&desc->lock); //释放锁...进入到处理中断函数中去. action_ret = handle_IRQ_event(irq, action); if (!noirqdebug) note_interrupt(irq, desc, action_ret); //中断处理函数处理完成了...然后还要继续判断在处理过程中是否有新的中断产生. spin_lock(&desc->lock); //因为对于边缘触发的中断来说,它的处理过程,可能有引起了中断了的发生了. //此时会设置status带IRQ_PENDING标记.那就需要在继续执行一遍处理函数. } while ((desc->status & (IRQ_PENDING | IRQ_DISABLED)) == IRQ_PENDING); desc->status &= ~IRQ_INPROGRESS; out_unlock: spin_unlock(&desc->lock); }
/* * Recovery handler for misrouted interrupts. */ static int try_one_irq(int irq, struct irq_desc *desc) { struct irqaction *action; int ok = 0, work = 0; spin_lock(&desc->lock); /* Already running on another processor */ if (desc->status & IRQ_INPROGRESS) { /* * Already running: If it is shared get the other * CPU to go looking for our mystery interrupt too */ if (desc->action && (desc->action->flags & IRQF_SHARED)) desc->status |= IRQ_PENDING; spin_unlock(&desc->lock); return ok; } /* Honour the normal IRQ locking */ desc->status |= IRQ_INPROGRESS; action = desc->action; spin_unlock(&desc->lock); while (action) { /* Only shared IRQ handlers are safe to call */ if (action->flags & IRQF_SHARED) { if (action->handler(irq, action->dev_id) == IRQ_HANDLED) ok = 1; } action = action->next; } local_irq_disable(); /* Now clean up the flags */ spin_lock(&desc->lock); action = desc->action; /* * While we were looking for a fixup someone queued a real * IRQ clashing with our walk: */ while ((desc->status & IRQ_PENDING) && action) { /* * Perform real IRQ processing for the IRQ we deferred */ work = 1; spin_unlock(&desc->lock); handle_IRQ_event(irq, action); spin_lock(&desc->lock); desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; /* * If we did actual work for the real IRQ line we must let the * IRQ controller clean up too */ if (work && desc->chip && desc->chip->end) desc->chip->end(irq); spin_unlock(&desc->lock); return ok; }
/** * __do_IRQ - original all in one highlevel IRQ handler * @irq: the interrupt number * @regs: pointer to a register structure * * __do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). * * This is the original x86 implementation which is used for every * interrupt type. */ fastcall notrace unsigned int __do_IRQ(unsigned int irq, struct pt_regs *regs) { struct irq_desc *desc = irq_desc + irq; struct irqaction *action; unsigned int status; kstat_this_cpu.irqs[irq]++; if (CHECK_IRQ_PER_CPU(desc->status)) { irqreturn_t action_ret; /* * No locking required for CPU-local interrupts: */ if (desc->chip->ack) desc->chip->ack(irq); action_ret = handle_IRQ_event(irq, regs, desc->action); desc->chip->end(irq); return 1; } /* * If the task is currently running in user mode, don't * detect soft lockups. If CONFIG_DETECT_SOFTLOCKUP is not * configured, this should be optimized out. */ if (user_mode(regs)) touch_softlockup_watchdog(); spin_lock(&desc->lock); if (desc->chip->ack) desc->chip->ack(irq); /* * REPLAY is when Linux resends an IRQ that was dropped earlier * WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. * Since we set PENDING, if another processor is handling * a different instance of this same irq, the other processor * will take care of it. */ if (unlikely(!action)) goto out; /* * hardirq redirection to the irqd process context: */ if (redirect_hardirq(desc)) goto out_no_end; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { irqreturn_t action_ret; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (!noirqdebug) note_interrupt(irq, desc, action_ret, regs); if (likely(!(desc->status & IRQ_PENDING))) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->chip->end(irq); out_no_end: spin_unlock(&desc->lock); return 1; }
/* * do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ asmlinkage unsigned int do_IRQ(int irq, struct pt_regs *regs) { /* * We ack quickly, we don't want the irq controller * thinking we're snobs just because some other CPU has * disabled global interrupts (we have already done the * INT_ACK cycles, it's too late to try to pretend to the * controller that we aren't taking the interrupt). * * 0 return value means that this irq is already being * handled by some other CPU. (or is disabled) */ int cpu = smp_processor_id(); irq_desc_t *desc = irq_desc + irq; struct irqaction * action; unsigned int status; kstat.irqs[cpu][irq]++; spin_lock(&desc->lock); desc->handler->ack(irq); /* REPLAY is when Linux resends an IRQ that was dropped earlier WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. Since we set PENDING, if another processor is handling a different instance of this same irq, the other processor will take care of it. */ if (!action) { goto out; } /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { spin_unlock(&desc->lock); handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (!(desc->status & IRQ_PENDING)) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->handler->end(irq); spin_unlock(&desc->lock); if (softirq_pending(cpu)) do_softirq(); return 1; }