예제 #1
0
/*--------------------------------------------------------------------------
 * hypre_SStructSharedDOF_ParcsrMatRowsComm
 *   Given a sstruct_grid & parcsr matrix with rows corresponding to the
 *   sstruct_grid, determine and extract the rows that must be communicated.
 *   These rows are for shared dof that geometrically lie on processor 
 *   boundaries but internally are stored on one processor.
 *   Algo:
 *       for each cellbox
 *         RECVs:
 *          i)  stretch the cellbox to the variable box
 *          ii) in the appropriate (dof-dependent) direction, take the
 *              boundary and boxman_intersect to extract boxmanentries
 *              that contain these boundary edges.
 *          iii)loop over the boxmanentries and see if they belong
 *              on this proc or another proc
 *                 a) if belong on another proc, these are the recvs:
 *                    count and prepare the communication buffers and
 *                    values.
 *          
 *         SENDs:
 *          i)  form layer of cells that is one layer off cellbox
 *              (stretches in the appropriate direction)
 *          ii) boxman_intersect with the cellgrid boxman
 *          iii)loop over the boxmanentries and see if they belong
 *              on this proc or another proc
 *                 a) if belong on another proc, these are the sends:
 *                    count and prepare the communication buffers and
 *                    values.
 *
 * Note: For the recv data, the dof can come from only one processor.
 *       For the send data, the dof can go to more than one processor 
 *       (the same dof is on the boundary of several cells).
 *--------------------------------------------------------------------------*/
HYPRE_Int
hypre_SStructSharedDOF_ParcsrMatRowsComm( hypre_SStructGrid    *grid,
                                          hypre_ParCSRMatrix   *A,
                                          HYPRE_Int            *num_offprocrows_ptr,
                                          hypre_MaxwellOffProcRow ***OffProcRows_ptr)
{
   MPI_Comm             A_comm= hypre_ParCSRMatrixComm(A);
   MPI_Comm          grid_comm= hypre_SStructGridComm(grid);

   HYPRE_Int       matrix_type= HYPRE_PARCSR;

   HYPRE_Int            nparts= hypre_SStructGridNParts(grid);
   HYPRE_Int            ndim  = hypre_SStructGridNDim(grid);

   hypre_SStructGrid     *cell_ssgrid;

   hypre_SStructPGrid    *pgrid;
   hypre_StructGrid      *cellgrid;
   hypre_BoxArray        *cellboxes;
   hypre_Box             *box, *cellbox, vbox, boxman_entry_box;

   hypre_Index            loop_size, start;
   HYPRE_Int              loopi, loopj, loopk;
   HYPRE_Int              start_rank, end_rank, rank; 

   HYPRE_Int              i, j, k, m, n, t, part, var, nvars;

   HYPRE_SStructVariable *vartypes;
   HYPRE_Int              nbdry_slabs;
   hypre_BoxArray        *recv_slabs, *send_slabs;
   hypre_Index            varoffset;

   hypre_BoxManager     **boxmans, *cell_boxman;
   hypre_BoxManEntry    **boxman_entries, *entry;
   HYPRE_Int              nboxman_entries;

   hypre_Index            ishift, jshift, kshift, zero_index;
   hypre_Index            ilower, iupper, index;

   HYPRE_Int              proc, nprocs, myproc;
   HYPRE_Int             *SendToProcs, *RecvFromProcs;
   HYPRE_Int            **send_RowsNcols;       /* buffer for rows & ncols */
   HYPRE_Int             *send_RowsNcols_alloc; 
   HYPRE_Int             *send_ColsData_alloc;
   HYPRE_Int             *tot_nsendRowsNcols, *tot_sendColsData;
   double               **vals;  /* buffer for cols & data */

   HYPRE_Int             *col_inds;
   double                *values;

   hypre_MPI_Request           *requests;
   hypre_MPI_Status            *status;
   HYPRE_Int            **rbuffer_RowsNcols;
   double               **rbuffer_ColsData;
   HYPRE_Int              num_sends, num_recvs;

   hypre_MaxwellOffProcRow **OffProcRows;
   HYPRE_Int                *starts;

   HYPRE_Int              ierr= 0;

   hypre_MPI_Comm_rank(A_comm, &myproc);
   hypre_MPI_Comm_size(grid_comm, &nprocs);

   start_rank= hypre_ParCSRMatrixFirstRowIndex(A);
   end_rank  = hypre_ParCSRMatrixLastRowIndex(A);

   hypre_SetIndex(ishift, 1, 0, 0);
   hypre_SetIndex(jshift, 0, 1, 0);
   hypre_SetIndex(kshift, 0, 0, 1);
   hypre_SetIndex(zero_index, 0, 0, 0);

  /* need a cellgrid boxman to determine the send boxes -> only the cell dofs
     are unique so a boxman intersect can be used to get the edges that
     must be sent. */
   HYPRE_SStructGridCreate(grid_comm, ndim, nparts, &cell_ssgrid);
   vartypes= hypre_CTAlloc(HYPRE_SStructVariable, 1);
   vartypes[0]= HYPRE_SSTRUCT_VARIABLE_CELL;

   for (i= 0; i< nparts; i++)
   {
      pgrid= hypre_SStructGridPGrid(grid, i);
      cellgrid= hypre_SStructPGridCellSGrid(pgrid);

      cellboxes= hypre_StructGridBoxes(cellgrid);
      hypre_ForBoxI(j, cellboxes)
      {
         box= hypre_BoxArrayBox(cellboxes, j);
         HYPRE_SStructGridSetExtents(cell_ssgrid, i,
                                     hypre_BoxIMin(box), hypre_BoxIMax(box));
      }
      HYPRE_SStructGridSetVariables(cell_ssgrid, i, 1, vartypes);
   }
예제 #2
0
int
main(int argc, char *argv[])
{
    GRID *g;
    DOF *u_h;
    MAT *A, *A0, *B;
    MAP *map;
    INT i;
    size_t nnz, mem, mem_peak;
    VEC *x, *y0, *y1, *y2;
    double t0, t1, dnz, dnz1, mflops, mop;
    char *fn = "../test/cube.dat";
    FLOAT mem_max = 300;
    INT refine = 0;

    phgOptionsRegisterFilename("-mesh_file", "Mesh file", (char **)&fn);
    phgOptionsRegisterInt("-loop_count", "Loop count", &loop_count);
    phgOptionsRegisterInt("-refine", "Refinement level", &refine);
    phgOptionsRegisterFloat("-mem_max", "Maximum memory", &mem_max);

    phgInit(&argc, &argv);
    g = phgNewGrid(-1);
    if (!phgImport(g, fn, FALSE))
	phgError(1, "can't read file \"%s\".\n", fn);
    phgRefineAllElements(g, refine);
    u_h = phgDofNew(g, DOF_DEFAULT, 1, "u_h", DofNoAction);

    while (TRUE) {
	phgPrintf("\n");
	if (phgBalanceGrid(g, 1.2, 1, NULL, 0.))
	    phgPrintf("Repartition mesh, %d submeshes, load imbalance: %lg\n",
			g->nprocs, (double)g->lif);
	map = phgMapCreate(u_h, NULL);
	A = phgMapCreateMat(map, map);
	A->handle_bdry_eqns = TRUE;
	build_matrix(A, u_h);
	phgMatAssemble(A);

	/* Note: A is unsymmetric (A' != A) if boundary entries not removed */
	phgMatRemoveBoundaryEntries(A);

#if 0
	/* test block matrix operation */
	A0 = phgMatCreateBlockMatrix(g->comm, 1, 1, &A, NULL);
#else
	A0 = A;
#endif

	phgPrintf("%d DOF, %d elems, %d submeshes, matrix size: %d, LIF: %lg\n",
			DofGetDataCountGlobal(u_h), g->nleaf_global,
			g->nprocs, A->rmap->nglobal, (double)g->lif);

	/* test PHG mat-vec multiply */
	x = phgMapCreateVec(A->cmap, 1);
	y1 = phgMapCreateVec(A->rmap, 1);
	phgVecRandomize(x, 123);
	phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1);

	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	for (i = 0; i < loop_count; i++) {
	    phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1);
	}
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	y0 = phgVecCopy(y1, NULL);
	nnz = A->nnz_d + A->nnz_o;
#if USE_MPI
	dnz1 = nnz;
	MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	dnz = nnz;
#endif
	mop = loop_count * (dnz + dnz - A->rmap->nlocal) * 1e-6;

	phgPrintf("\n");
	t1 -= t0;
	phgPrintf("   PHG:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF)\n",
			t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops);

	/* test trans(A)*x */
	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	for (i = 0; i < loop_count; i++) {
	    phgMatVec(MAT_OP_T, 1.0, A0, x, 0.0, &y1);
	}
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	t1 -= t0;
	phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		  "err: %le\n", t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	/* time A * trans(A) */
	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	B = phgMatMat(MAT_OP_N, MAT_OP_N, 1.0, A, A, 0.0, NULL);
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	nnz = B->nnz_d + B->nnz_o;
#if USE_MPI
	dnz1 = nnz;
	MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	dnz = nnz;
#endif
	/* compare B*x <--> A*A*x */
	y2 = phgMatVec(MAT_OP_N, 1.0, B, x, 0.0, NULL);
	phgMatVec(MAT_OP_N, 1.0, A0, y0, 0.0, &y1);
	phgMatDestroy(&B);
	t1 -= t0;
	phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

#if USE_PETSC
	{
	    Mat ma, mb;
	    MatInfo info;
	    Vec va, vb, vc;
	    PetscScalar *vec;

	    ma = phgPetscCreateMatAIJ(A);
	    MatGetVecs(ma, PETSC_NULL, &va);
	    VecDuplicate(va, &vb);
	    VecGetArray(va, &vec);
	    memcpy(vec, x->data, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(va, &vec);
	    MatMult(ma, va, vb);
	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		MatMult(ma, va, vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);

	    MatGetInfo(ma, MAT_GLOBAL_SUM, &info);
	    /*phgPrintf("    --------------------------------------------"
		      "-------------------------\n");*/
	    phgPrintf("\n");
	    t1 -= t0;
	    dnz = info.nz_used;
	    phgPrintf(" PETSc:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		MatMultTranspose(ma, va, vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);
	    t1 -= t0;
	    phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    MatMatMult(ma, ma, MAT_INITIAL_MATRIX, PETSC_DEFAULT, &mb);
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    t1 -= t0;
	    MatGetInfo(mb, MAT_GLOBAL_SUM, &info);
	    dnz = info.nz_used;
	    VecDuplicate(va, &vc);
	    /* compare B*x <--> A*A*x */
	    MatMult(ma, vb, vc);
	    MatMult(mb, va, vb);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);
	    VecGetArray(vc, &vec);
	    memcpy(y2->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vc, &vec);
	    phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

	    phgPetscMatDestroy(&mb);
	    phgPetscMatDestroy(&ma);
	    phgPetscVecDestroy(&va);
	    phgPetscVecDestroy(&vb);
	    phgPetscVecDestroy(&vc);
	}
#endif	/* USE_PETSC */

#if USE_HYPRE
	{
	    HYPRE_IJMatrix ma;
	    HYPRE_IJVector va, vb, vc;
	    HYPRE_ParCSRMatrix  par_ma;
	    hypre_ParCSRMatrix  *par_mb;
	    HYPRE_ParVector	par_va, par_vb, par_vc;
	    HYPRE_Int offset, *ni, start, end;
	    assert(sizeof(INT)==sizeof(int) && sizeof(FLOAT)==sizeof(double));
	    setup_hypre_mat(A, &ma);
	    ni = phgAlloc(2 * A->rmap->nlocal * sizeof(*ni));
	    offset = A->cmap->partition[A->cmap->rank];
	    for (i = 0; i < A->rmap->nlocal; i++)
		ni[i] = i + offset;
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &va);
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &vb);
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &vc);
	    HYPRE_IJVectorSetObjectType(va, HYPRE_PARCSR);
	    HYPRE_IJVectorSetObjectType(vb, HYPRE_PARCSR);
	    HYPRE_IJVectorSetObjectType(vc, HYPRE_PARCSR);
	    HYPRE_IJVectorSetMaxOffProcElmts(va, 0);
	    HYPRE_IJVectorSetMaxOffProcElmts(vb, 0);
	    HYPRE_IJVectorSetMaxOffProcElmts(vc, 0);
	    HYPRE_IJVectorInitialize(va);
	    HYPRE_IJVectorInitialize(vb);
	    HYPRE_IJVectorInitialize(vc);
	    HYPRE_IJMatrixGetObject(ma, (void **)(void *)&par_ma);
	    HYPRE_IJVectorGetObject(va, (void **)(void *)&par_va);
	    HYPRE_IJVectorGetObject(vb, (void **)(void *)&par_vb);
	    HYPRE_IJVectorGetObject(vc, (void **)(void *)&par_vc);
	    HYPRE_IJVectorSetValues(va, A->cmap->nlocal, ni, (double *)x->data);
	    HYPRE_IJVectorAssemble(va);
	    HYPRE_IJVectorAssemble(vb);
	    HYPRE_IJVectorAssemble(vc);

	    HYPRE_IJMatrixGetRowCounts(ma, A->cmap->nlocal,
					ni, ni + A->rmap->nlocal);
	    for (i = 0, nnz = 0; i < A->rmap->nlocal; i++)
		nnz += ni[A->rmap->nlocal + i];
#if USE_MPI
	    dnz1 = nnz;
	    MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	    dnz = nnz;
#endif

	    HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb);
	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    /*phgPrintf("    --------------------------------------------"
		      "-------------------------\n");*/
	    phgPrintf("\n");
	    t1 -= t0;
	    phgPrintf(" HYPRE:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		HYPRE_ParCSRMatrixMatvecT(1.0, par_ma, par_va, 0.0, par_vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    t1 -= t0;
	    phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    /* Note: 'HYPRE_ParCSRMatrix' is currently typedef'ed to
	     *	     'hypre_ParCSRMatrix *' */
	    par_mb = hypre_ParMatmul((hypre_ParCSRMatrix *)par_ma,
					(hypre_ParCSRMatrix *)par_ma);
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    start = hypre_ParCSRMatrixFirstRowIndex(par_mb);
	    end = hypre_ParCSRMatrixLastRowIndex(par_mb) + 1;
	    for (i = start, nnz = 0; i < end; i++) {
		HYPRE_Int ncols;
		hypre_ParCSRMatrixGetRow(par_mb, i, &ncols, NULL, NULL);
		hypre_ParCSRMatrixRestoreRow(par_mb, i, &ncols, NULL, NULL);
		nnz += ncols;
	    }
#if USE_MPI
	    dnz1 = nnz;
	    MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	    dnz = nnz;
#endif
	    /* compare B*x <--> A*A*x */
	    HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_vb, 0.0, par_vc);
	    HYPRE_ParCSRMatrixMatvec(1.0, (void *)par_mb, par_va, 0.0, par_vb);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    HYPRE_IJVectorGetValues(vc, A->rmap->nlocal, ni, (double*)y2->data);
	    hypre_ParCSRMatrixDestroy((par_mb));
	    t1 -= t0;
	    phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

	    phgFree(ni);
	    HYPRE_IJMatrixDestroy(ma);
	    HYPRE_IJVectorDestroy(va);
	    HYPRE_IJVectorDestroy(vb);
	    HYPRE_IJVectorDestroy(vc);
	}
#endif	/* USE_HYPRE */

	if (A0 != A)
	    phgMatDestroy(&A0);
#if 0
if (A->rmap->nglobal > 1000) {
    VEC *v = phgMapCreateVec(A->rmap, 3);
    for (i = 0; i < v->map->nlocal; i++) {
	v->data[i + 0 * v->map->nlocal] = 1 * (i + v->map->partition[g->rank]);
	v->data[i + 1 * v->map->nlocal] = 2 * (i + v->map->partition[g->rank]);
	v->data[i + 2 * v->map->nlocal] = 3 * (i + v->map->partition[g->rank]);
    }
    phgMatDumpMATLAB(A, "A", "A.m");
    phgVecDumpMATLAB(v, "v", "v.m");
    phgFinalize();
    exit(0);
}
#endif
	phgMatDestroy(&A);
	phgVecDestroy(&x);
	phgVecDestroy(&y0);
	phgVecDestroy(&y1);
	phgVecDestroy(&y2);
	phgMapDestroy(&map);
	mem = phgMemoryUsage(g, &mem_peak);
	dnz = mem / (1024.0 * 1024.0);
	dnz1 = mem_peak / (1024.0 * 1024.0);
	/*phgPrintf("    --------------------------------------------"
		  "-------------------------\n");*/
	phgPrintf("\n");
	phgPrintf("  Memory: current %0.4lgMB, peak %0.4lgMB\n", dnz, dnz1);
#if 0
{
    static int loop_count = 0;
    if (++loop_count == 4)
	break;
}
#endif
	if (mem_peak > 1024 * (size_t)1024 * mem_max)
	    break;
	phgRefineAllElements(g, 1);
    }
    phgDofFree(&u_h);
    phgFreeGrid(&g);
    phgFinalize();

    return 0;
}