예제 #1
0
// Testcase to test hpx_lco_get_all function
static int _getAll_handler(uint32_t *args, size_t size) {
  uint32_t n = *args;
  if (n < 2) {
    return HPX_THREAD_CONTINUE(n);
  }

  hpx_addr_t peers[] = {
    HPX_HERE,
    HPX_HERE
  };

  uint32_t ns[] = {
    n - 1,
    n - 2
  };

  hpx_addr_t futures[] =  {
    hpx_lco_future_new(sizeof(uint32_t)),
    hpx_lco_future_new(sizeof(uint32_t))
  };

  uint32_t ssn[] = {
    0,
    0
  };

  void *addrs[] = {
    &ssn[0],
    &ssn[1]
  };

  size_t sizes[] = {
    sizeof(uint32_t),
    sizeof(uint32_t)
  };

  hpx_call(peers[0], _getAll, futures[0], &ns[0], sizeof(uint32_t));
  hpx_call(peers[1], _getAll, futures[1], &ns[1], sizeof(uint32_t));

  hpx_lco_get_all(2, futures, sizes, addrs, NULL);

  hpx_lco_wait(futures[0]);
  hpx_lco_wait(futures[1]);

  hpx_addr_t wait = hpx_lco_future_new(0);
  hpx_lco_delete_all(2, futures, wait);
  hpx_lco_wait(wait);
  hpx_lco_delete(wait, HPX_NULL);

  uint32_t sn = ssn[0] * ssn[0] + ssn[1] * ssn[1];

  return HPX_THREAD_CONTINUE(sn);
}
예제 #2
0
int _hpx_process_call(hpx_addr_t process, hpx_addr_t addr, hpx_action_t id,
                      hpx_addr_t result, int n, ...) {
  va_list args;
  va_start(args, n);
  hpx_action_t set = hpx_lco_set_action;
  hpx_parcel_t  *p = action_new_parcel_va(id, addr, result, set, n, &args);
  va_end(args);

  if (hpx_thread_current_pid() == hpx_process_getpid(process)) {
    hpx_parcel_send_sync(p);
    return HPX_SUCCESS;
  }

  hpx_addr_t sync = hpx_lco_future_new(0);
  hpx_parcel_t *q = hpx_parcel_acquire(NULL, parcel_size(p));
  q->target = process;
  q->action = _proc_call;
  q->c_target = sync;
  q->c_action = hpx_lco_set_action;
  hpx_parcel_set_data(q, p, parcel_size(p));
  q->pid = 0;
  q->credit = 0;

  EVENT_PROCESS_CALL(process, q->pid);
  hpx_parcel_send_sync(q);

  parcel_delete(p);
  hpx_lco_wait(sync);
  hpx_lco_delete(sync, HPX_NULL);
  return HPX_SUCCESS;
}
예제 #3
0
static int _test_set_lsync_handler(hpx_addr_t lco) {
  hpx_addr_t rsync = hpx_lco_future_new(4);

  printf("\ttesting ... ");
  {
    _cpy(_set, ONES);
    hpx_lco_set_lsync(lco, sizeof(ONES), ONES, HPX_NULL);
    _cpy(_set, ZEROS);
    hpx_lco_get(lco, sizeof(_get), &_get);
    _verify_get();
    _reset(_set, _get, HPX_NULL, lco);
  }
  printf("ok\n");

  printf("\ttesting rsync ... ");
  {
    _cpy(_set, ONES);
    hpx_lco_set_lsync(lco, sizeof(ONES), ONES, rsync);
    _cpy(_set, ZEROS);
    hpx_lco_wait(rsync);
    hpx_lco_get(lco, sizeof(_get), &_get);
    _verify_get();
    _reset(_set, _get, rsync, lco);
  }
  printf("ok\n");

  return hpx_call_cc(rsync, hpx_lco_delete_action);
}
예제 #4
0
static int lco_error_handler(void) {
  printf("Starting the HPX LCO get all test\n");
  hpx_time_t t1 = hpx_time_now();
  hpx_addr_t lco = hpx_lco_future_new(0);
  hpx_addr_t done = hpx_lco_future_new(0);
  hpx_call(HPX_HERE, _errorset, done, &lco, sizeof(lco));
  hpx_status_t status = hpx_lco_wait(lco);
  printf("status == %d\n", status);
  assert(status == HPX_ERROR);
  hpx_lco_wait(done);

  hpx_lco_delete(lco, HPX_NULL);
  hpx_lco_delete(done, HPX_NULL);

  printf(" Elapsed: %.7f\n", hpx_time_elapsed_ms(t1)/1e3);
  return HPX_SUCCESS;
}
/// Use the join_async operation in the allreduce leaf.
static int
_join_async_leaf_handler(hpx_addr_t allreduce, int i, int j, hpx_addr_t sum) {
  int r;
  hpx_addr_t f = hpx_lco_future_new(0);
  CHECK( hpx_lco_allreduce_join_async(allreduce, i, sizeof(j), &j, &r, f) );
  CHECK( hpx_lco_wait(f) );
  hpx_lco_delete(f, HPX_NULL);
  test_assert(r == HPX_LOCALITIES * N * (N + 1) / 2);
  return hpx_call_cc(sum, hpx_lco_set_action, &r, sizeof(r));
}
예제 #6
0
static counter_t _uts_action(void *args, size_t size) 
{
	int i, j;
	struct thread_data *my_data;
	struct thread_data temp, input;
	my_data = (struct thread_data *)args;	

	Node n[my_data->numChildren], *nodePtr;
	counter_t subtreesize = 1, partialCount[my_data->numChildren];

	temp.depth = my_data->depth;
	memcpy(&temp.parent, &my_data->parent, sizeof(Node));
	temp.numChildren = my_data->numChildren;

	//hpx_lco_sema_p (mutex);
	//printf("D: %d; child: %d; spawns:%.0f\n", temp.depth, temp.numChildren, spawns_counter++);
	//hpx_lco_sema_v_sync (mutex);

	/*
	   printf("\n[Node] height = %d; numChildren = %d\n"
	   , temp.parent.height
	   , temp.parent.numChildren);
	   */

	hpx_addr_t theThread = HPX_HERE;
	hpx_addr_t done = hpx_lco_future_new(sizeof(uint64_t));
	// Recurse on the children
	for (i = 0; i < temp.numChildren; i++) {
		nodePtr = &n[i];

		nodePtr->height = temp.parent.height + 1;

		// The following line is the work (one or more SHA-1 ops)
		for (j = 0; j < computeGranularity; j++) {
			rng_spawn(temp.parent.state.state, nodePtr->state.state, i);
		}

		nodePtr->numChildren = uts_numChildren(nodePtr);

		input.depth = temp.depth+1;
		memcpy(&input.parent, nodePtr, sizeof(Node));
		input.numChildren = nodePtr->numChildren;
		//partialCount[i] = parTreeSearch(depth+1, nodePtr, nodePtr->numChildren);
		hpx_call_sync(theThread, _uts, &partialCount[i], sizeof(partialCount[i]), &input, sizeof(input));
	}

	for (i = 0; i < temp.numChildren; i++) {
		subtreesize += partialCount[i];
	}

	HPX_THREAD_CONTINUE(subtreesize);
	return HPX_SUCCESS;
}
예제 #7
0
static int _spawn_handler(hpx_addr_t termination_lco) {
  int e;
  for (size_t i = 0; i < LCOS_PER_LOCALITY; ++i) {
    // test futures
    const hpx_addr_t test_futures[3] = {
      hpx_lco_future_new(0),
      termination_lco,
      hpx_lco_and_new(WAITERS)
    };

    e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _set, HPX_NULL,
                 &test_futures[0], sizeof(hpx_addr_t));
    assert(e == HPX_SUCCESS);

    for(size_t j = 0; j < WAITERS; ++j) {
      e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _wait, test_futures[2],
                   &test_futures[0], sizeof(hpx_addr_t));
      assert(e == HPX_SUCCESS);
    }
    e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _delete, HPX_NULL,
                 test_futures, sizeof(test_futures));
    assert(e == HPX_SUCCESS);

    // test and lco
    const hpx_addr_t test_ands[3] = {
      hpx_lco_and_new(PARTICIPANTS),
      termination_lco,
      hpx_lco_and_new(WAITERS)
    };

    for(size_t j = 0; j < PARTICIPANTS; ++j) {
      e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _set, HPX_NULL,
                   &test_ands[0], sizeof(hpx_addr_t));
      assert(e == HPX_SUCCESS);
    }

    for(size_t j = 0; j < WAITERS; ++j) {
      e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _wait, test_ands[2],
                   &test_ands[0], sizeof(hpx_addr_t));
      assert(e == HPX_SUCCESS);
    }

    e = hpx_call(HPX_THERE(rand() % HPX_LOCALITIES), _delete, HPX_NULL,
                 test_ands, sizeof(test_ands));
    assert(e == HPX_SUCCESS);
  }
  return HPX_SUCCESS;
}
예제 #8
0
/// Use a synchronous join for the allreduce operation.
static int
_allreduce_join_handler(hpx_addr_t allreduce, int iters, size_t size) {
  unsigned char sbuf[size];
  unsigned char rbuf[size];

  for (int i = 0, e = size; i < e; ++i) {
    sbuf[i] = rand();
  }

  int id = (HPX_LOCALITY_ID * HPX_THREADS) + HPX_THREAD_ID;
  hpx_addr_t f = hpx_lco_future_new(0);
  for (int i = 0; i < iters; ++i) {
    hpx_lco_allreduce_join_async(allreduce, id, size, sbuf, rbuf, f);
    hpx_lco_wait_reset(f);
  }
  hpx_lco_delete(f, HPX_NULL);
  return HPX_SUCCESS;
}
예제 #9
0
int parallel_nqueens(int n, int col, int *hist)
{
	hpx_addr_t theThread = HPX_HERE;
	struct thread_data td;
	//td.lyst = hist;
	td.n = n;
	td.col = col;
	memcpy(td.lyst, hist, MAX_SIZE*sizeof(int));
	//printf("thread_data size:%d\n", sizeof(struct thread_data));
	mutex = hpx_lco_sema_new(1);

	//solve(td.n, td.col, td.lyst);
	hpx_addr_t done = hpx_lco_future_new(sizeof(uint64_t));
	hpx_call(theThread, _nqueens, done, &td, sizeof(td));
	hpx_lco_wait(done);
	hpx_lco_delete(done, HPX_NULL);

	return HPX_SUCCESS;
}
예제 #10
0
counter_t parallel_uts ( Node *root )
{
	struct thread_data input;
	hpx_time_t start;
	hpx_addr_t theThread = HPX_HERE;
	counter_t num_nodes;

	input.depth = 0;
	memcpy(&input.parent, root, sizeof(Node));
	input.numChildren = getNumRootChildren(root);

	printf("Computing Unbalance Tree Search algorithm ");

	hpx_addr_t done = hpx_lco_future_new(sizeof(uint64_t));

	start = hpx_time_now();
	hpx_call_sync(theThread, _uts, &num_nodes, sizeof(num_nodes), &input, sizeof(input));
	bots_time_program = hpx_time_elapsed_ms(start)/1e3;

	printf(" completed!");

	return num_nodes;
}
예제 #11
0
int future_at_handler(void) {
  hpx_addr_t f = hpx_lco_future_new(0);
  return HPX_THREAD_CONTINUE(f);
}
예제 #12
0
static int _new_future_at_handler(void) {
  hpx_addr_t future = hpx_lco_future_new(sizeof(ONES));
  return HPX_THREAD_CONTINUE(future);
}
예제 #13
0
static int _main_action(int *args, size_t size) {
  hpx_time_t t;
  int count;

  fprintf(stdout, HEADER);
  fprintf(stdout, "# Latency in (ms)\n");

  t = hpx_time_now();
  hpx_addr_t done = hpx_lco_future_new(0);
  fprintf(stdout, "Creation time: %g\n", hpx_time_elapsed_ms(t));

  value = 1234;

  t = hpx_time_now();
  hpx_call(HPX_HERE, _set_value, done, &value, sizeof(value));
  fprintf(stdout, "Value set time: %g\n", hpx_time_elapsed_ms(t));

  t = hpx_time_now();
  hpx_lco_wait(done);
  fprintf(stdout, "Wait time: %g\n", hpx_time_elapsed_ms(t));

  t = hpx_time_now();
  hpx_lco_delete(done, HPX_NULL);
  fprintf(stdout, "Deletion time: %g\n", hpx_time_elapsed_ms(t));

  fprintf(stdout, "%s\t%*s%*s%*s\n", "# NumReaders " , FIELD_WIDTH,
         "Get_Value ", FIELD_WIDTH, " LCO_Getall ", FIELD_WIDTH, "Delete");

  for (int i = 0; i < sizeof(num_readers)/sizeof(num_readers[0]); i++) {
    fprintf(stdout, "%d\t\t", num_readers[i]);
    count = num_readers[i];
    int values[count];
    void *addrs[count];
    size_t sizes[count];
    hpx_addr_t futures[count];

    for (int j = 0; j < count; j++) {
      addrs[j] = &values[j];
      sizes[j] = sizeof(int);
      futures[j] = hpx_lco_future_new(sizeof(int));
    }

    t = hpx_time_now();
    for (int j = 0; j < count; j++) {
      t = hpx_time_now();
      hpx_call(HPX_HERE, _get_value, futures[j], NULL, 0);
      hpx_lco_wait(futures[j]);
    }
    fprintf(stdout, "%*g", FIELD_WIDTH, hpx_time_elapsed_ms(t));

    t = hpx_time_now();
    hpx_lco_get_all(count, futures, sizes, addrs, NULL);
    fprintf(stdout, "%*g", FIELD_WIDTH, hpx_time_elapsed_ms(t));

    t = hpx_time_now();
    for (int j = 0; j < count; j++)
      hpx_lco_delete(futures[j], HPX_NULL);
    fprintf(stdout, "%*g\n", FIELD_WIDTH, hpx_time_elapsed_ms(t));
  }
  hpx_exit(HPX_SUCCESS);
}
예제 #14
0
static int _nqueens_action(void *args, size_t size)
{
	int i, j;
	struct thread_data *my_data;
	my_data = (struct thread_data *) args;

	/*
	printf("n = %d, col = %d, count = %d\n", my_data->n
			, my_data->col
			, count);
	*/

	if (my_data->col == my_data->n) {
		hpx_lco_sema_p(mutex);
		++count;
		/*				
						printf("\nNo. %d\n-----\n", count);
						for (i = 0; i < my_data->n; i++, putchar('\n'))
						for(j = 0; j < my_data->n; j++)
						putchar(j == my_data->lyst[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.');
						*/
		hpx_lco_sema_v_sync(mutex);

		hpx_thread_exit(HPX_SUCCESS);
		//hpx_thread_continue(NULL, 0);
		//return HPX_SUCCESS;
	}


#define p_attack(i, j) (my_data->lyst[j] == i || abs(my_data->lyst[j] - i) == my_data->col - j)

	int dummy=0;
	int num_spawns=0;
	for(i = 0, j = 0; i < my_data->n; i++) {
		for (j = 0; j < my_data->col && !p_attack(i, j); j++);
		if (j < my_data->col) {
			dummy++;
		}
	}
	//printf("dummy/spawns: %d/%d\n", dummy, my_data->n);

	num_spawns = my_data->n - dummy;
	bool D_CALL = false;

	//printf("num_spawns = %d\n", num_spawns);
	if( num_spawns == 0 ) {
		num_spawns = 1;
		D_CALL = true;
	}

	//num_spawns = my_data->n;
	struct thread_data temp[num_spawns];
	hpx_addr_t futures[num_spawns];
	hpx_addr_t threads[num_spawns];
	int pqs[num_spawns];
	size_t p_size[num_spawns];
	void *addrs[num_spawns];

	for(i = 0; i < num_spawns; i++) {
		futures[i] = hpx_lco_future_new(sizeof(int));
		threads[i] = HPX_HERE;
		pqs[i] = 0;
		addrs[i] = &pqs[i];
		p_size[i] = sizeof(size_t);
	}

	int k=0; // counter for hpx data
	for(i = 0, j = 0; i < my_data->n; i++) {
		for (j = 0; j < my_data->col && !p_attack(i, j); j++);
		if (j < my_data->col) {
			//printf("[%d] call continue.\n", i);
			continue;
		}
		//printf("[%d] call nqueens %d\n", i, k);

		my_data->lyst[my_data->col] = i;

		memcpy(temp[k].lyst, my_data->lyst, MAX_SIZE*sizeof(int));
		temp[k].n    = my_data->n;
		temp[k].col  = my_data->col+1;

		//solve(n, col + 1, hist);
		hpx_call(threads[k], _nqueens, futures[k], (void *)&temp[k], sizeof(temp[k]));
		k++;
	}

	if( !D_CALL ) {
		hpx_lco_get_all(num_spawns, futures, p_size, addrs, NULL);

		for(i = 0; i < num_spawns; i++)
			hpx_lco_delete(futures[i], HPX_NULL);
	}

	return HPX_SUCCESS;
}
static int
_new_future_handler(void) {
  hpx_addr_t f = hpx_lco_future_new(sizeof(int));
  return hpx_thread_continue(&f, sizeof(f));
}