예제 #1
0
/*
 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 * step).  The basic idea is for the slave to ask the master what itc value it has and to
 * read its own itc before and after the master responds.  Each iteration gives us three
 * timestamps:
 *
 *	slave		master
 *
 *	t0 ---\
 *             ---\
 *		   --->
 *			tm
 *		   /---
 *	       /---
 *	t1 <---
 *
 *
 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 * between the slave and the master is symmetric.  Even if the interconnect were
 * asymmetric, we would still know that the synchronization error is smaller than the
 * roundtrip latency (t0 - t1).
 *
 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 * accurate to within a round-trip time, which is typically in the range of several
 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 * than half a micro second or so.
 */
void
ia64_sync_itc (unsigned int master)
{
	long i, delta, adj, adjust_latency = 0, done = 0;
	unsigned long flags, rt, master_time_stamp, bound;
#if DEBUG_ITC_SYNC
	struct {
		long rt;	/* roundtrip time */
		long master;	/* master's timestamp */
		long diff;	/* difference between midpoint and master's timestamp */
		long lat;	/* estimate of itc adjustment latency */
	} t[NUM_ROUNDS];
#endif

	go[MASTER] = 1;

	if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
		printk("sync_itc: failed to get attention of CPU %u!\n", master);
		return;
	}

	while (go[MASTER]);	/* wait for master to be ready */

	spin_lock_irqsave(&itc_sync_lock, flags);
	{
		for (i = 0; i < NUM_ROUNDS; ++i) {
			delta = get_delta(&rt, &master_time_stamp);
			if (delta == 0) {
				done = 1;	/* let's lock on to this... */
				bound = rt;
			}

			if (!done) {
				if (i > 0) {
					adjust_latency += -delta;
					adj = -delta + adjust_latency/4;
				} else
					adj = -delta;

				ia64_set_itc(ia64_get_itc() + adj);
			}
#if DEBUG_ITC_SYNC
			t[i].rt = rt;
			t[i].master = master_time_stamp;
			t[i].diff = delta;
			t[i].lat = adjust_latency/4;
#endif
		}
	}
	spin_unlock_irqrestore(&itc_sync_lock, flags);

#if DEBUG_ITC_SYNC
	for (i = 0; i < NUM_ROUNDS; ++i)
		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
#endif

	printk("CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, maxerr %lu cycles)\n",
	       smp_processor_id(), master, delta, rt);
}
예제 #2
0
/*
 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 * step).  The basic idea is for the slave to ask the master what itc value it has and to
 * read its own itc before and after the master responds.  Each iteration gives us three
 * timestamps:
 *
 *	slave		master
 *
 *	t0 ---\
 *             ---\
 *		   --->
 *			tm
 *		   /---
 *	       /---
 *	t1 <---
 *
 *
 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 * between the slave and the master is symmetric.  Even if the interconnect were
 * asymmetric, we would still know that the synchronization error is smaller than the
 * roundtrip latency (t0 - t1).
 *
 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 * accurate to within a round-trip time, which is typically in the range of several
 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 * than half a micro second or so.
 */
void
ia64_sync_itc (unsigned int master)
{
	long i, delta, adj, adjust_latency = 0, done = 0;
	unsigned long flags, rt, master_time_stamp, bound;
#if DEBUG_ITC_SYNC
	struct {
		long rt;	/* roundtrip time */
		long master;	/* master's timestamp */
		long diff;	/* difference between midpoint and master's timestamp */
		long lat;	/* estimate of itc adjustment latency */
	} t[NUM_ROUNDS];
#endif

	/*
	 * Make sure local timer ticks are disabled while we sync.  If
	 * they were enabled, we'd have to worry about nasty issues
	 * like setting the ITC ahead of (or a long time before) the
	 * next scheduled tick.
	 */
	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);

	go[MASTER] = 1;

	if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
		return;
	}

	while (go[MASTER])
		cpu_relax();	/* wait for master to be ready */

	spin_lock_irqsave(&itc_sync_lock, flags);
	{
		for (i = 0; i < NUM_ROUNDS; ++i) {
			delta = get_delta(&rt, &master_time_stamp);
			if (delta == 0) {
				done = 1;	/* let's lock on to this... */
				bound = rt;
			}

			if (!done) {
				if (i > 0) {
					adjust_latency += -delta;
					adj = -delta + adjust_latency/4;
				} else
					adj = -delta;

				ia64_set_itc(ia64_get_itc() + adj);
			}
#if DEBUG_ITC_SYNC
			t[i].rt = rt;
			t[i].master = master_time_stamp;
			t[i].diff = delta;
			t[i].lat = adjust_latency/4;
#endif
		}
	}
	spin_unlock_irqrestore(&itc_sync_lock, flags);

#if DEBUG_ITC_SYNC
	for (i = 0; i < NUM_ROUNDS; ++i)
		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
#endif

	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
}
예제 #3
0
/*
 * cpu_init() initializes state that is per-CPU.  This function acts
 * as a 'CPU state barrier', nothing should get across.
 */
void
cpu_init (void)
{
	extern void __devinit ia64_mmu_init (void *);
	unsigned long num_phys_stacked;
	pal_vm_info_2_u_t vmi;
	unsigned int max_ctx;
	struct cpuinfo_ia64 *cpu_info;
	void *cpu_data;

	cpu_data = per_cpu_init();

	get_max_cacheline_size();

	/*
	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
	 * depends on the data returned by identify_cpu().  We break the dependency by
	 * accessing cpu_data() through the canonical per-CPU address.
	 */
	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
	identify_cpu(cpu_info);

#ifdef CONFIG_MCKINLEY
	{
#		define FEATURE_SET 16
		struct ia64_pal_retval iprv;

		if (cpu_info->family == 0x1f) {
			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
				              (iprv.v1 | 0x80), FEATURE_SET, 0);
		}
	}
#endif

	/* Clear the stack memory reserved for pt_regs: */
	memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));

	ia64_set_kr(IA64_KR_FPU_OWNER, 0);

	/*
	 * Initialize default control register to defer all speculative faults.  The
	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
	 * the kernel must have recovery code for all speculative accesses).  Turn on
	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
	 * be fine).
	 */
	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
	if (current->mm)
		BUG();

	ia64_mmu_init(ia64_imva(cpu_data));

#ifdef CONFIG_IA32_SUPPORT
	ia32_cpu_init();
#endif

	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
	ia64_set_itc(0);

	/* disable all local interrupt sources: */
	ia64_set_itv(1 << 16);
	ia64_set_lrr0(1 << 16);
	ia64_set_lrr1(1 << 16);
	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

	/* clear TPR & XTP to enable all interrupt classes: */
	ia64_setreg(_IA64_REG_CR_TPR, 0);
#ifdef CONFIG_SMP
	normal_xtp();
#endif

	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
	else {
		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
		max_ctx = (1U << 15) - 1;	/* use architected minimum */
	}
	while (max_ctx < ia64_ctx.max_ctx) {
		unsigned int old = ia64_ctx.max_ctx;
		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
			break;
	}

	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
		       "stacked regs\n");
		num_phys_stacked = 96;
	}
	/* size of physical stacked register partition plus 8 bytes: */
	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
	platform_cpu_init();
}