예제 #1
0
static void rs_interruptRx(int irq, void *dev_id, struct pt_regs *regs)
{
	struct s3c3410_serial *info = &s3c3410_info;
	struct tty_struct *tty = info->tty;
	unsigned int count;
	volatile u_int8_t status, fifo_status;

	if (!info || !tty || (!(info->flags & S_INITIALIZED)))
		return;

	if ((tty->flip.count + RX_FIFO_DEPTH) >= TTY_FLIPBUF_SIZE)
		queue_task_irq_off(&tty->flip.tqueue, &tq_timer);

	count = RX_FIFO_DEPTH;
	do {
		status = inb(S3C3410X_UART_BASE+S3C3410X_USTAT);
		if (!(status & USTAT_RFDR))
			break;

		/* check all error flags and accept data if valid */
		fifo_status = inb(S3C3410X_UART_BASE+S3C3410X_UFSTAT);
		if (!(status & USTAT_ERROR) && !(fifo_status & UFSTAT_ERROR))
			*tty->flip.flag_buf_ptr = TTY_NORMAL;
		else {
			if (fifo_status & UFSTAT_RFF) {
				*tty->flip.flag_buf_ptr = TTY_NORMAL;
				handle_status (info, UFSTAT_RFF);
			}
			if (status & USTAT_OE) {
				*tty->flip.flag_buf_ptr = TTY_OVERRUN;
				handle_status (info, USTAT_OE);
			}
			if 	(status & USTAT_BD) {
				*tty->flip.flag_buf_ptr = TTY_BREAK;
				handle_status (info, USTAT_BD);
			}
			if	(status & USTAT_PE) {
				*tty->flip.flag_buf_ptr = TTY_PARITY;
				handle_status (info, USTAT_PE);
			}
			if 	(status & USTAT_FE) {
				*tty->flip.flag_buf_ptr = TTY_FRAME;
				handle_status (info, USTAT_FE);
			}
		}
		*tty->flip.char_buf_ptr++ = 
			inb(S3C3410X_UART_BASE+S3C3410X_URXH_B);
		tty->flip.flag_buf_ptr++;
		tty->flip.count++;
	} while ((--count > 0) && !(status & USTAT_ERROR) && 
		!(fifo_status & UFSTAT_ERROR) );

//     if (fifo_status & (U_RFOV | U_E_RxTO))
// 		handle_status (info, (U_RFOV | U_E_RxTO));
	
	queue_task_irq_off(&tty->flip.tqueue, &tq_timer);	
}
예제 #2
0
/* Callback for dht public key changes. */
static void dht_pk_callback(void *object, int32_t number, const uint8_t *dht_public_key, void *userdata)
{
    Friend_Connections *const fr_c = (Friend_Connections *)object;
    Friend_Conn *const friend_con = get_conn(fr_c, number);

    if (!friend_con) {
        return;
    }

    if (public_key_cmp(friend_con->dht_temp_pk, dht_public_key) == 0) {
        return;
    }

    change_dht_pk(fr_c, number, dht_public_key);

    /* if pk changed, create a new connection.*/
    if (friend_con->crypt_connection_id != -1) {
        crypto_kill(fr_c->net_crypto, friend_con->crypt_connection_id);
        friend_con->crypt_connection_id = -1;
        handle_status(object, number, 0, userdata); /* Going offline. */
    }

    friend_new_connection(fr_c, number);
    onion_set_friend_DHT_pubkey(fr_c->onion_c, friend_con->onion_friendnum, dht_public_key);
}
예제 #3
0
파일: red.c 프로젝트: nanopack/red
static void
handle_command(int argc, char **argv)
{
	char *command = argv[0];

	argc -= 1;
	argv += 1;

	if (!strcmp(command, "ping"))
		handle_ping(argc, argv);

	else if (!strcmp(command, "add-ip"))
		handle_add_ip(argc, argv);

	else if (!strcmp(command, "add-node"))
		handle_add_node(argc, argv);

	else if (!strcmp(command, "remove-ip"))
		handle_remove_ip(argc, argv);

	else if (!strcmp(command, "remove-node"))
		handle_remove_node(argc, argv);

	else if (!strcmp(command, "show-ip"))
		handle_show_ip(argc, argv);

	else if (!strcmp(command, "show-node"))
		handle_show_node(argc, argv);

	else if (!strcmp(command, "status"))
		handle_status(argc, argv);

	else
		usage();
}
예제 #4
0
파일: midiread.c 프로젝트: jerash/jpmidi
/*
 * Read in one track from the file, and return an element tree
 * describing it.
 * 
 *  Arguments:
 *    msp       - Midi state
 */
static struct trackElement *
read_track(struct midistate *msp)
{
	int  status, laststatus;
	int  head;
	int  length;
	int  delta_time;
	struct trackElement *track;
	int  i;

	laststatus = 0;
	head = read_int(msp, 4);
	if (head != MIDI_TRACK_MAGIC)
		except(formatError,
			"Bad track header (%x), probably not a midi file",
			head);

	length = read_int(msp, 4);
	msp->chunk_size = length;
	msp->chunk_count = 0;	/* nothing read yet */

	track = md_track_new();

	msp->current_time = 0;
	while (msp->chunk_count < msp->chunk_size) {

		delta_time = read_var(msp);
		msp->current_time += delta_time;

		status = read_int(msp, 1);
		if ((status & 0x80) == 0) {
			
			/*
			 * This is not a status byte and so running status is being
			 * used.  Re-use the previous status and push back this byte.
			 */
			put_back(msp, status);
			status = laststatus;
		} else {
			laststatus = status;
		}

		handle_status(msp, track, status);
	}

  restart:
	for (i = 0; i < msp->notes->len; i++) {
		struct noteElement *ns;
		ns = g_ptr_array_index(msp->notes, i);
		msp->device = MD_ELEMENT(ns)->device_channel;
printf("Left over note, finishing\n");
		finish_note(msp, ns->note, 0);
		goto restart;
	}

	msp->track_count++;

	return track;
}
예제 #5
0
int main(int argc, char** argv) {
    int retval = config.parse_file();
    if (retval) {
        fprintf(stderr, "can't parse config file\n");
        exit(1);
    }
    retval = boinc_db.open(
        config.db_name, config.db_host, config.db_user, config.db_passwd
    );
    if (retval) {
        fprintf(stderr, "can't open DB\n");
        exit(1);
    }
    for (int i=1; i<argc; i++) {
        if (!strcmp(argv[i], "add")) {
            if (argc != 3) usage();
            retval = handle_add(argv[++i]);
            if (retval) {
                fprintf(stderr, "error %d\n", retval);
            } else {
                printf("file added successfully\n");
            }
            exit(retval);
        }
        if (!strcmp(argv[i], "remove")) {
            if (argc != 3) usage();
            retval = handle_remove(argv[++i]);
            if (retval) {
                fprintf(stderr, "error %d\n", retval);
            } else {
                printf("file removed successfully\n");
            }
            exit(retval);
        }
        if (!strcmp(argv[i], "retrieve")) {
            if (argc != 3) usage();
            retval = handle_retrieve(argv[++i]);
            if (retval) {
                fprintf(stderr, "error %d\n", retval);
            } else {
                printf("file retrieval started\n");
            }
            exit(retval);
        }
        if (!strcmp(argv[i], "status")) {
            if (argc != 3) usage();
            retval = handle_status(argv[++i]);
            if (retval) {
                fprintf(stderr, "error %d\n", retval);
            }
            exit(retval);
        }
        usage();
    }
    usage();
}
예제 #6
0
/* main friend_connections loop. */
void do_friend_connections(Friend_Connections *fr_c, void *userdata)
{
    const uint64_t temp_time = mono_time_get(fr_c->mono_time);

    for (uint32_t i = 0; i < fr_c->num_cons; ++i) {
        Friend_Conn *const friend_con = get_conn(fr_c, i);

        if (friend_con) {
            if (friend_con->status == FRIENDCONN_STATUS_CONNECTING) {
                if (friend_con->dht_pk_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    if (friend_con->dht_lock) {
                        dht_delfriend(fr_c->dht, friend_con->dht_temp_pk, friend_con->dht_lock);
                        friend_con->dht_lock = 0;
                        memset(friend_con->dht_temp_pk, 0, CRYPTO_PUBLIC_KEY_SIZE);
                    }
                }

                if (friend_con->dht_ip_port_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    friend_con->dht_ip_port.ip.family = net_family_unspec;
                }

                if (friend_con->dht_lock) {
                    if (friend_new_connection(fr_c, i) == 0) {
                        set_direct_ip_port(fr_c->net_crypto, friend_con->crypt_connection_id, friend_con->dht_ip_port, 0);
                        connect_to_saved_tcp_relays(fr_c, i, (MAX_FRIEND_TCP_CONNECTIONS / 2)); /* Only fill it half up. */
                    }
                }
            } else if (friend_con->status == FRIENDCONN_STATUS_CONNECTED) {
                if (friend_con->ping_lastsent + FRIEND_PING_INTERVAL < temp_time) {
                    send_ping(fr_c, i);
                }

                if (friend_con->share_relays_lastsent + SHARE_RELAYS_INTERVAL < temp_time) {
                    send_relays(fr_c, i);
                }

                if (friend_con->ping_lastrecv + FRIEND_CONNECTION_TIMEOUT < temp_time) {
                    /* If we stopped receiving ping packets, kill it. */
                    crypto_kill(fr_c->net_crypto, friend_con->crypt_connection_id);
                    friend_con->crypt_connection_id = -1;
                    handle_status(fr_c, i, 0, userdata); /* Going offline. */
                }
            }
        }
    }

    if (fr_c->local_discovery_enabled) {
        lan_discovery(fr_c);
    }
}
예제 #7
0
/* main friend_connections loop. */
void do_friend_connections(Friend_Connections *fr_c)
{
    uint32_t i;
    uint64_t temp_time = unix_time();

    for (i = 0; i < fr_c->num_cons; ++i) {
        Friend_Conn *friend_con = get_conn(fr_c, i);

        if (friend_con) {
            if (friend_con->status == FRIENDCONN_STATUS_CONNECTING) {
                if (friend_con->dht_pk_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    if (friend_con->dht_lock) {
                        DHT_delfriend(fr_c->dht, friend_con->dht_temp_pk, friend_con->dht_lock);
                        friend_con->dht_lock = 0;
                    }
                }

                if (friend_con->dht_ip_port_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    friend_con->dht_ip_port.ip.family = 0;
                }

                if (friend_con->dht_lock) {
                    if (friend_new_connection(fr_c, i) == 0) {
                        set_direct_ip_port(fr_c->net_crypto, friend_con->crypt_connection_id, friend_con->dht_ip_port, 0);
                        connect_to_saved_tcp_relays(fr_c, i, (MAX_FRIEND_TCP_CONNECTIONS / 2)); /* Only fill it half up. */
                    }
                }

            } else if (friend_con->status == FRIENDCONN_STATUS_CONNECTED) {
                if (friend_con->ping_lastsent + FRIEND_PING_INTERVAL < temp_time) {
                    send_ping(fr_c, i);
                }

                if (friend_con->share_relays_lastsent + SHARE_RELAYS_INTERVAL < temp_time) {
                    send_relays(fr_c, i);
                }

                if (friend_con->ping_lastrecv + FRIEND_CONNECTION_TIMEOUT < temp_time) {
                    /* If we stopped receiving ping packets, kill it. */
                    crypto_kill(fr_c->net_crypto, friend_con->crypt_connection_id);
                    friend_con->crypt_connection_id = -1;
                    handle_status(fr_c, i, 0); /* Going offline. */
                }
            }
        }
    }

    LANdiscovery(fr_c);
}
예제 #8
0
/**
 * Poll for any terminated background processes.
 */
void poll_background_children() {
    struct rusage before;
    struct rusage after;
    int status = 0;
    pid_t p;

    getrusage(RUSAGE_CHILDREN, &before);
    p = waitpid(-1, &status, WNOHANG);
    getrusage(RUSAGE_CHILDREN, &after);

    if (p > 0) {
        printf("Terminated in background: \n");
        handle_status(&before, &after, &status);
    }

}
예제 #9
0
/* main friend_connections loop. */
void do_friend_connections(Friend_Connections *fr_c)
{
    uint32_t i;
    uint64_t temp_time = unix_time();

    for (i = 0; i < fr_c->num_cons; ++i) {
        Friend_Conn *friend_con = get_conn(fr_c, i);

        if (friend_con) {
            if (friend_con->status == FRIENDCONN_STATUS_CONNECTING) {
                if (friend_con->dht_ping_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    if (friend_con->dht_lock) {
                        DHT_delfriend(fr_c->dht, friend_con->dht_temp_pk, friend_con->dht_lock);
                        friend_con->dht_lock = 0;
                    }
                }

                if (friend_con->dht_ip_port_lastrecv + FRIEND_DHT_TIMEOUT < temp_time) {
                    friend_con->dht_ip_port.ip.family = 0;
                }

                if (friend_con->dht_lock) {
                    if (friend_new_connection(fr_c, i) == 0) {
                        set_connection_dht_public_key(fr_c->net_crypto, friend_con->crypt_connection_id, friend_con->dht_temp_pk);
                        set_direct_ip_port(fr_c->net_crypto, friend_con->crypt_connection_id, friend_con->dht_ip_port);
                    }
                }

            } else if (friend_con->status == FRIENDCONN_STATUS_CONNECTED) {
                if (friend_con->ping_lastsent + FRIEND_PING_INTERVAL < temp_time) {
                    send_ping(fr_c, i);
                }

                if (friend_con->ping_lastrecv + FRIEND_CONNECTION_TIMEOUT < temp_time) {
                    /* If we stopped receiving ping packets, kill it. */
                    crypto_kill(fr_c->net_crypto, friend_con->crypt_connection_id);
                    friend_con->crypt_connection_id = -1;
                    handle_status(fr_c, i, 0); /* Going offline. */
                }
            }
        }
    }
}
예제 #10
0
/**
 * Detect terminated processes by signals and handle the exit status.
 */
void clean_up_after_children(int signal_number, siginfo_t *info, void *context) {
    int status;
    struct rusage before;
    struct rusage after;
    pid_t p;

    if (signal_number == SIGCHLD) {
        sighold(SIGCHLD);

        getrusage(RUSAGE_CHILDREN, &before);
        while ((p = waitpid(-1, &status, WNOHANG)) != -1 && p != 0) {
            getrusage(RUSAGE_CHILDREN, &after);
            printf("Terminated in background: \n");
            handle_status(&before, &after, &status);

            getrusage(RUSAGE_CHILDREN, &before);
        }

        sigrelse(SIGCHLD);
    }
}
예제 #11
0
/** Handle SIGTERM, do not let ourselfs commit suicide. */
static void handle_sigterm(int sig) {
    int status;
    struct rusage before;
    struct rusage after;


    if(sig == SIGTERM) {
        sighold(SIGTERM);

        getrusage(RUSAGE_CHILDREN, &before);
        if(waitpid(-1, &status, WNOHANG) == -1) return;
        while(waitpid(-1, &status, WNOHANG) == 0) {
            getrusage(RUSAGE_CHILDREN, &before);
        }
        getrusage(RUSAGE_CHILDREN, &after);
        printf("Terminated in background by exit in foreground: \n");
        handle_status(&before, &after, &status);

        sigrelse(SIGTERM);
    }
}
예제 #12
0
파일: hilkbd.c 프로젝트: ena30/snake-os
/* 
 * Handle HIL interrupts.
 */
static irqreturn_t hil_interrupt(int irq, void *handle, struct pt_regs *regs)
{
	unsigned char s, c;
	
	s = hil_status();
	c = hil_read_data();

	switch (s >> 4) {
	case 0x5:
		handle_status(s, c);
		break;
	case 0x6:
		handle_data(s, c);
		break;
	case 0x4:
		hil_dev.s = s;
		hil_dev.c = c;
		mb();
		hil_dev.valid = 1;
		break;
	}
	return IRQ_HANDLED;
}
예제 #13
0
/*  
 *	This is the serial driver's generic interrupt routine
 */ 
static void rs_interruptTx(int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned int count, status;
	struct s3c3410_serial *info = &s3c3410_info;

	if  (info->x_char) {
		outb(info->x_char, S3C3410X_UART_BASE+S3C3410X_UTXH_B);
		info->x_char = 0;
		return;
	}

	if  ((info->xmit_cnt <= 0) || info->tty->stopped || info->tty->hw_stopped ) {
		tx_stop();
		return;
	}

	for (count = TX_FIFO_DEPTH; count > 0; --count) {
		status = inb(S3C3410X_UART_BASE+S3C3410X_UFSTAT);
		if (status & UFSTAT_TFF) {
			handle_status (info, UFSTAT_TFF);
			break;
		} else {
			outb(info->xmit_buf[info->xmit_tail++], 
				S3C3410X_UART_BASE+S3C3410X_UTXH_B);
			info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE - 1);
			if (--info->xmit_cnt <= 0) 
				break;
		}
	}

	if (info->xmit_cnt < WAKEUP_CHARS)
		rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);

	if (info->xmit_cnt <= 0)
		tx_stop();
	return;
}
예제 #14
0
파일: sdlog2.c 프로젝트: DMCKITT/Firmware
int sdlog2_thread_main(int argc, char *argv[])
{
	mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);

	if (mavlink_fd < 0) {
		warnx("failed to open MAVLink log stream, start mavlink app first.");
	}

	/* log buffer size */
	int log_buffer_size = LOG_BUFFER_SIZE_DEFAULT;

	/* work around some stupidity in task_create's argv handling */
	argc -= 2;
	argv += 2;
	int ch;

	while ((ch = getopt(argc, argv, "r:b:ea")) != EOF) {
		switch (ch) {
		case 'r': {
				unsigned long r = strtoul(optarg, NULL, 10);

				if (r == 0) {
					sleep_delay = 0;

				} else {
					sleep_delay = 1000000 / r;
				}
			}
			break;

		case 'b': {
				unsigned long s = strtoul(optarg, NULL, 10);

				if (s < 1) {
					s = 1;
				}

				log_buffer_size = 1024 * s;
			}
			break;

		case 'e':
			log_on_start = true;
			break;

		case 'a':
			log_when_armed = true;
			break;

		case '?':
			if (optopt == 'c') {
				warnx("Option -%c requires an argument.", optopt);

			} else if (isprint(optopt)) {
				warnx("Unknown option `-%c'.", optopt);

			} else {
				warnx("Unknown option character `\\x%x'.", optopt);
			}

		default:
			sdlog2_usage("unrecognized flag");
			errx(1, "exiting.");
		}
	}

	if (!file_exist(mountpoint)) {
		errx(1, "logging mount point %s not present, exiting.", mountpoint);
	}

	if (create_logfolder()) {
		errx(1, "unable to create logging folder, exiting.");
	}

	const char *converter_in = "/etc/logging/conv.zip";
	char *converter_out = malloc(120);
	sprintf(converter_out, "%s/conv.zip", folder_path);

	if (file_copy(converter_in, converter_out)) {
		errx(1, "unable to copy conversion scripts, exiting.");
	}

	free(converter_out);

	/* only print logging path, important to find log file later */
	warnx("logging to directory: %s", folder_path);

	/* initialize log buffer with specified size */
	warnx("log buffer size: %i bytes.", log_buffer_size);

	if (OK != logbuffer_init(&lb, log_buffer_size)) {
		errx(1, "can't allocate log buffer, exiting.");
	}

	struct vehicle_status_s buf_status;

	memset(&buf_status, 0, sizeof(buf_status));

	/* warning! using union here to save memory, elements should be used separately! */
	union {
		struct vehicle_command_s cmd;
		struct sensor_combined_s sensor;
		struct vehicle_attitude_s att;
		struct vehicle_attitude_setpoint_s att_sp;
		struct vehicle_rates_setpoint_s rates_sp;
		struct actuator_outputs_s act_outputs;
		struct actuator_controls_s act_controls;
		struct actuator_controls_effective_s act_controls_effective;
		struct vehicle_local_position_s local_pos;
		struct vehicle_local_position_setpoint_s local_pos_sp;
		struct vehicle_global_position_s global_pos;
		struct vehicle_global_position_setpoint_s global_pos_sp;
		struct vehicle_gps_position_s gps_pos;
		struct vehicle_vicon_position_s vicon_pos;
		struct optical_flow_s flow;
		struct rc_channels_s rc;
		struct differential_pressure_s diff_pres;
		struct airspeed_s airspeed;
		struct esc_status_s esc;
		struct vehicle_global_velocity_setpoint_s global_vel_sp;
	} buf;

	memset(&buf, 0, sizeof(buf));

	struct {
		int cmd_sub;
		int status_sub;
		int sensor_sub;
		int att_sub;
		int att_sp_sub;
		int rates_sp_sub;
		int act_outputs_sub;
		int act_controls_sub;
		int act_controls_effective_sub;
		int local_pos_sub;
		int local_pos_sp_sub;
		int global_pos_sub;
		int global_pos_sp_sub;
		int gps_pos_sub;
		int vicon_pos_sub;
		int flow_sub;
		int rc_sub;
		int airspeed_sub;
		int esc_sub;
		int global_vel_sp_sub;
	} subs;

	/* log message buffer: header + body */
#pragma pack(push, 1)
	struct {
		LOG_PACKET_HEADER;
		union {
			struct log_TIME_s log_TIME;
			struct log_ATT_s log_ATT;
			struct log_ATSP_s log_ATSP;
			struct log_IMU_s log_IMU;
			struct log_SENS_s log_SENS;
			struct log_LPOS_s log_LPOS;
			struct log_LPSP_s log_LPSP;
			struct log_GPS_s log_GPS;
			struct log_ATTC_s log_ATTC;
			struct log_STAT_s log_STAT;
			struct log_RC_s log_RC;
			struct log_OUT0_s log_OUT0;
			struct log_AIRS_s log_AIRS;
			struct log_ARSP_s log_ARSP;
			struct log_FLOW_s log_FLOW;
			struct log_GPOS_s log_GPOS;
			struct log_GPSP_s log_GPSP;
			struct log_ESC_s log_ESC;
			struct log_GVSP_s log_GVSP;
		} body;
	} log_msg = {
		LOG_PACKET_HEADER_INIT(0)
	};
#pragma pack(pop)
	memset(&log_msg.body, 0, sizeof(log_msg.body));

	/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
	/* number of messages */
	const ssize_t fdsc = 20;
	/* Sanity check variable and index */
	ssize_t fdsc_count = 0;
	/* file descriptors to wait for */
	struct pollfd fds[fdsc];

	/* --- VEHICLE COMMAND --- */
	subs.cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
	fds[fdsc_count].fd = subs.cmd_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- VEHICLE STATUS --- */
	subs.status_sub = orb_subscribe(ORB_ID(vehicle_status));
	fds[fdsc_count].fd = subs.status_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GPS POSITION --- */
	subs.gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	fds[fdsc_count].fd = subs.gps_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- SENSORS COMBINED --- */
	subs.sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
	fds[fdsc_count].fd = subs.sensor_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE --- */
	subs.att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	fds[fdsc_count].fd = subs.att_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE SETPOINT --- */
	subs.att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	fds[fdsc_count].fd = subs.att_sp_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- RATES SETPOINT --- */
	subs.rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	fds[fdsc_count].fd = subs.rates_sp_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR OUTPUTS --- */
	subs.act_outputs_sub = orb_subscribe(ORB_ID_VEHICLE_CONTROLS);
	fds[fdsc_count].fd = subs.act_outputs_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR CONTROL --- */
	subs.act_controls_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	fds[fdsc_count].fd = subs.act_controls_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR CONTROL EFFECTIVE --- */
	subs.act_controls_effective_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE);
	fds[fdsc_count].fd = subs.act_controls_effective_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- LOCAL POSITION --- */
	subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	fds[fdsc_count].fd = subs.local_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- LOCAL POSITION SETPOINT --- */
	subs.local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
	fds[fdsc_count].fd = subs.local_pos_sp_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GLOBAL POSITION --- */
	subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	fds[fdsc_count].fd = subs.global_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GLOBAL POSITION SETPOINT--- */
	subs.global_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
	fds[fdsc_count].fd = subs.global_pos_sp_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- VICON POSITION --- */
	subs.vicon_pos_sub = orb_subscribe(ORB_ID(vehicle_vicon_position));
	fds[fdsc_count].fd = subs.vicon_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- OPTICAL FLOW --- */
	subs.flow_sub = orb_subscribe(ORB_ID(optical_flow));
	fds[fdsc_count].fd = subs.flow_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- RC CHANNELS --- */
	subs.rc_sub = orb_subscribe(ORB_ID(rc_channels));
	fds[fdsc_count].fd = subs.rc_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- AIRSPEED --- */
	subs.airspeed_sub = orb_subscribe(ORB_ID(airspeed));
	fds[fdsc_count].fd = subs.airspeed_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ESCs --- */
	subs.esc_sub = orb_subscribe(ORB_ID(esc_status));
	fds[fdsc_count].fd = subs.esc_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GLOBAL VELOCITY SETPOINT --- */
	subs.global_vel_sp_sub = orb_subscribe(ORB_ID(vehicle_global_velocity_setpoint));
	fds[fdsc_count].fd = subs.global_vel_sp_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* WARNING: If you get the error message below,
	 * then the number of registered messages (fdsc)
	 * differs from the number of messages in the above list.
	 */
	if (fdsc_count > fdsc) {
		warn("WARNING: Not enough space for poll fds allocated. Check %s:%d.", __FILE__, __LINE__);
		fdsc_count = fdsc;
	}

	/*
	 * set up poll to block for new data,
	 * wait for a maximum of 1000 ms
	 */
	const int poll_timeout = 1000;

	thread_running = true;

	/* initialize thread synchronization */
	pthread_mutex_init(&logbuffer_mutex, NULL);
	pthread_cond_init(&logbuffer_cond, NULL);

	/* track changes in sensor_combined topic */
	uint16_t gyro_counter = 0;
	uint16_t accelerometer_counter = 0;
	uint16_t magnetometer_counter = 0;
	uint16_t baro_counter = 0;
	uint16_t differential_pressure_counter = 0;

	/* enable logging on start if needed */
	if (log_on_start)
		sdlog2_start_log();

	while (!main_thread_should_exit) {
		/* decide use usleep() or blocking poll() */
		bool use_sleep = sleep_delay > 0 && logging_enabled;

		/* poll all topics if logging enabled or only management (first 2) if not */
		int poll_ret = poll(fds, logging_enabled ? fdsc_count : 2, use_sleep ? 0 : poll_timeout);

		/* handle the poll result */
		if (poll_ret < 0) {
			warnx("ERROR: poll error, stop logging.");
			main_thread_should_exit = true;

		} else if (poll_ret > 0) {

			/* check all data subscriptions only if logging enabled,
			 * logging_enabled can be changed while checking vehicle_command and vehicle_status */
			bool check_data = logging_enabled;
			int ifds = 0;
			int handled_topics = 0;

			/* --- VEHICLE COMMAND - LOG MANAGEMENT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_command), subs.cmd_sub, &buf.cmd);
				handle_command(&buf.cmd);
				handled_topics++;
			}

			/* --- VEHICLE STATUS - LOG MANAGEMENT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_status), subs.status_sub, &buf_status);

				if (log_when_armed) {
					handle_status(&buf_status);
				}

				handled_topics++;
			}

			if (!logging_enabled || !check_data || handled_topics >= poll_ret) {
				continue;
			}

			ifds = 1;	// begin from fds[1] again

			pthread_mutex_lock(&logbuffer_mutex);

			/* write time stamp message */
			log_msg.msg_type = LOG_TIME_MSG;
			log_msg.body.log_TIME.t = hrt_absolute_time();
			LOGBUFFER_WRITE_AND_COUNT(TIME);

			/* --- VEHICLE STATUS --- */
			if (fds[ifds++].revents & POLLIN) {
				// Don't orb_copy, it's already done few lines above
				log_msg.msg_type = LOG_STAT_MSG;
				log_msg.body.log_STAT.main_state = (uint8_t) buf_status.main_state;
				log_msg.body.log_STAT.navigation_state = (uint8_t) buf_status.navigation_state;
				log_msg.body.log_STAT.arming_state = (uint8_t) buf_status.arming_state;
				log_msg.body.log_STAT.battery_voltage = buf_status.battery_voltage;
				log_msg.body.log_STAT.battery_current = buf_status.battery_current;
				log_msg.body.log_STAT.battery_remaining = buf_status.battery_remaining;
				log_msg.body.log_STAT.battery_warning = (uint8_t) buf_status.battery_warning;
				log_msg.body.log_STAT.landed = (uint8_t) buf_status.condition_landed;
				LOGBUFFER_WRITE_AND_COUNT(STAT);
			}

			/* --- GPS POSITION --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);
				log_msg.msg_type = LOG_GPS_MSG;
				log_msg.body.log_GPS.gps_time = buf.gps_pos.time_gps_usec;
				log_msg.body.log_GPS.fix_type = buf.gps_pos.fix_type;
				log_msg.body.log_GPS.eph = buf.gps_pos.eph_m;
				log_msg.body.log_GPS.epv = buf.gps_pos.epv_m;
				log_msg.body.log_GPS.lat = buf.gps_pos.lat;
				log_msg.body.log_GPS.lon = buf.gps_pos.lon;
				log_msg.body.log_GPS.alt = buf.gps_pos.alt * 0.001f;
				log_msg.body.log_GPS.vel_n = buf.gps_pos.vel_n_m_s;
				log_msg.body.log_GPS.vel_e = buf.gps_pos.vel_e_m_s;
				log_msg.body.log_GPS.vel_d = buf.gps_pos.vel_d_m_s;
				log_msg.body.log_GPS.cog = buf.gps_pos.cog_rad;
				LOGBUFFER_WRITE_AND_COUNT(GPS);
			}

			/* --- SENSOR COMBINED --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.sensor);
				bool write_IMU = false;
				bool write_SENS = false;

				if (buf.sensor.gyro_counter != gyro_counter) {
					gyro_counter = buf.sensor.gyro_counter;
					write_IMU = true;
				}

				if (buf.sensor.accelerometer_counter != accelerometer_counter) {
					accelerometer_counter = buf.sensor.accelerometer_counter;
					write_IMU = true;
				}

				if (buf.sensor.magnetometer_counter != magnetometer_counter) {
					magnetometer_counter = buf.sensor.magnetometer_counter;
					write_IMU = true;
				}

				if (buf.sensor.baro_counter != baro_counter) {
					baro_counter = buf.sensor.baro_counter;
					write_SENS = true;
				}

				if (buf.sensor.differential_pressure_counter != differential_pressure_counter) {
					differential_pressure_counter = buf.sensor.differential_pressure_counter;
					write_SENS = true;
				}

				if (write_IMU) {
					log_msg.msg_type = LOG_IMU_MSG;
					log_msg.body.log_IMU.gyro_x = buf.sensor.gyro_rad_s[0];
					log_msg.body.log_IMU.gyro_y = buf.sensor.gyro_rad_s[1];
					log_msg.body.log_IMU.gyro_z = buf.sensor.gyro_rad_s[2];
					log_msg.body.log_IMU.acc_x = buf.sensor.accelerometer_m_s2[0];
					log_msg.body.log_IMU.acc_y = buf.sensor.accelerometer_m_s2[1];
					log_msg.body.log_IMU.acc_z = buf.sensor.accelerometer_m_s2[2];
					log_msg.body.log_IMU.mag_x = buf.sensor.magnetometer_ga[0];
					log_msg.body.log_IMU.mag_y = buf.sensor.magnetometer_ga[1];
					log_msg.body.log_IMU.mag_z = buf.sensor.magnetometer_ga[2];
					LOGBUFFER_WRITE_AND_COUNT(IMU);
				}

				if (write_SENS) {
					log_msg.msg_type = LOG_SENS_MSG;
					log_msg.body.log_SENS.baro_pres = buf.sensor.baro_pres_mbar;
					log_msg.body.log_SENS.baro_alt = buf.sensor.baro_alt_meter;
					log_msg.body.log_SENS.baro_temp = buf.sensor.baro_temp_celcius;
					log_msg.body.log_SENS.diff_pres = buf.sensor.differential_pressure_pa;
					LOGBUFFER_WRITE_AND_COUNT(SENS);
				}
			}

			/* --- ATTITUDE --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);
				log_msg.msg_type = LOG_ATT_MSG;
				log_msg.body.log_ATT.roll = buf.att.roll;
				log_msg.body.log_ATT.pitch = buf.att.pitch;
				log_msg.body.log_ATT.yaw = buf.att.yaw;
				log_msg.body.log_ATT.roll_rate = buf.att.rollspeed;
				log_msg.body.log_ATT.pitch_rate = buf.att.pitchspeed;
				log_msg.body.log_ATT.yaw_rate = buf.att.yawspeed;
				LOGBUFFER_WRITE_AND_COUNT(ATT);
			}

			/* --- ATTITUDE SETPOINT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.att_sp_sub, &buf.att_sp);
				log_msg.msg_type = LOG_ATSP_MSG;
				log_msg.body.log_ATSP.roll_sp = buf.att_sp.roll_body;
				log_msg.body.log_ATSP.pitch_sp = buf.att_sp.pitch_body;
				log_msg.body.log_ATSP.yaw_sp = buf.att_sp.yaw_body;
				log_msg.body.log_ATSP.thrust_sp = buf.att_sp.thrust;
				LOGBUFFER_WRITE_AND_COUNT(ATSP);
			}

			/* --- RATES SETPOINT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_rates_setpoint), subs.rates_sp_sub, &buf.rates_sp);
				log_msg.msg_type = LOG_ARSP_MSG;
				log_msg.body.log_ARSP.roll_rate_sp = buf.rates_sp.roll;
				log_msg.body.log_ARSP.pitch_rate_sp = buf.rates_sp.pitch;
				log_msg.body.log_ARSP.yaw_rate_sp = buf.rates_sp.yaw;
				LOGBUFFER_WRITE_AND_COUNT(ARSP);
			}

			/* --- ACTUATOR OUTPUTS --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(actuator_outputs_0), subs.act_outputs_sub, &buf.act_outputs);
				log_msg.msg_type = LOG_OUT0_MSG;
				memcpy(log_msg.body.log_OUT0.output, buf.act_outputs.output, sizeof(log_msg.body.log_OUT0.output));
				LOGBUFFER_WRITE_AND_COUNT(OUT0);
			}

			/* --- ACTUATOR CONTROL --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.act_controls_sub, &buf.act_controls);
				log_msg.msg_type = LOG_ATTC_MSG;
				log_msg.body.log_ATTC.roll = buf.act_controls.control[0];
				log_msg.body.log_ATTC.pitch = buf.act_controls.control[1];
				log_msg.body.log_ATTC.yaw = buf.act_controls.control[2];
				log_msg.body.log_ATTC.thrust = buf.act_controls.control[3];
				LOGBUFFER_WRITE_AND_COUNT(ATTC);
			}

			/* --- ACTUATOR CONTROL EFFECTIVE --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE, subs.act_controls_effective_sub, &buf.act_controls_effective);
				// TODO not implemented yet
			}

			/* --- LOCAL POSITION --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos);
				log_msg.msg_type = LOG_LPOS_MSG;
				log_msg.body.log_LPOS.x = buf.local_pos.x;
				log_msg.body.log_LPOS.y = buf.local_pos.y;
				log_msg.body.log_LPOS.z = buf.local_pos.z;
				log_msg.body.log_LPOS.vx = buf.local_pos.vx;
				log_msg.body.log_LPOS.vy = buf.local_pos.vy;
				log_msg.body.log_LPOS.vz = buf.local_pos.vz;
				log_msg.body.log_LPOS.ref_lat = buf.local_pos.ref_lat;
				log_msg.body.log_LPOS.ref_lon = buf.local_pos.ref_lon;
				log_msg.body.log_LPOS.ref_alt = buf.local_pos.ref_alt;
				log_msg.body.log_LPOS.xy_flags = (buf.local_pos.xy_valid ? 1 : 0) | (buf.local_pos.v_xy_valid ? 2 : 0) | (buf.local_pos.xy_global ? 8 : 0);
				log_msg.body.log_LPOS.z_flags = (buf.local_pos.z_valid ? 1 : 0) | (buf.local_pos.v_z_valid ? 2 : 0) | (buf.local_pos.z_global ? 8 : 0);
				log_msg.body.log_LPOS.landed = buf.local_pos.landed;
				LOGBUFFER_WRITE_AND_COUNT(LPOS);
			}

			/* --- LOCAL POSITION SETPOINT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_local_position_setpoint), subs.local_pos_sp_sub, &buf.local_pos_sp);
				log_msg.msg_type = LOG_LPSP_MSG;
				log_msg.body.log_LPSP.x = buf.local_pos_sp.x;
				log_msg.body.log_LPSP.y = buf.local_pos_sp.y;
				log_msg.body.log_LPSP.z = buf.local_pos_sp.z;
				log_msg.body.log_LPSP.yaw = buf.local_pos_sp.yaw;
				LOGBUFFER_WRITE_AND_COUNT(LPSP);
			}

			/* --- GLOBAL POSITION --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos);
				log_msg.msg_type = LOG_GPOS_MSG;
				log_msg.body.log_GPOS.lat = buf.global_pos.lat;
				log_msg.body.log_GPOS.lon = buf.global_pos.lon;
				log_msg.body.log_GPOS.alt = buf.global_pos.alt;
				log_msg.body.log_GPOS.vel_n = buf.global_pos.vx;
				log_msg.body.log_GPOS.vel_e = buf.global_pos.vy;
				log_msg.body.log_GPOS.vel_d = buf.global_pos.vz;
				LOGBUFFER_WRITE_AND_COUNT(GPOS);
			}

			/* --- GLOBAL POSITION SETPOINT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_global_position_setpoint), subs.global_pos_sp_sub, &buf.global_pos_sp);
				log_msg.msg_type = LOG_GPSP_MSG;
				log_msg.body.log_GPSP.altitude_is_relative = buf.global_pos_sp.altitude_is_relative;
				log_msg.body.log_GPSP.lat = buf.global_pos_sp.lat;
				log_msg.body.log_GPSP.lon = buf.global_pos_sp.lon;
				log_msg.body.log_GPSP.altitude = buf.global_pos_sp.altitude;
				log_msg.body.log_GPSP.yaw = buf.global_pos_sp.yaw;
				log_msg.body.log_GPSP.loiter_radius = buf.global_pos_sp.loiter_radius;
				log_msg.body.log_GPSP.loiter_direction = buf.global_pos_sp.loiter_direction;
				log_msg.body.log_GPSP.nav_cmd = buf.global_pos_sp.nav_cmd;
				log_msg.body.log_GPSP.param1 = buf.global_pos_sp.param1;
				log_msg.body.log_GPSP.param2 = buf.global_pos_sp.param2;
				log_msg.body.log_GPSP.param3 = buf.global_pos_sp.param3;
				log_msg.body.log_GPSP.param4 = buf.global_pos_sp.param4;
				LOGBUFFER_WRITE_AND_COUNT(GPSP);
			}

			/* --- VICON POSITION --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos);
				// TODO not implemented yet
			}

			/* --- FLOW --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(optical_flow), subs.flow_sub, &buf.flow);
				log_msg.msg_type = LOG_FLOW_MSG;
				log_msg.body.log_FLOW.flow_raw_x = buf.flow.flow_raw_x;
				log_msg.body.log_FLOW.flow_raw_y = buf.flow.flow_raw_y;
				log_msg.body.log_FLOW.flow_comp_x = buf.flow.flow_comp_x_m;
				log_msg.body.log_FLOW.flow_comp_y = buf.flow.flow_comp_y_m;
				log_msg.body.log_FLOW.distance = buf.flow.ground_distance_m;
				log_msg.body.log_FLOW.quality = buf.flow.quality;
				log_msg.body.log_FLOW.sensor_id = buf.flow.sensor_id;
				LOGBUFFER_WRITE_AND_COUNT(FLOW);
			}

			/* --- RC CHANNELS --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(rc_channels), subs.rc_sub, &buf.rc);
				log_msg.msg_type = LOG_RC_MSG;
				/* Copy only the first 8 channels of 14 */
				memcpy(log_msg.body.log_RC.channel, buf.rc.chan, sizeof(log_msg.body.log_RC.channel));
				LOGBUFFER_WRITE_AND_COUNT(RC);
			}

			/* --- AIRSPEED --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(airspeed), subs.airspeed_sub, &buf.airspeed);
				log_msg.msg_type = LOG_AIRS_MSG;
				log_msg.body.log_AIRS.indicated_airspeed = buf.airspeed.indicated_airspeed_m_s;
				log_msg.body.log_AIRS.true_airspeed = buf.airspeed.true_airspeed_m_s;
				LOGBUFFER_WRITE_AND_COUNT(AIRS);
			}

			/* --- ESCs --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(esc_status), subs.esc_sub, &buf.esc);

				for (uint8_t i = 0; i < buf.esc.esc_count; i++) {
					log_msg.msg_type = LOG_ESC_MSG;
					log_msg.body.log_ESC.counter = buf.esc.counter;
					log_msg.body.log_ESC.esc_count = buf.esc.esc_count;
					log_msg.body.log_ESC.esc_connectiontype = buf.esc.esc_connectiontype;
					log_msg.body.log_ESC.esc_num = i;
					log_msg.body.log_ESC.esc_address = buf.esc.esc[i].esc_address;
					log_msg.body.log_ESC.esc_version = buf.esc.esc[i].esc_version;
					log_msg.body.log_ESC.esc_voltage = buf.esc.esc[i].esc_voltage;
					log_msg.body.log_ESC.esc_current = buf.esc.esc[i].esc_current;
					log_msg.body.log_ESC.esc_rpm = buf.esc.esc[i].esc_rpm;
					log_msg.body.log_ESC.esc_temperature = buf.esc.esc[i].esc_temperature;
					log_msg.body.log_ESC.esc_setpoint = buf.esc.esc[i].esc_setpoint;
					log_msg.body.log_ESC.esc_setpoint_raw = buf.esc.esc[i].esc_setpoint_raw;
					LOGBUFFER_WRITE_AND_COUNT(ESC);
				}
			}

			/* --- GLOBAL VELOCITY SETPOINT --- */
			if (fds[ifds++].revents & POLLIN) {
				orb_copy(ORB_ID(vehicle_global_velocity_setpoint), subs.global_vel_sp_sub, &buf.global_vel_sp);
				log_msg.msg_type = LOG_GVSP_MSG;
				log_msg.body.log_GVSP.vx = buf.global_vel_sp.vx;
				log_msg.body.log_GVSP.vy = buf.global_vel_sp.vy;
				log_msg.body.log_GVSP.vz = buf.global_vel_sp.vz;
				LOGBUFFER_WRITE_AND_COUNT(GVSP);
			}

			/* signal the other thread new data, but not yet unlock */
			if (logbuffer_count(&lb) > MIN_BYTES_TO_WRITE) {
				/* only request write if several packets can be written at once */
				pthread_cond_signal(&logbuffer_cond);
			}

			/* unlock, now the writer thread may run */
			pthread_mutex_unlock(&logbuffer_mutex);
		}

		if (use_sleep) {
			usleep(sleep_delay);
		}
	}

	if (logging_enabled)
		sdlog2_stop_log();

	pthread_mutex_destroy(&logbuffer_mutex);
	pthread_cond_destroy(&logbuffer_cond);

	free(lb.data);

	warnx("exiting.");

	thread_running = false;

	return 0;
}
예제 #15
0
파일: server_phase.c 프로젝트: b-cuts/uftp
/**
 * Check a transfer phase message and pass to appropriate message handler,
 * decrypting first if necessary
 * Returns 1 on success, 0 on error
 */
int handle_transfer_phase(const unsigned char *packet, unsigned char *decrypted,
                          const struct sockaddr_in *receiver,
                          int blocks_this_sec, int section_offset,
                          int pass, int section, struct finfo_t *finfo)
{
    struct uftp_h *header;
    const unsigned char *message;
    int hostidx;
    unsigned int decryptlen, meslen;
    uint8_t *func;
    struct in_addr srcaddr;

    header = (struct uftp_h *)packet;
    hostidx = find_client(header->srcaddr);
    srcaddr.s_addr = header->srcaddr;
    if ((keytype != KEY_NONE) && (header->func == ENCRYPTED)) {
        if (hostidx == -1) {
            log1(0, 0, "Host %s not in host list", inet_ntoa(srcaddr));
            send_abort(finfo, "Not in host list", receiver, &srcaddr, 0, 0);
            return 0;
        }
        if (!validate_and_decrypt(packet, &decrypted, &decryptlen, mtu,
                keytype, groupkey, groupsalt, ivlen, hashtype, grouphmackey,
                hmaclen, sigtype, destlist[hostidx].encinfo->pubkey,
                destlist[hostidx].encinfo->pubkeylen)) {
            log1(0, 0, "Rejecting message from %s: decrypt/validate failed",
                        destlist[hostidx].name);
            return 0;
        }
        func = (uint8_t *)decrypted;
        message = decrypted;
        meslen = decryptlen;
    } else {
        if ((keytype != KEY_NONE) && ((header->func == PRSTATUS) ||
                (header->func == STATUS) || (header->func == COMPLETE) ||
                (header->func == ABORT))) {
            log1(0, 0, "Rejecting %s message from %s: not encrypted",
                       func_name(header->func), inet_ntoa(srcaddr));
            return 0;
        }
        func = (uint8_t *)&header->func;
        message = packet + sizeof(struct uftp_h);
        meslen = ntohs(header->blsize);
    }

    if (*func == ABORT) {
        handle_abort(message, meslen, hostidx, finfo, &srcaddr);
    } else if (hostidx == -1) {
        log1(0, 0, "Host %s not in host list", inet_ntoa(srcaddr));
        send_abort(finfo, "Not in host list", receiver, &srcaddr, 0, 0);
    } else {
        switch (destlist[hostidx].status) {
        case DEST_ACTIVE:
            if (*func == STATUS) {
                handle_status(message, meslen, finfo, hostidx,
                        blocks_this_sec, section_offset, pass, section);
            } else if (*func == COMPLETE) {
                handle_complete(message, meslen, finfo, hostidx);
            } else if ((destlist[hostidx].clientcnt != -1) &&
                       (*func == PRSTATUS)) {
                handle_prstatus(message, meslen, finfo, hostidx,
                        blocks_this_sec, section_offset, pass, section);
            } else {
                log1(0, 0, "Received invalid message %s from %s",
                           func_name(*func), destlist[hostidx].name);
            }
            break;
        case DEST_STATUS:
            if (*func == COMPLETE) {
                handle_complete(message, meslen, finfo, hostidx);
            } else if (*func == STATUS) {
                handle_status(message, meslen, finfo, hostidx,
                              blocks_this_sec, section_offset, pass, section);
            } else {
                log1(0, 0, "Received invalid message %s from %s",
                           func_name(*func), destlist[hostidx].name);
            }
            break;
        case DEST_DONE:
            if (*func == COMPLETE) {
                handle_complete(message, meslen, finfo, hostidx);
            } else {
                log1(0, 0, "Received invalid message %s from %s",
                           func_name(*func), destlist[hostidx].name);
            }
            break;
        }
    }
    return 1;
}
예제 #16
0
int sdlog2_thread_main(int argc, char *argv[])
{
	mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);

	if (mavlink_fd < 0) {
		warnx("failed to open MAVLink log stream, start mavlink app first");
	}

	/* delay = 1 / rate (rate defined by -r option), default log rate: 50 Hz */
	useconds_t sleep_delay = 20000;
	int log_buffer_size = LOG_BUFFER_SIZE_DEFAULT;
	logging_enabled = false;
	/* enable logging on start (-e option) */
	bool log_on_start = false;
	/* enable logging when armed (-a option) */
	bool log_when_armed = false;
	log_name_timestamp = false;

	flag_system_armed = false;

	/* work around some stupidity in task_create's argv handling */
	argc -= 2;
	argv += 2;
	int ch;

	/* don't exit from getopt loop to leave getopt global variables in consistent state,
	 * set error flag instead */
	bool err_flag = false;

	while ((ch = getopt(argc, argv, "r:b:eat")) != EOF) {
		switch (ch) {
		case 'r': {
				unsigned long r = strtoul(optarg, NULL, 10);

				if (r == 0) {
					r = 1;
				}

				sleep_delay = 1000000 / r;
			}
			break;

		case 'b': {
				unsigned long s = strtoul(optarg, NULL, 10);

				if (s < 1) {
					s = 1;
				}

				log_buffer_size = 1024 * s;
			}
			break;

		case 'e':
			log_on_start = true;
			break;

		case 'a':
			log_when_armed = true;
			break;

		case 't':
			log_name_timestamp = true;
			break;

		case '?':
			if (optopt == 'c') {
				warnx("option -%c requires an argument", optopt);

			} else if (isprint(optopt)) {
				warnx("unknown option `-%c'", optopt);

			} else {
				warnx("unknown option character `\\x%x'", optopt);
			}
			err_flag = true;
			break;

		default:
			warnx("unrecognized flag");
			err_flag = true;
			break;
		}
	}

	if (err_flag) {
		sdlog2_usage(NULL);
	}

	gps_time = 0;

	/* create log root dir */
	int mkdir_ret = mkdir(log_root, S_IRWXU | S_IRWXG | S_IRWXO);

	if (mkdir_ret != 0 && errno != EEXIST) {
		err(1, "failed creating log root dir: %s", log_root);
	}

	/* copy conversion scripts */
	const char *converter_in = "/etc/logging/conv.zip";
	char *converter_out = malloc(64);
	snprintf(converter_out, 64, "%s/conv.zip", log_root);

	if (file_copy(converter_in, converter_out) != OK) {
		warn("unable to copy conversion scripts");
	}

	free(converter_out);

	/* initialize log buffer with specified size */
	warnx("log buffer size: %i bytes", log_buffer_size);

	if (OK != logbuffer_init(&lb, log_buffer_size)) {
		errx(1, "can't allocate log buffer, exiting");
	}

	struct vehicle_status_s buf_status;

	struct vehicle_gps_position_s buf_gps_pos;

	memset(&buf_status, 0, sizeof(buf_status));

	memset(&buf_gps_pos, 0, sizeof(buf_gps_pos));

	/* warning! using union here to save memory, elements should be used separately! */
	union {
		struct vehicle_command_s cmd;
		struct sensor_combined_s sensor;
		struct vehicle_attitude_s att;
		struct vehicle_attitude_setpoint_s att_sp;
		struct vehicle_rates_setpoint_s rates_sp;
		struct actuator_outputs_s act_outputs;
		struct actuator_controls_s act_controls;
		struct vehicle_local_position_s local_pos;
		struct vehicle_local_position_setpoint_s local_pos_sp;
		struct vehicle_global_position_s global_pos;
		struct position_setpoint_triplet_s triplet;
		struct vehicle_vicon_position_s vicon_pos;
		struct optical_flow_s flow;
		struct rc_channels_s rc;
		struct differential_pressure_s diff_pres;
		struct airspeed_s airspeed;
		struct esc_status_s esc;
		struct vehicle_global_velocity_setpoint_s global_vel_sp;
		struct battery_status_s battery;
		struct telemetry_status_s telemetry;
		struct range_finder_report range_finder;
		struct estimator_status_report estimator_status;
		struct system_power_s system_power;
		struct servorail_status_s servorail_status;
	} buf;

	memset(&buf, 0, sizeof(buf));

	/* log message buffer: header + body */
#pragma pack(push, 1)
	struct {
		LOG_PACKET_HEADER;
		union {
			struct log_TIME_s log_TIME;
			struct log_ATT_s log_ATT;
			struct log_ATSP_s log_ATSP;
			struct log_IMU_s log_IMU;
			struct log_SENS_s log_SENS;
			struct log_LPOS_s log_LPOS;
			struct log_LPSP_s log_LPSP;
			struct log_GPS_s log_GPS;
			struct log_ATTC_s log_ATTC;
			struct log_STAT_s log_STAT;
			struct log_RC_s log_RC;
			struct log_OUT0_s log_OUT0;
			struct log_AIRS_s log_AIRS;
			struct log_ARSP_s log_ARSP;
			struct log_FLOW_s log_FLOW;
			struct log_GPOS_s log_GPOS;
			struct log_GPSP_s log_GPSP;
			struct log_ESC_s log_ESC;
			struct log_GVSP_s log_GVSP;
			struct log_BATT_s log_BATT;
			struct log_DIST_s log_DIST;
			struct log_TELE_s log_TELE;
			struct log_ESTM_s log_ESTM;
			struct log_PWR_s log_PWR;
			struct log_VICN_s log_VICN;
			struct log_GSN0_s log_GSN0;
			struct log_GSN1_s log_GSN1;
		} body;
	} log_msg = {
		LOG_PACKET_HEADER_INIT(0)
	};
#pragma pack(pop)
	memset(&log_msg.body, 0, sizeof(log_msg.body));

	struct {
		int cmd_sub;
		int status_sub;
		int sensor_sub;
		int att_sub;
		int att_sp_sub;
		int rates_sp_sub;
		int act_outputs_sub;
		int act_controls_sub;
		int local_pos_sub;
		int local_pos_sp_sub;
		int global_pos_sub;
		int triplet_sub;
		int gps_pos_sub;
		int vicon_pos_sub;
		int flow_sub;
		int rc_sub;
		int airspeed_sub;
		int esc_sub;
		int global_vel_sp_sub;
		int battery_sub;
		int telemetry_sub;
		int range_finder_sub;
		int estimator_status_sub;
		int system_power_sub;
		int servorail_status_sub;
	} subs;

	subs.cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
	subs.status_sub = orb_subscribe(ORB_ID(vehicle_status));
	subs.gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	subs.sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
	subs.att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	subs.att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	subs.rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	subs.act_outputs_sub = orb_subscribe(ORB_ID_VEHICLE_CONTROLS);
	subs.act_controls_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	subs.local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
	subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	subs.triplet_sub = orb_subscribe(ORB_ID(position_setpoint_triplet));
	subs.vicon_pos_sub = orb_subscribe(ORB_ID(vehicle_vicon_position));
	subs.flow_sub = orb_subscribe(ORB_ID(optical_flow));
	subs.rc_sub = orb_subscribe(ORB_ID(rc_channels));
	subs.airspeed_sub = orb_subscribe(ORB_ID(airspeed));
	subs.esc_sub = orb_subscribe(ORB_ID(esc_status));
	subs.global_vel_sp_sub = orb_subscribe(ORB_ID(vehicle_global_velocity_setpoint));
	subs.battery_sub = orb_subscribe(ORB_ID(battery_status));
	subs.telemetry_sub = orb_subscribe(ORB_ID(telemetry_status));
	subs.range_finder_sub = orb_subscribe(ORB_ID(sensor_range_finder));
	subs.estimator_status_sub = orb_subscribe(ORB_ID(estimator_status));
	subs.system_power_sub = orb_subscribe(ORB_ID(system_power));
	subs.servorail_status_sub = orb_subscribe(ORB_ID(servorail_status));

	thread_running = true;

	/* initialize thread synchronization */
	pthread_mutex_init(&logbuffer_mutex, NULL);
	pthread_cond_init(&logbuffer_cond, NULL);

	/* track changes in sensor_combined topic */
	hrt_abstime gyro_timestamp = 0;
	hrt_abstime accelerometer_timestamp = 0;
	hrt_abstime magnetometer_timestamp = 0;
	hrt_abstime barometer_timestamp = 0;
	hrt_abstime differential_pressure_timestamp = 0;

	/* enable logging on start if needed */
	if (log_on_start) {
		/* check GPS topic to get GPS time */
		if (log_name_timestamp) {
			if (copy_if_updated(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf_gps_pos)) {
				gps_time = buf_gps_pos.time_gps_usec;
			}
		}

		sdlog2_start_log();
	}

	while (!main_thread_should_exit) {
		usleep(sleep_delay);

		/* --- VEHICLE COMMAND - LOG MANAGEMENT --- */
		if (copy_if_updated(ORB_ID(vehicle_command), subs.cmd_sub, &buf.cmd)) {
			handle_command(&buf.cmd);
		}

		/* --- VEHICLE STATUS - LOG MANAGEMENT --- */
		bool status_updated = copy_if_updated(ORB_ID(vehicle_status), subs.status_sub, &buf_status);

		if (status_updated) {
			if (log_when_armed) {
				handle_status(&buf_status);
			}
		}

		/* --- GPS POSITION - LOG MANAGEMENT --- */
		bool gps_pos_updated = copy_if_updated(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf_gps_pos);

		if (gps_pos_updated && log_name_timestamp) {
			gps_time = buf_gps_pos.time_gps_usec;
		}

		if (!logging_enabled) {
			continue;
		}

		pthread_mutex_lock(&logbuffer_mutex);

		/* write time stamp message */
		log_msg.msg_type = LOG_TIME_MSG;
		log_msg.body.log_TIME.t = hrt_absolute_time();
		LOGBUFFER_WRITE_AND_COUNT(TIME);

		/* --- VEHICLE STATUS --- */
		if (status_updated) {
			log_msg.msg_type = LOG_STAT_MSG;
			log_msg.body.log_STAT.main_state = (uint8_t) buf_status.main_state;
			log_msg.body.log_STAT.arming_state = (uint8_t) buf_status.arming_state;
			log_msg.body.log_STAT.failsafe_state = (uint8_t) buf_status.failsafe_state;
			log_msg.body.log_STAT.battery_remaining = buf_status.battery_remaining;
			log_msg.body.log_STAT.battery_warning = (uint8_t) buf_status.battery_warning;
			log_msg.body.log_STAT.landed = (uint8_t) buf_status.condition_landed;
			LOGBUFFER_WRITE_AND_COUNT(STAT);
		}

		/* --- GPS POSITION --- */
		if (gps_pos_updated) {
			log_msg.msg_type = LOG_GPS_MSG;
			log_msg.body.log_GPS.gps_time = buf_gps_pos.time_gps_usec;
			log_msg.body.log_GPS.fix_type = buf_gps_pos.fix_type;
			log_msg.body.log_GPS.eph = buf_gps_pos.eph_m;
			log_msg.body.log_GPS.epv = buf_gps_pos.epv_m;
			log_msg.body.log_GPS.lat = buf_gps_pos.lat;
			log_msg.body.log_GPS.lon = buf_gps_pos.lon;
			log_msg.body.log_GPS.alt = buf_gps_pos.alt * 0.001f;
			log_msg.body.log_GPS.vel_n = buf_gps_pos.vel_n_m_s;
			log_msg.body.log_GPS.vel_e = buf_gps_pos.vel_e_m_s;
			log_msg.body.log_GPS.vel_d = buf_gps_pos.vel_d_m_s;
			log_msg.body.log_GPS.cog = buf_gps_pos.cog_rad;
			LOGBUFFER_WRITE_AND_COUNT(GPS);

			/* log the SNR of each satellite for a detailed view of signal quality */
			log_msg.msg_type = LOG_GSN0_MSG;
			/* pick the smaller number so we do not overflow any of the arrays */
			unsigned gps_msg_max_snr = sizeof(buf_gps_pos.satellite_snr) / sizeof(buf_gps_pos.satellite_snr[0]);
			unsigned log_max_snr = sizeof(log_msg.body.log_GSN0.satellite_snr) / sizeof(log_msg.body.log_GSN0.satellite_snr[0]);
			unsigned sat_max_snr = (gps_msg_max_snr < log_max_snr) ? gps_msg_max_snr : log_max_snr;

			for (unsigned i = 0; i < sat_max_snr; i++) {
				log_msg.body.log_GSN0.satellite_snr[i] = buf_gps_pos.satellite_snr[i];
			}
			LOGBUFFER_WRITE_AND_COUNT(GSN0);
		}

		/* --- SENSOR COMBINED --- */
		if (copy_if_updated(ORB_ID(sensor_combined), subs.sensor_sub, &buf.sensor)) {
			bool write_IMU = false;
			bool write_SENS = false;

			if (buf.sensor.timestamp != gyro_timestamp) {
				gyro_timestamp = buf.sensor.timestamp;
				write_IMU = true;
			}

			if (buf.sensor.accelerometer_timestamp != accelerometer_timestamp) {
				accelerometer_timestamp = buf.sensor.accelerometer_timestamp;
				write_IMU = true;
			}

			if (buf.sensor.magnetometer_timestamp != magnetometer_timestamp) {
				magnetometer_timestamp = buf.sensor.magnetometer_timestamp;
				write_IMU = true;
			}

			if (buf.sensor.baro_timestamp != barometer_timestamp) {
				barometer_timestamp = buf.sensor.baro_timestamp;
				write_SENS = true;
			}

			if (buf.sensor.differential_pressure_timestamp != differential_pressure_timestamp) {
				differential_pressure_timestamp = buf.sensor.differential_pressure_timestamp;
				write_SENS = true;
			}

			if (write_IMU) {
				log_msg.msg_type = LOG_IMU_MSG;
				log_msg.body.log_IMU.gyro_x = buf.sensor.gyro_rad_s[0];
				log_msg.body.log_IMU.gyro_y = buf.sensor.gyro_rad_s[1];
				log_msg.body.log_IMU.gyro_z = buf.sensor.gyro_rad_s[2];
				log_msg.body.log_IMU.acc_x = buf.sensor.accelerometer_m_s2[0];
				log_msg.body.log_IMU.acc_y = buf.sensor.accelerometer_m_s2[1];
				log_msg.body.log_IMU.acc_z = buf.sensor.accelerometer_m_s2[2];
				log_msg.body.log_IMU.mag_x = buf.sensor.magnetometer_ga[0];
				log_msg.body.log_IMU.mag_y = buf.sensor.magnetometer_ga[1];
				log_msg.body.log_IMU.mag_z = buf.sensor.magnetometer_ga[2];
				LOGBUFFER_WRITE_AND_COUNT(IMU);
			}

			if (write_SENS) {
				log_msg.msg_type = LOG_SENS_MSG;
				log_msg.body.log_SENS.baro_pres = buf.sensor.baro_pres_mbar;
				log_msg.body.log_SENS.baro_alt = buf.sensor.baro_alt_meter;
				log_msg.body.log_SENS.baro_temp = buf.sensor.baro_temp_celcius;
				log_msg.body.log_SENS.diff_pres = buf.sensor.differential_pressure_pa;
				log_msg.body.log_SENS.diff_pres_filtered = buf.sensor.differential_pressure_filtered_pa;
				LOGBUFFER_WRITE_AND_COUNT(SENS);
			}

		}

		/* --- ATTITUDE --- */
		if (copy_if_updated(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att)) {
			log_msg.msg_type = LOG_ATT_MSG;
			log_msg.body.log_ATT.roll = buf.att.roll;
			log_msg.body.log_ATT.pitch = buf.att.pitch;
			log_msg.body.log_ATT.yaw = buf.att.yaw;
			log_msg.body.log_ATT.roll_rate = buf.att.rollspeed;
			log_msg.body.log_ATT.pitch_rate = buf.att.pitchspeed;
			log_msg.body.log_ATT.yaw_rate = buf.att.yawspeed;
			log_msg.body.log_ATT.gx = buf.att.g_comp[0];
			log_msg.body.log_ATT.gy = buf.att.g_comp[1];
			log_msg.body.log_ATT.gz = buf.att.g_comp[2];
			LOGBUFFER_WRITE_AND_COUNT(ATT);
		}

		/* --- ATTITUDE SETPOINT --- */
		if (copy_if_updated(ORB_ID(vehicle_attitude_setpoint), subs.att_sp_sub, &buf.att_sp)) {
			log_msg.msg_type = LOG_ATSP_MSG;
			log_msg.body.log_ATSP.roll_sp = buf.att_sp.roll_body;
			log_msg.body.log_ATSP.pitch_sp = buf.att_sp.pitch_body;
			log_msg.body.log_ATSP.yaw_sp = buf.att_sp.yaw_body;
			log_msg.body.log_ATSP.thrust_sp = buf.att_sp.thrust;
			LOGBUFFER_WRITE_AND_COUNT(ATSP);
		}

		/* --- RATES SETPOINT --- */
		if (copy_if_updated(ORB_ID(vehicle_rates_setpoint), subs.rates_sp_sub, &buf.rates_sp)) {
			log_msg.msg_type = LOG_ARSP_MSG;
			log_msg.body.log_ARSP.roll_rate_sp = buf.rates_sp.roll;
			log_msg.body.log_ARSP.pitch_rate_sp = buf.rates_sp.pitch;
			log_msg.body.log_ARSP.yaw_rate_sp = buf.rates_sp.yaw;
			LOGBUFFER_WRITE_AND_COUNT(ARSP);
		}

		/* --- ACTUATOR OUTPUTS --- */
		if (copy_if_updated(ORB_ID(actuator_outputs_0), subs.act_outputs_sub, &buf.act_outputs)) {
			log_msg.msg_type = LOG_OUT0_MSG;
			memcpy(log_msg.body.log_OUT0.output, buf.act_outputs.output, sizeof(log_msg.body.log_OUT0.output));
			LOGBUFFER_WRITE_AND_COUNT(OUT0);
		}

		/* --- ACTUATOR CONTROL --- */
		if (copy_if_updated(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.act_controls_sub, &buf.act_controls)) {
			log_msg.msg_type = LOG_ATTC_MSG;
			log_msg.body.log_ATTC.roll = buf.act_controls.control[0];
			log_msg.body.log_ATTC.pitch = buf.act_controls.control[1];
			log_msg.body.log_ATTC.yaw = buf.act_controls.control[2];
			log_msg.body.log_ATTC.thrust = buf.act_controls.control[3];
			LOGBUFFER_WRITE_AND_COUNT(ATTC);
		}

		/* --- LOCAL POSITION --- */
		if (copy_if_updated(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos)) {
			log_msg.msg_type = LOG_LPOS_MSG;
			log_msg.body.log_LPOS.x = buf.local_pos.x;
			log_msg.body.log_LPOS.y = buf.local_pos.y;
			log_msg.body.log_LPOS.z = buf.local_pos.z;
			log_msg.body.log_LPOS.ground_dist = buf.local_pos.dist_bottom;
			log_msg.body.log_LPOS.ground_dist_rate = buf.local_pos.dist_bottom_rate;
			log_msg.body.log_LPOS.vx = buf.local_pos.vx;
			log_msg.body.log_LPOS.vy = buf.local_pos.vy;
			log_msg.body.log_LPOS.vz = buf.local_pos.vz;
			log_msg.body.log_LPOS.ref_lat = buf.local_pos.ref_lat * 1e7;
			log_msg.body.log_LPOS.ref_lon = buf.local_pos.ref_lon * 1e7;
			log_msg.body.log_LPOS.ref_alt = buf.local_pos.ref_alt;
			log_msg.body.log_LPOS.pos_flags = (buf.local_pos.xy_valid ? 1 : 0) |
											  (buf.local_pos.z_valid ? 2 : 0) |
											  (buf.local_pos.v_xy_valid ? 4 : 0) |
											  (buf.local_pos.v_z_valid ? 8 : 0) |
											  (buf.local_pos.xy_global ? 16 : 0) |
											  (buf.local_pos.z_global ? 32 : 0);
			log_msg.body.log_LPOS.landed = buf.local_pos.landed;
			log_msg.body.log_LPOS.ground_dist_flags = (buf.local_pos.dist_bottom_valid ? 1 : 0);
			log_msg.body.log_LPOS.eph = buf.local_pos.eph;
			log_msg.body.log_LPOS.epv = buf.local_pos.epv;
			LOGBUFFER_WRITE_AND_COUNT(LPOS);
		}

		/* --- LOCAL POSITION SETPOINT --- */
		if (copy_if_updated(ORB_ID(vehicle_local_position_setpoint), subs.local_pos_sp_sub, &buf.local_pos_sp)) {
			log_msg.msg_type = LOG_LPSP_MSG;
			log_msg.body.log_LPSP.x = buf.local_pos_sp.x;
			log_msg.body.log_LPSP.y = buf.local_pos_sp.y;
			log_msg.body.log_LPSP.z = buf.local_pos_sp.z;
			log_msg.body.log_LPSP.yaw = buf.local_pos_sp.yaw;
			LOGBUFFER_WRITE_AND_COUNT(LPSP);
		}

		/* --- GLOBAL POSITION --- */
		if (copy_if_updated(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos)) {
			log_msg.msg_type = LOG_GPOS_MSG;
			log_msg.body.log_GPOS.lat = buf.global_pos.lat * 1e7;
			log_msg.body.log_GPOS.lon = buf.global_pos.lon * 1e7;
			log_msg.body.log_GPOS.alt = buf.global_pos.alt;
			log_msg.body.log_GPOS.vel_n = buf.global_pos.vel_n;
			log_msg.body.log_GPOS.vel_e = buf.global_pos.vel_e;
			log_msg.body.log_GPOS.vel_d = buf.global_pos.vel_d;
			log_msg.body.log_GPOS.eph = buf.global_pos.eph;
			log_msg.body.log_GPOS.epv = buf.global_pos.epv;
			LOGBUFFER_WRITE_AND_COUNT(GPOS);
		}

		/* --- GLOBAL POSITION SETPOINT --- */
		if (copy_if_updated(ORB_ID(position_setpoint_triplet), subs.triplet_sub, &buf.triplet)) {
			log_msg.msg_type = LOG_GPSP_MSG;
			log_msg.body.log_GPSP.nav_state = buf.triplet.nav_state;
			log_msg.body.log_GPSP.lat = (int32_t)(buf.triplet.current.lat * 1e7d);
			log_msg.body.log_GPSP.lon = (int32_t)(buf.triplet.current.lon * 1e7d);
			log_msg.body.log_GPSP.alt = buf.triplet.current.alt;
			log_msg.body.log_GPSP.yaw = buf.triplet.current.yaw;
			log_msg.body.log_GPSP.type = buf.triplet.current.type;
			log_msg.body.log_GPSP.loiter_radius = buf.triplet.current.loiter_radius;
			log_msg.body.log_GPSP.loiter_direction = buf.triplet.current.loiter_direction;
			log_msg.body.log_GPSP.pitch_min = buf.triplet.current.pitch_min;
			LOGBUFFER_WRITE_AND_COUNT(GPSP);
		}

		/* --- VICON POSITION --- */
		if (copy_if_updated(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos)) {
			log_msg.msg_type = LOG_VICN_MSG;
			log_msg.body.log_VICN.x = buf.vicon_pos.x;
			log_msg.body.log_VICN.y = buf.vicon_pos.y;
			log_msg.body.log_VICN.z = buf.vicon_pos.z;
			log_msg.body.log_VICN.pitch = buf.vicon_pos.pitch;
			log_msg.body.log_VICN.roll = buf.vicon_pos.roll;
			log_msg.body.log_VICN.yaw = buf.vicon_pos.yaw;
			LOGBUFFER_WRITE_AND_COUNT(VICN);
		}

		/* --- FLOW --- */
		if (copy_if_updated(ORB_ID(optical_flow), subs.flow_sub, &buf.flow)) {
			log_msg.msg_type = LOG_FLOW_MSG;
			log_msg.body.log_FLOW.flow_raw_x = buf.flow.flow_raw_x;
			log_msg.body.log_FLOW.flow_raw_y = buf.flow.flow_raw_y;
			log_msg.body.log_FLOW.flow_comp_x = buf.flow.flow_comp_x_m;
			log_msg.body.log_FLOW.flow_comp_y = buf.flow.flow_comp_y_m;
			log_msg.body.log_FLOW.distance = buf.flow.ground_distance_m;
			log_msg.body.log_FLOW.quality = buf.flow.quality;
			log_msg.body.log_FLOW.sensor_id = buf.flow.sensor_id;
			LOGBUFFER_WRITE_AND_COUNT(FLOW);
		}

		/* --- RC CHANNELS --- */
		if (copy_if_updated(ORB_ID(rc_channels), subs.rc_sub, &buf.rc)) {
			log_msg.msg_type = LOG_RC_MSG;
			/* Copy only the first 8 channels of 14 */
			memcpy(log_msg.body.log_RC.channel, buf.rc.chan, sizeof(log_msg.body.log_RC.channel));
			log_msg.body.log_RC.channel_count = buf.rc.chan_count;
			log_msg.body.log_RC.signal_lost = buf.rc.signal_lost;
			LOGBUFFER_WRITE_AND_COUNT(RC);
		}

		/* --- AIRSPEED --- */
		if (copy_if_updated(ORB_ID(airspeed), subs.airspeed_sub, &buf.airspeed)) {
			log_msg.msg_type = LOG_AIRS_MSG;
			log_msg.body.log_AIRS.indicated_airspeed = buf.airspeed.indicated_airspeed_m_s;
			log_msg.body.log_AIRS.true_airspeed = buf.airspeed.true_airspeed_m_s;
			log_msg.body.log_AIRS.air_temperature_celsius = buf.airspeed.air_temperature_celsius;
			LOGBUFFER_WRITE_AND_COUNT(AIRS);
		}

		/* --- ESCs --- */
		if (copy_if_updated(ORB_ID(esc_status), subs.esc_sub, &buf.esc)) {
			for (uint8_t i = 0; i < buf.esc.esc_count; i++) {
				log_msg.msg_type = LOG_ESC_MSG;
				log_msg.body.log_ESC.counter = buf.esc.counter;
				log_msg.body.log_ESC.esc_count = buf.esc.esc_count;
				log_msg.body.log_ESC.esc_connectiontype = buf.esc.esc_connectiontype;
				log_msg.body.log_ESC.esc_num = i;
				log_msg.body.log_ESC.esc_address = buf.esc.esc[i].esc_address;
				log_msg.body.log_ESC.esc_version = buf.esc.esc[i].esc_version;
				log_msg.body.log_ESC.esc_voltage = buf.esc.esc[i].esc_voltage;
				log_msg.body.log_ESC.esc_current = buf.esc.esc[i].esc_current;
				log_msg.body.log_ESC.esc_rpm = buf.esc.esc[i].esc_rpm;
				log_msg.body.log_ESC.esc_temperature = buf.esc.esc[i].esc_temperature;
				log_msg.body.log_ESC.esc_setpoint = buf.esc.esc[i].esc_setpoint;
				log_msg.body.log_ESC.esc_setpoint_raw = buf.esc.esc[i].esc_setpoint_raw;
				LOGBUFFER_WRITE_AND_COUNT(ESC);
			}
		}

		/* --- GLOBAL VELOCITY SETPOINT --- */
		if (copy_if_updated(ORB_ID(vehicle_global_velocity_setpoint), subs.global_vel_sp_sub, &buf.global_vel_sp)) {
			log_msg.msg_type = LOG_GVSP_MSG;
			log_msg.body.log_GVSP.vx = buf.global_vel_sp.vx;
			log_msg.body.log_GVSP.vy = buf.global_vel_sp.vy;
			log_msg.body.log_GVSP.vz = buf.global_vel_sp.vz;
			LOGBUFFER_WRITE_AND_COUNT(GVSP);
		}

		/* --- BATTERY --- */
		if (copy_if_updated(ORB_ID(battery_status), subs.battery_sub, &buf.battery)) {
			log_msg.msg_type = LOG_BATT_MSG;
			log_msg.body.log_BATT.voltage = buf.battery.voltage_v;
			log_msg.body.log_BATT.voltage_filtered = buf.battery.voltage_filtered_v;
			log_msg.body.log_BATT.current = buf.battery.current_a;
			log_msg.body.log_BATT.discharged = buf.battery.discharged_mah;
			LOGBUFFER_WRITE_AND_COUNT(BATT);
		}

		/* --- SYSTEM POWER RAILS --- */
		if (copy_if_updated(ORB_ID(system_power), subs.system_power_sub, &buf.system_power)) {
			log_msg.msg_type = LOG_PWR_MSG;
			log_msg.body.log_PWR.peripherals_5v = buf.system_power.voltage5V_v;
			log_msg.body.log_PWR.usb_ok = buf.system_power.usb_connected;
			log_msg.body.log_PWR.brick_ok = buf.system_power.brick_valid;
			log_msg.body.log_PWR.servo_ok = buf.system_power.servo_valid;
			log_msg.body.log_PWR.low_power_rail_overcurrent = buf.system_power.periph_5V_OC;
			log_msg.body.log_PWR.high_power_rail_overcurrent = buf.system_power.hipower_5V_OC;

			/* copy servo rail status topic here too */
			orb_copy(ORB_ID(servorail_status), subs.servorail_status_sub, &buf.servorail_status);
			log_msg.body.log_PWR.servo_rail_5v = buf.servorail_status.voltage_v;
			log_msg.body.log_PWR.servo_rssi = buf.servorail_status.rssi_v;

			LOGBUFFER_WRITE_AND_COUNT(PWR);
		}

		/* --- TELEMETRY --- */
		if (copy_if_updated(ORB_ID(telemetry_status), subs.telemetry_sub, &buf.telemetry)) {
			log_msg.msg_type = LOG_TELE_MSG;
			log_msg.body.log_TELE.rssi = buf.telemetry.rssi;
			log_msg.body.log_TELE.remote_rssi = buf.telemetry.remote_rssi;
			log_msg.body.log_TELE.noise = buf.telemetry.noise;
			log_msg.body.log_TELE.remote_noise = buf.telemetry.remote_noise;
			log_msg.body.log_TELE.rxerrors = buf.telemetry.rxerrors;
			log_msg.body.log_TELE.fixed = buf.telemetry.fixed;
			log_msg.body.log_TELE.txbuf = buf.telemetry.txbuf;
			LOGBUFFER_WRITE_AND_COUNT(TELE);
		}

		/* --- BOTTOM DISTANCE --- */
		if (copy_if_updated(ORB_ID(sensor_range_finder), subs.range_finder_sub, &buf.range_finder)) {
			log_msg.msg_type = LOG_DIST_MSG;
			log_msg.body.log_DIST.bottom = buf.range_finder.distance;
			log_msg.body.log_DIST.bottom_rate = 0.0f;
			log_msg.body.log_DIST.flags = (buf.range_finder.valid ? 1 : 0);
			LOGBUFFER_WRITE_AND_COUNT(DIST);
		}

		/* --- ESTIMATOR STATUS --- */
		if (copy_if_updated(ORB_ID(estimator_status), subs.estimator_status_sub, &buf.estimator_status)) {
			log_msg.msg_type = LOG_ESTM_MSG;
			unsigned maxcopy = (sizeof(buf.estimator_status.states) < sizeof(log_msg.body.log_ESTM.s)) ? sizeof(buf.estimator_status.states) : sizeof(log_msg.body.log_ESTM.s);
			memset(&(log_msg.body.log_ESTM.s), 0, sizeof(log_msg.body.log_ESTM.s));
			memcpy(&(log_msg.body.log_ESTM.s), buf.estimator_status.states, maxcopy);
			log_msg.body.log_ESTM.n_states = buf.estimator_status.n_states;
			log_msg.body.log_ESTM.states_nan = buf.estimator_status.states_nan;
			log_msg.body.log_ESTM.covariance_nan = buf.estimator_status.covariance_nan;
			log_msg.body.log_ESTM.kalman_gain_nan = buf.estimator_status.kalman_gain_nan;
			LOGBUFFER_WRITE_AND_COUNT(ESTM);
		}

		/* signal the other thread new data, but not yet unlock */
		if (logbuffer_count(&lb) > MIN_BYTES_TO_WRITE) {
			/* only request write if several packets can be written at once */
			pthread_cond_signal(&logbuffer_cond);
		}

		/* unlock, now the writer thread may run */
		pthread_mutex_unlock(&logbuffer_mutex);
	}

	if (logging_enabled) {
		sdlog2_stop_log();
	}

	pthread_mutex_destroy(&logbuffer_mutex);
	pthread_cond_destroy(&logbuffer_cond);

	free(lb.data);

	warnx("exiting");

	thread_running = false;

	return 0;
}
예제 #17
0
파일: proxy_loop.c 프로젝트: b-cuts/uftp
/**
 * This is the main message reading loop.  Messages are read, validated,
 * decrypted if necessary, then passed to the appropriate routine for handling.
 */
void mainloop()
{
    struct uftp_h *header;
    unsigned char *buf, *decrypted, *message;
    int packetlen, listidx, hostidx, i;
    unsigned int decryptlen, meslen;
    uint8_t *func;
    struct sockaddr_in src;
    struct in_addr srcaddr;
    struct timeval *tv;
    const int bsize = 9000;  // Roughly size of ethernet jumbo frame

    log0(0, 0, "%s", VERSIONSTR);
    for (i = 0; i < key_count; i++) {
        log(0, 0, "Loaded key with fingerprint %s",
                  print_key_fingerprint(privkey[i]));
    }

    buf = calloc(bsize, 1);
    decrypted = calloc(bsize, 1);
    if ((buf == NULL) || (decrypted == NULL)) {
        syserror(0, 0, "calloc failed!");
        exit(1);
    }
    header = (struct uftp_h *)buf;

    while (1) {
        tv = getrecenttimeout();
        if (read_packet(listener, &src, buf, &packetlen,
                        bsize, tv) <= 0) {
            continue;
        }

        if ((header->uftp_id != UFTP_VER_NUM) &&
                (header->uftp_id != UFTP_3_0_VER)) {
            log(0, 0, "Invalid message from %s: not uftp packet "
                      "or invalid version", inet_ntoa(src.sin_addr));
            continue;
        }
        if (packetlen != sizeof(struct uftp_h) + ntohs(header->blsize)) {
            log(0, 0, "Invalid packet size from %s: got %d, expected %d",
                      inet_ntoa(src.sin_addr), packetlen,
                      sizeof(struct uftp_h) + ntohs(header->blsize));
            continue;
        }

        if ((src.sin_addr.s_addr == out_addr.s_addr) &&
                (src.sin_port == htons(port))) {
            // Packet from self -- drop
            continue;
        }
        if (header->func == HB_REQ) {
            handle_hb_request(&src, buf);
            continue;
        }
        if (header->func == HB_RESP) {
            handle_hb_response(listener, &src, buf, hb_hosts, hbhost_count,
                               noname, privkey[0]);
            continue;
        }
        if (header->func == KEY_REQ) {
            handle_key_req(&src, buf);
            continue;
        }
        if (header->func == PROXY_KEY) {
            // Only clients handle these, so drop
            continue;
        }
        if ((proxy_type == SERVER_PROXY) &&
                (down_addr.sin_addr.s_addr == INADDR_ANY)) {
            log(0, 0, "Rejecting message from %s: downstream address "
                      "not established", inet_ntoa(src.sin_addr));
            continue;
        }

        listidx = find_group(ntohl(header->group_id));
        if (header->func == ANNOUNCE) {
            handle_announce(listidx, &src, buf);
        } else {
            if (listidx == -1) {
                continue;
            }
            if (proxy_type == SERVER_PROXY) {
                // Server proxies don't do anything outside of an ANNOUNCE.
                // Just send it on through.
                forward_message(listidx, &src, buf);
                continue;
            }
            if (header->func == ABORT) {
                handle_abort(listidx, &src, buf);
                continue;
            }
            if (!memcmp(&src, &group_list[listidx].up_addr, sizeof(src))) {
                // Downstream message
                if (header->func == KEYINFO) {
                    handle_keyinfo(listidx, buf);
                } else if ((header->func == REG_CONF) &&
                           (group_list[listidx].keytype != KEY_NONE)) {
                    handle_regconf(listidx, buf);
                } else {
                    // If we don't need to process the message, don't bother
                    // decrypting anything.  Just forward it on.
                    forward_message(listidx, &src, buf);
                }
            } else {
                // Upstream message
                // Decrypt first if necessary
                hostidx = find_client(listidx, header->srcaddr);
                if ((hostidx != -1) && (header->func == ENCRYPTED) &&
                        (group_list[listidx].keytype != KEY_NONE)) {
                    if (!validate_and_decrypt(buf, &decrypted, &decryptlen,
                            group_list[listidx].mtu,group_list[listidx].keytype,
                            group_list[listidx].groupkey,
                            group_list[listidx].groupsalt,
                            group_list[listidx].ivlen,
                            group_list[listidx].hashtype,
                            group_list[listidx].grouphmackey,
                            group_list[listidx].hmaclen,
                            group_list[listidx].sigtype,
                            group_list[listidx].destinfo[hostidx].pubkey,
                            group_list[listidx].destinfo[hostidx].pubkeylen)) {
                        log(ntohl(header->group_id), 0, "Rejecting message "
                                "from %s: decrypt/validate failed",
                                inet_ntoa(src.sin_addr));
                        continue;
                    }
                    func = (uint8_t *)decrypted;
                    message = decrypted;
                    meslen = decryptlen;
                } else {
                    if ((hostidx != -1) &&
                            (group_list[listidx].keytype != KEY_NONE) &&
                            ((header->func == INFO_ACK) ||
                             (header->func == STATUS) ||
                             (header->func == COMPLETE))) {
                        log(ntohl(header->group_id), 0, "Rejecting %s message "
                                "from %s: not encrypted", 
                                func_name(header->func),
                                inet_ntoa(src.sin_addr));
                        continue;
                    }
                    func = (uint8_t *)&header->func;
                    message = buf + sizeof(struct uftp_h);
                    meslen = ntohs(header->blsize);
                }

                if ((hostidx == -1) && (header->srcaddr == 0)) {
                    srcaddr = src.sin_addr;
                } else {
                    srcaddr.s_addr = header->srcaddr;
                }
                switch (*func) {
                case REGISTER:
                    handle_register(listidx, hostidx, message, meslen,
                                    srcaddr.s_addr);
                    break;
                case CLIENT_KEY:
                    handle_clientkey(listidx, hostidx, message, meslen,
                                     srcaddr.s_addr);
                    break;
                case INFO_ACK:
                    handle_info_ack(listidx, hostidx, message, meslen);
                    break;
                case STATUS:
                    handle_status(listidx, hostidx, message, meslen);
                    break;
                case COMPLETE:
                    handle_complete(listidx, hostidx, message, meslen);
                    break;
                default:
                    forward_message(listidx, &src, buf);
                    break;
                }
            }
        }
    }
}