예제 #1
0
파일: pn00a.c 프로젝트: Jvinniec/CppEphem
void iauPn00a(double date1, double date2,
              double *dpsi, double *deps, double *epsa,
              double rb[3][3], double rp[3][3], double rbp[3][3],
              double rn[3][3], double rbpn[3][3])
/*
**  - - - - - - - - -
**   i a u P n 0 0 a
**  - - - - - - - - -
**
**  Precession-nutation, IAU 2000A model:  a multi-purpose function,
**  supporting classical (equinox-based) use directly and CIO-based
**  use indirectly.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     date1,date2  double          TT as a 2-part Julian Date (Note 1)
**
**  Returned:
**     dpsi,deps    double          nutation (Note 2)
**     epsa         double          mean obliquity (Note 3)
**     rb           double[3][3]    frame bias matrix (Note 4)
**     rp           double[3][3]    precession matrix (Note 5)
**     rbp          double[3][3]    bias-precession matrix (Note 6)
**     rn           double[3][3]    nutation matrix (Note 7)
**     rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)
**
**  Notes:
**
**  1)  The TT date date1+date2 is a Julian Date, apportioned in any
**      convenient way between the two arguments.  For example,
**      JD(TT)=2450123.7 could be expressed in any of these ways,
**      among others:
**
**             date1          date2
**
**          2450123.7           0.0       (JD method)
**          2451545.0       -1421.3       (J2000 method)
**          2400000.5       50123.2       (MJD method)
**          2450123.5           0.2       (date & time method)
**
**      The JD method is the most natural and convenient to use in
**      cases where the loss of several decimal digits of resolution
**      is acceptable.  The J2000 method is best matched to the way
**      the argument is handled internally and will deliver the
**      optimum resolution.  The MJD method and the date & time methods
**      are both good compromises between resolution and convenience.
**
**  2)  The nutation components (luni-solar + planetary, IAU 2000A) in
**      longitude and obliquity are in radians and with respect to the
**      equinox and ecliptic of date.  Free core nutation is omitted;
**      for the utmost accuracy, use the iauPn00  function, where the
**      nutation components are caller-specified.  For faster but
**      slightly less accurate results, use the iauPn00b function.
**
**  3)  The mean obliquity is consistent with the IAU 2000 precession.
**
**  4)  The matrix rb transforms vectors from GCRS to J2000.0 mean
**      equator and equinox by applying frame bias.
**
**  5)  The matrix rp transforms vectors from J2000.0 mean equator and
**      equinox to mean equator and equinox of date by applying
**      precession.
**
**  6)  The matrix rbp transforms vectors from GCRS to mean equator and
**      equinox of date by applying frame bias then precession.  It is
**      the product rp x rb.
**
**  7)  The matrix rn transforms vectors from mean equator and equinox
**      of date to true equator and equinox of date by applying the
**      nutation (luni-solar + planetary).
**
**  8)  The matrix rbpn transforms vectors from GCRS to true equator and
**      equinox of date.  It is the product rn x rbp, applying frame
**      bias, precession and nutation in that order.
**
**  9)  The X,Y,Z coordinates of the IAU 2000A Celestial Intermediate
**      Pole are elements (3,1-3) of the GCRS-to-true matrix,
**      i.e. rbpn[2][0-2].
**
**  10) It is permissible to re-use the same array in the returned
**      arguments.  The arrays are filled in the order given.
**
**  Called:
**     iauNut00a    nutation, IAU 2000A
**     iauPn00      bias/precession/nutation results, IAU 2000
**
**  Reference:
**
**     Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
**     "Expressions for the Celestial Intermediate Pole and Celestial
**     Ephemeris Origin consistent with the IAU 2000A precession-
**     nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
**
**     n.b. The celestial ephemeris origin (CEO) was renamed "celestial
**          intermediate origin" (CIO) by IAU 2006 Resolution 2.
**
**  This revision:  2013 November 14
**
**  SOFA release 2017-04-20
**
**  Copyright (C) 2017 IAU SOFA Board.  See notes at end.
*/
{
/* Nutation. */
   iauNut00a(date1, date2, dpsi, deps);

/* Remaining results. */
   iauPn00(date1, date2, *dpsi, *deps, epsa, rb, rp, rbp, rn, rbpn);

   return;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2017
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}
예제 #2
0
파일: pn00b.c 프로젝트: tohka/celes
void iauPn00b(double date1, double date2,
              double *dpsi, double *deps, double *epsa,
              double rb[3][3], double rp[3][3], double rbp[3][3],
              double rn[3][3], double rbpn[3][3])
/*
**  - - - - - - - - -
**   i a u P n 0 0 b
**  - - - - - - - - -
**
**  Precession-nutation, IAU 2000B model:  a multi-purpose function,
**  supporting classical (equinox-based) use directly and CIO-based
**  use indirectly.
**
**  Status:  support function.
**
**  Given:
**     date1,date2  double          TT as a 2-part Julian Date (Note 1)
**
**  Returned:
**     dpsi,deps    double          nutation (Note 2)
**     epsa         double          mean obliquity (Note 3)
**     rb           double[3][3]    frame bias matrix (Note 4)
**     rp           double[3][3]    precession matrix (Note 5)
**     rbp          double[3][3]    bias-precession matrix (Note 6)
**     rn           double[3][3]    nutation matrix (Note 7)
**     rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)
**
**  Notes:
**
**  1)  The TT date date1+date2 is a Julian Date, apportioned in any
**      convenient way between the two arguments.  For example,
**      JD(TT)=2450123.7 could be expressed in any of these ways,
**      among others:
**
**             date1          date2
**
**          2450123.7           0.0       (JD method)
**          2451545.0       -1421.3       (J2000 method)
**          2400000.5       50123.2       (MJD method)
**          2450123.5           0.2       (date & time method)
**
**      The JD method is the most natural and convenient to use in
**      cases where the loss of several decimal digits of resolution
**      is acceptable.  The J2000 method is best matched to the way
**      the argument is handled internally and will deliver the
**      optimum resolution.  The MJD method and the date & time methods
**      are both good compromises between resolution and convenience.
**
**  2)  The nutation components (luni-solar + planetary, IAU 2000B) in
**      longitude and obliquity are in radians and with respect to the
**      equinox and ecliptic of date.  For more accurate results, but
**      at the cost of increased computation, use the iauPn00a function.
**      For the utmost accuracy, use the iauPn00  function, where the
**      nutation components are caller-specified.
**
**  3)  The mean obliquity is consistent with the IAU 2000 precession.
**
**  4)  The matrix rb transforms vectors from GCRS to J2000.0 mean
**      equator and equinox by applying frame bias.
**
**  5)  The matrix rp transforms vectors from J2000.0 mean equator and
**      equinox to mean equator and equinox of date by applying
**      precession.
**
**  6)  The matrix rbp transforms vectors from GCRS to mean equator and
**      equinox of date by applying frame bias then precession.  It is
**      the product rp x rb.
**
**  7)  The matrix rn transforms vectors from mean equator and equinox
**      of date to true equator and equinox of date by applying the
**      nutation (luni-solar + planetary).
**
**  8)  The matrix rbpn transforms vectors from GCRS to true equator and
**      equinox of date.  It is the product rn x rbp, applying frame
**      bias, precession and nutation in that order.
**
**  9)  The X,Y,Z coordinates of the IAU 2000B Celestial Intermediate
**      Pole are elements (3,1-3) of the matrix rbpn.
**
**  10) It is permissible to re-use the same array in the returned
**      arguments.  The arrays are filled in the stated order.
**
**  Called:
**     iauNut00b    nutation, IAU 2000B
**     iauPn00      bias/precession/nutation results, IAU 2000
**
**  Reference:
**
**     Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
**     "Expressions for the Celestial Intermediate Pole and Celestial
**     Ephemeris Origin consistent with the IAU 2000A precession-
**     nutation model", Astron.Astrophys. 400, 1145-1154 (2003).
**
**     n.b. The celestial ephemeris origin (CEO) was renamed "celestial
**          intermediate origin" (CIO) by IAU 2006 Resolution 2.
**
**  This revision:  2010 January 18
**
**  Original version 2012-03-01
**
**  Copyright (C) 2013 Naoki Arita.  See notes at end.
*/
{
/* Nutation. */
   iauNut00b(date1, date2, dpsi, deps);

/* Remaining results. */
   iauPn00(date1, date2, *dpsi, *deps, epsa, rb, rp, rbp, rn, rbpn);

   return;

/*----------------------------------------------------------------------
**
**  Celes is a wrapper of the SOFA Library for Ruby.
**
**  This file is redistributed and relicensed in accordance with 
**  the SOFA Software License (http://www.iausofa.org/tandc.html).
**
**  The original library is available from IAU Standards of
**  Fundamental Astronomy (http://www.iausofa.org/).
**
**
**
**
**
**  Copyright (C) 2013, Naoki Arita
**  All rights reserved.
**
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**
**--------------------------------------------------------------------*/
}
예제 #3
0
파일: c2tpe.c 프로젝트: Jvinniec/CppEphem
void iauC2tpe(double tta, double ttb, double uta, double utb,
              double dpsi, double deps, double xp, double yp,
              double rc2t[3][3])
/*
**  - - - - - - - - -
**   i a u C 2 t p e
**  - - - - - - - - -
**
**  Form the celestial to terrestrial matrix given the date, the UT1,
**  the nutation and the polar motion.  IAU 2000.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     tta,ttb    double        TT as a 2-part Julian Date (Note 1)
**     uta,utb    double        UT1 as a 2-part Julian Date (Note 1)
**     dpsi,deps  double        nutation (Note 2)
**     xp,yp      double        coordinates of the pole (radians, Note 3)
**
**  Returned:
**     rc2t       double[3][3]  celestial-to-terrestrial matrix (Note 4)
**
**  Notes:
**
**  1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
**     apportioned in any convenient way between the arguments uta and
**     utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
**     these ways, among others:
**
**             uta            utb
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 and MJD methods are good compromises
**     between resolution and convenience.  In the case of uta,utb, the
**     date & time method is best matched to the Earth rotation angle
**     algorithm used:  maximum precision is delivered when the uta
**     argument is for 0hrs UT1 on the day in question and the utb
**     argument lies in the range 0 to 1, or vice versa.
**
**  2) The caller is responsible for providing the nutation components;
**     they are in longitude and obliquity, in radians and are with
**     respect to the equinox and ecliptic of date.  For high-accuracy
**     applications, free core nutation should be included as well as
**     any other relevant corrections to the position of the CIP.
**
**  3) The arguments xp and yp are the coordinates (in radians) of the
**     Celestial Intermediate Pole with respect to the International
**     Terrestrial Reference System (see IERS Conventions 2003),
**     measured along the meridians to 0 and 90 deg west respectively.
**
**  4) The matrix rc2t transforms from celestial to terrestrial
**     coordinates:
**
**        [TRS] = RPOM * R_3(GST) * RBPN * [CRS]
**
**              = rc2t * [CRS]
**
**     where [CRS] is a vector in the Geocentric Celestial Reference
**     System and [TRS] is a vector in the International Terrestrial
**     Reference System (see IERS Conventions 2003), RBPN is the
**     bias-precession-nutation matrix, GST is the Greenwich (apparent)
**     Sidereal Time and RPOM is the polar motion matrix.
**
**  5) Although its name does not include "00", This function is in fact
**     specific to the IAU 2000 models.
**
**  Called:
**     iauPn00      bias/precession/nutation results, IAU 2000
**     iauGmst00    Greenwich mean sidereal time, IAU 2000
**     iauSp00      the TIO locator s', IERS 2000
**     iauEe00      equation of the equinoxes, IAU 2000
**     iauPom00     polar motion matrix
**     iauC2teqx    form equinox-based celestial-to-terrestrial matrix
**
**  Reference:
**
**     McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
**     IERS Technical Note No. 32, BKG (2004)
**
**  This revision:  2013 June 18
**
**  SOFA release 2017-04-20
**
**  Copyright (C) 2017 IAU SOFA Board.  See notes at end.
*/
{
   double epsa, rb[3][3], rp[3][3], rbp[3][3], rn[3][3],
          rbpn[3][3], gmst, ee, sp, rpom[3][3];


/* Form the celestial-to-true matrix for this TT. */
   iauPn00(tta, ttb, dpsi, deps, &epsa, rb, rp, rbp, rn, rbpn);

/* Predict the Greenwich Mean Sidereal Time for this UT1 and TT. */
   gmst = iauGmst00(uta, utb, tta, ttb);

/* Predict the equation of the equinoxes given TT and nutation. */
   ee = iauEe00(tta, ttb, epsa, dpsi);

/* Estimate s'. */
   sp = iauSp00(tta, ttb);

/* Form the polar motion matrix. */
   iauPom00(xp, yp, sp, rpom);

/* Combine to form the celestial-to-terrestrial matrix. */
   iauC2teqx(rbpn, gmst + ee, rpom, rc2t);

   return;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2017
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}