void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double *vec, *retVec, TT1,TT2; double rb[3][3], rp[3][3], rbp[3][3]; mxArray *retMATLAB; size_t i, numItems; if(nrhs!=3) { mexErrMsgTxt("Wrong number of inputs"); return; } if(nlhs>1) { mexErrMsgTxt("Wrong number of outputs"); return; } numItems=mxGetN(prhs[0]); if(mxGetM(prhs[0])!=3) { mexErrMsgTxt("vec has the wrong dimensionality. It must be an 3XN matrix."); return; } checkRealDoubleArray(prhs[0]); vec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //Allocate the return vector retMATLAB=mxCreateDoubleMatrix(3,numItems,mxREAL); retVec=mxGetData(retMATLAB); //Call the IAU function to get the rotation matrix. iauBp06(TT1, TT2, rb, rp, rbp); //Invert the rotation matrix by transposing it. iauTr(rb, rb); for(i=0; i<numItems; i++) { //Multiply the original vectors by the matrix to put it into the ICRS. iauRxp(rb, vec+3*i, retVec+3*i); } //Set the return value. plhs[0]=retMATLAB; }
void palEqgal ( double dr, double dd, double *dl, double *db ) { double v1[3]; double v2[3]; /* * L2,B2 system of galactic coordinates * * P = 192.25 RA of galactic north pole (mean B1950.0) * Q = 62.6 inclination of galactic to mean B1950.0 equator * R = 33 longitude of ascending node * * P,Q,R are degrees * * Equatorial to galactic rotation matrix (J2000.0), obtained by * applying the standard FK4 to FK5 transformation, for zero proper * motion in FK5, to the columns of the B1950 equatorial to * galactic rotation matrix: */ double rmat[3][3] = { { -0.054875539726,-0.873437108010,-0.483834985808 }, { +0.494109453312,-0.444829589425,+0.746982251810 }, { -0.867666135858,-0.198076386122,+0.455983795705 } }; /* Spherical to Cartesian */ iauS2c( dr, dd, v1 ); /* Equatorial to Galactic */ iauRxp( rmat, v1, v2 ); /* Cartesian to spherical */ iauC2s( v2, dl, db ); /* Express in conventional ranges */ *dl = iauAnp( *dl ); *db = iauAnpm( *db ); }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double TT1, TT2, dX, dY, *xVec; size_t numRow, numVec; mxArray *retMat; double *retData; double GCRS2CIRS[3][3]; if(nrhs<3||nrhs>4){ mexErrMsgTxt("Wrong number of inputs"); } if(nlhs>2) { mexErrMsgTxt("Wrong number of outputs."); } checkRealDoubleArray(prhs[0]); numRow = mxGetM(prhs[0]); numVec = mxGetN(prhs[0]); if(!(numRow==3||numRow==6)) { mexErrMsgTxt("The input vector has a bad dimensionality."); } xVec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //If some values from the function getEOP will be needed. if(nrhs<4||mxGetM(prhs[3])==0) { mxArray *retVals[2]; double *dXdY; mxArray *JulUTCMATLAB[2]; double JulUTC[2]; int retVal; //Get the time in UTC to look up the parameters by going to TAI and //then UTC. retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]); if(retVal!=0) { mexErrMsgTxt("An error occurred computing TAI."); } retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]); switch(retVal){ case 1: mexWarnMsgTxt("Dubious Date entered."); break; case -1: mexErrMsgTxt("Unacceptable date entered"); break; default: break; } JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1); JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1); //Get the Earth orientation parameters for the given date. mexCallMATLAB(2,retVals,2,JulUTCMATLAB,"getEOP"); mxDestroyArray(JulUTCMATLAB[0]); mxDestroyArray(JulUTCMATLAB[1]); //%We do not need the polar motion coordinates. mxDestroyArray(retVals[0]); checkRealDoubleArray(retVals[1]); if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) { mxDestroyArray(retVals[1]); mexErrMsgTxt("Error using the getEOP function."); return; } dXdY=(double*)mxGetData(retVals[1]); dX=dXdY[0]; dY=dXdY[1]; //Free the returned arrays. mxDestroyArray(retVals[1]); } else {//Get the celestial pole offsets size_t dim1, dim2; checkRealDoubleArray(prhs[4]); dim1 = mxGetM(prhs[4]); dim2 = mxGetN(prhs[4]); if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) { double *dXdY=(double*)mxGetData(prhs[4]); dX=dXdY[0]; dY=dXdY[1]; } else { mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality."); return; } } { double x, y, s; double omega; //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006 //precession and IAU 2000A nutation models. iauXys06a(TT1, TT2, &x, &y, &s); //Add the CIP offsets. x += dX; y += dY; //Get the GCRS-to-CIRS matrix iauC2ixys(x, y, s, GCRS2CIRS); } //Allocate space for the return vectors. retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL); retData=(double*)mxGetData(retMat); { size_t curVec; for(curVec=0;curVec<numVec;curVec++) { //Multiply the position vector with the rotation matrix. iauRxp(GCRS2CIRS, xVec+numRow*curVec, retData+numRow*curVec); //If a velocity vector was given. if(numRow>3) { double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS double *retDataVel=retData+numRow*curVec+3; //Convert velocity from GCRS to CIRS. iauRxp(GCRS2CIRS, velGCRS, retDataVel); } } } plhs[0]=retMat; //If the rotation matrix is desired on the output. if(nlhs>1) { double *elPtr; size_t i,j; plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL); elPtr=(double*)mxGetData(plhs[1]); for (i=0;i<3;i++) { for(j=0;j<3;j++) { elPtr[i+3*j]=GCRS2CIRS[i][j]; } } } }
void iauHfk5z(double rh, double dh, double date1, double date2, double *r5, double *d5, double *dr5, double *dd5) /* ** - - - - - - - - - ** i a u H f k 5 z ** - - - - - - - - - ** ** Transform a Hipparcos star position into FK5 J2000.0, assuming ** zero Hipparcos proper motion. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** rh double Hipparcos RA (radians) ** dh double Hipparcos Dec (radians) ** date1,date2 double TDB date (Note 1) ** ** Returned (all FK5, equinox J2000.0, date date1+date2): ** r5 double RA (radians) ** d5 double Dec (radians) ** dr5 double FK5 RA proper motion (rad/year, Note 4) ** dd5 double Dec proper motion (rad/year, Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt. ** ** 3) The FK5 to Hipparcos transformation is modeled as a pure rotation ** and spin; zonal errors in the FK5 catalogue are not taken into ** account. ** ** 4) It was the intention that Hipparcos should be a close ** approximation to an inertial frame, so that distant objects have ** zero proper motion; such objects have (in general) non-zero ** proper motion in FK5, and this function returns those fictitious ** proper motions. ** ** 5) The position returned by this function is in the FK5 J2000.0 ** reference system but at date date1+date2. ** ** 6) See also iauFk52h, iauH2fk5, iauFk5zhz. ** ** Called: ** iauS2c spherical coordinates to unit vector ** iauFk5hip FK5 to Hipparcos rotation and spin ** iauRxp product of r-matrix and p-vector ** iauSxp multiply p-vector by scalar ** iauRxr product of two r-matrices ** iauTrxp product of transpose of r-matrix and p-vector ** iauPxp vector product of two p-vectors ** iauPv2s pv-vector to spherical ** iauAnp normalize angle into range 0 to 2pi ** ** Reference: ** ** F.Mignard & M.Froeschle, 2000, Astron.Astrophys. 354, 732-739. ** ** This revision: 2013 June 18 ** ** SOFA release 2013-12-02 ** ** Copyright (C) 2013 IAU SOFA Board. See notes at end. */ { double t, ph[3], r5h[3][3], s5h[3], sh[3], vst[3], rst[3][3], r5ht[3][3], pv5e[2][3], vv[3], w, r, v; /* Time interval from fundamental epoch J2000.0 to given date (JY). */ t = ((date1 - DJ00) + date2) / DJY; /* Hipparcos barycentric position vector (normalized). */ iauS2c(rh, dh, ph); /* FK5 to Hipparcos orientation matrix and spin vector. */ iauFk5hip(r5h, s5h); /* Rotate the spin into the Hipparcos system. */ iauRxp(r5h, s5h, sh); /* Accumulated Hipparcos wrt FK5 spin over that interval. */ iauSxp(t, s5h, vst); /* Express the accumulated spin as a rotation matrix. */ iauRv2m(vst, rst); /* Rotation matrix: accumulated spin, then FK5 to Hipparcos. */ iauRxr(r5h, rst, r5ht); /* De-orient & de-spin the Hipparcos position into FK5 J2000.0. */ iauTrxp(r5ht, ph, pv5e[0]); /* Apply spin to the position giving a space motion. */ iauPxp(sh, ph, vv); /* De-orient & de-spin the Hipparcos space motion into FK5 J2000.0. */ iauTrxp(r5ht, vv, pv5e[1]); /* FK5 position/velocity pv-vector to spherical. */ iauPv2s(pv5e, &w, d5, &r, dr5, dd5, &v); *r5 = iauAnp(w); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2013 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { size_t numRow,numVec; mxArray *retMat; double *xVec, *retData; double TT1, TT2, UT11, UT12; //The if-statements below should properly initialize all of the EOP. //The following initializations to zero are to suppress warnings when //compiling with -Wconditional-uninitialized. double dX=0; double dY=0; double deltaT=0; double LOD=0; double GCRS2TIRS[3][3]; //Polar motion matrix. ITRS=POM*TIRS. We will just be setting it to the //identity matrix as polar motion is not taken into account when going //to the TIRS. double rident[3][3]={{1,0,0},{0,1,0},{0,0,1}}; double Omega[3];//The rotation vector in the TIRS if(nrhs<3||nrhs>6){ mexErrMsgTxt("Wrong number of inputs"); } if(nlhs>2) { mexErrMsgTxt("Wrong number of outputs."); } checkRealDoubleArray(prhs[0]); numRow = mxGetM(prhs[0]); numVec = mxGetN(prhs[0]); if(!(numRow==3||numRow==6)) { mexErrMsgTxt("The input vector has a bad dimensionality."); } xVec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //If some values from the function getEOP will be needed if(nrhs<=5||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])||mxIsEmpty(prhs[5])) { mxArray *retVals[5]; double *dXdY; mxArray *JulUTCMATLAB[2]; double JulUTC[2]; int retVal; //Get the time in UTC to look up the parameters by going to TAI and //then UTC. retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]); if(retVal!=0) { mexErrMsgTxt("An error occurred computing TAI."); } retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]); switch(retVal){ case 1: mexWarnMsgTxt("Dubious Date entered."); break; case -1: mexErrMsgTxt("Unacceptable date entered"); break; default: break; } JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1); JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1); //Get the Earth orientation parameters for the given date. mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP"); mxDestroyArray(JulUTCMATLAB[0]); mxDestroyArray(JulUTCMATLAB[1]); //%We do not need the polar motion coordinates. mxDestroyArray(retVals[0]); checkRealDoubleArray(retVals[1]); if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) { mxDestroyArray(retVals[1]); mxDestroyArray(retVals[2]); mxDestroyArray(retVals[3]); mxDestroyArray(retVals[4]); mexErrMsgTxt("Error using the getEOP function."); return; } dXdY=(double*)mxGetData(retVals[1]); dX=dXdY[0]; dY=dXdY[1]; //This is TT-UT1 deltaT=getDoubleFromMatlab(retVals[3]); LOD=getDoubleFromMatlab(retVals[4]); //Free the returned arrays. mxDestroyArray(retVals[1]); mxDestroyArray(retVals[2]); mxDestroyArray(retVals[3]); mxDestroyArray(retVals[4]); } //If deltaT=TT-UT1 is given if(nrhs>3&&!mxIsEmpty(prhs[3])) { deltaT=getDoubleFromMatlab(prhs[3]); } //Obtain UT1 from terestrial time and deltaT. iauTtut1(TT1, TT2, deltaT, &UT11, &UT12); //Get celestial pole offsets, if given. if(nrhs>4&&!mxIsEmpty(prhs[4])) { size_t dim1, dim2; checkRealDoubleArray(prhs[4]); dim1 = mxGetM(prhs[4]); dim2 = mxGetN(prhs[4]); if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) { double *dXdY=(double*)mxGetData(prhs[4]); dX=dXdY[0]; dY=dXdY[1]; } else { mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality."); return; } } //If LOD is given if(nrhs>5&&mxIsEmpty(prhs[5])) { LOD=getDoubleFromMatlab(prhs[5]); } //Compute the rotation matrix for going from GCRS to ITRS as well as //the instantaneous vector angular momentum due to the Earth's rotation //in TIRS coordinates. { double x, y, s, era; double rc2i[3][3]; double omega; //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006 //precession and IAU 2000A nutation models. iauXys06a(TT1, TT2, &x, &y, &s); //Add the CIP offsets. x += dX; y += dY; //Get the GCRS-to-CIRS matrix iauC2ixys(x, y, s, rc2i); //Find the Earth rotation angle for the given UT1 time. era = iauEra00(UT11, UT12); //Set the polar motion matrix to the identity matrix so that the //conversion stops at the TIRS instead of the ITRS. //Combine the GCRS-to-CIRS matrix, the Earth rotation angle, and use //the identity matrix instead of the polar motion matrix to get a //to get the rotation matrix to go from GCRS to TIRS. iauC2tcio(rc2i, era, rident,GCRS2TIRS); //Next, to be able to transform the velocity, the rotation of the Earth //has to be taken into account. //The angular velocity vector of the Earth in the TIRS in radians. omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate"); //Adjust for LOD omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT //day. Omega[0]=0; Omega[1]=0; Omega[2]=omega; } //Allocate space for the return vectors. retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL); retData=(double*)mxGetData(retMat); { size_t curVec; for(curVec=0;curVec<numVec;curVec++) { //Multiply the position vector with the rotation matrix. iauRxp(GCRS2TIRS, xVec+numRow*curVec, retData+numRow*curVec); //If a velocity vector was given. if(numRow>3) { double *posGCRS=xVec+numRow*curVec; double posTIRS[3]; double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS double velTIRS[3]; double *retDataVel=retData+numRow*curVec+3; double rotVel[3]; //If a velocity was provided with the position, first //convert to TIRS coordinates, then account for the //rotation of the Earth. //Convert velocity from GCRS to TIRS. iauRxp(GCRS2TIRS, velGCRS, velTIRS); //Convert position from GCRS to TIRS iauRxp(GCRS2TIRS, posGCRS, posTIRS); //Evaluate the cross product for the angular velocity due //to the Earth's rotation. iauPxp(Omega, posTIRS, rotVel); //Subtract out the instantaneous velocity due to rotation. iauPmp(velTIRS, rotVel, retDataVel); } } } plhs[0]=retMat; //If the rotation matrix is desired on the output. if(nlhs>1) { double *elPtr; size_t i,j; plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL); elPtr=(double*)mxGetData(plhs[1]); for (i=0;i<3;i++) { for(j=0;j<3;j++) { elPtr[i+3*j]=GCRS2TIRS[i][j]; } } } }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { size_t numRow,numVec; mxArray *retMat; double *retData; double ITRS2TIRS[3][3];//Inverse polar motion matrix double *xVec, TT1, TT2; double xp=0; double yp=0;//The polar motion coordinates if(nrhs<3||nrhs>4){ mexErrMsgTxt("Wrong number of inputs"); } if(nlhs>2) { mexErrMsgTxt("Wrong number of outputs."); } numRow = mxGetM(prhs[0]); numVec = mxGetN(prhs[0]); if(!(numRow==3||numRow==6)) { mexErrMsgTxt("The input vector has a bad dimensionality."); } checkRealDoubleArray(prhs[0]); xVec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //If xpyp should be found using the function getEOP. if(nrhs<4||mxIsEmpty(prhs[3])) { mxArray *retVals[1]; double *xpyp; mxArray *JulUTCMATLAB[2]; double JulUTC[2]; int retVal; //Get the time in UTC to look up the parameters by going to TAI and //then UTC. retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]); if(retVal!=0) { mexErrMsgTxt("An error occurred computing TAI."); } retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]); switch(retVal){ case 1: mexWarnMsgTxt("Dubious Date entered."); break; case -1: mexErrMsgTxt("Unacceptable date entered"); break; default: break; } JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1); JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1); //Get the Earth orientation parameters for the given date. mexCallMATLAB(1,retVals,2,JulUTCMATLAB,"getEOP"); mxDestroyArray(JulUTCMATLAB[0]); mxDestroyArray(JulUTCMATLAB[1]); checkRealDoubleArray(retVals[0]); if(mxGetM(retVals[0])!=2||mxGetN(retVals[0])!=1) { mxDestroyArray(retVals[0]); mexErrMsgTxt("Error using the getEOP function."); return; } xpyp=(double*)mxGetData(retVals[0]); xp=xpyp[0]; yp=xpyp[1]; //Free the returned array. mxDestroyArray(retVals[0]); } //Get polar motion coordinates, if given. if(nrhs>3&&!mxIsEmpty(prhs[3])) { size_t dim1, dim2; checkRealDoubleArray(prhs[3]); dim1 = mxGetM(prhs[3]); dim2 = mxGetN(prhs[3]); if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) { double *xpyp=(double*)mxGetData(prhs[3]); xp=xpyp[0]; yp=xpyp[1]; } else { mexErrMsgTxt("The polar motion coordinates have the wrong dimensionality."); return; } } //Get the rotation matrix from TIRS to ITRS. { double sp; double TIRS2ITRS[3][3];//Polar motion matrix //Get the Terrestrial Intermediate Origin (TIO) locator s' in //radians sp=iauSp00(TT1,TT2); //Get the polar motion matrix iauPom00(xp,yp,sp,TIRS2ITRS); //The inverse polar motion matrix is given by the transpose of the //polar motion matrix. iauTr(TIRS2ITRS, ITRS2TIRS); } //Allocate space for the return vectors. retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL); retData=(double*)mxGetData(retMat); { size_t curVec; for(curVec=0;curVec<numVec;curVec++) { //Multiply the position vector with the rotation matrix. iauRxp(ITRS2TIRS, xVec+numRow*curVec, retData+numRow*curVec); //Multiply the velocity vector with the rotation matrix. if(numRow>3) { double *velITRS=xVec+numRow*curVec+3;//Velocity in ITRS double *retDataVel=retData+numRow*curVec+3;//Velocity in ITRS //Convert velocity from ITRS to TIRS. iauRxp(ITRS2TIRS, velITRS, retDataVel); } } } plhs[0]=retMat; if(nlhs>1) { double *elPtr; size_t i,j; plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL); elPtr=(double*)mxGetData(plhs[1]); for (i=0;i<3;i++) { for(j=0;j<3;j++) { elPtr[i+3*j]=ITRS2TIRS[i][j]; } } } }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double TT1,TT2,*xVec; double deltaT=0; double LOD=0; size_t numRow,numVec; double CIRS2TIRS[3][3]; double TIRS2CIRS[3][3]; double Omega[3];//The rotation vector in the TIRS mxArray *retMat; double *retData; if(nrhs<3||nrhs>5){ mexErrMsgTxt("Wrong number of inputs"); } if(nlhs>2) { mexErrMsgTxt("Wrong number of outputs."); } checkRealDoubleArray(prhs[0]); numRow = mxGetM(prhs[0]); numVec = mxGetN(prhs[0]); if(!(numRow==3||numRow==6)) { mexErrMsgTxt("The input vector has a bad dimensionality."); } xVec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //If some values from the function getEOP will be needed if(nrhs<=4||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])) { mxArray *retVals[5]; mxArray *JulUTCMATLAB[2]; double JulUTC[2]; int retVal; //Get the time in UTC to look up the parameters by going to TAI and //then UTC. retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]); if(retVal!=0) { mexErrMsgTxt("An error occurred computing TAI."); } retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]); switch(retVal){ case 1: mexWarnMsgTxt("Dubious Date entered."); break; case -1: mexErrMsgTxt("Unacceptable date entered"); break; default: break; } JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1); JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1); //Get the Earth orientation parameters for the given date. mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP"); mxDestroyArray(JulUTCMATLAB[0]); mxDestroyArray(JulUTCMATLAB[1]); //We do not need the polar motion coordinates. mxDestroyArray(retVals[0]); //We do not need the celestial pole offsets. mxDestroyArray(retVals[1]); //This is TT-UT1 deltaT=getDoubleFromMatlab(retVals[3]); LOD=getDoubleFromMatlab(retVals[4]); //Free the returned arrays. mxDestroyArray(retVals[2]); mxDestroyArray(retVals[3]); mxDestroyArray(retVals[4]); } //If deltaT=TT-UT1 is given if(nrhs>3&&!mxIsEmpty(prhs[3])) { deltaT=getDoubleFromMatlab(prhs[3]); } //If LOD is given if(nrhs>4&&!mxIsEmpty(prhs[4])) { LOD=getDoubleFromMatlab(prhs[4]); } //Compute the rotation matrix for going from CIRS to TIRS as well as //the instantaneous vector angular momentum due to the Earth's rotation //in GCRS coordinates. { double UT11, UT12; double era, omega; //Obtain UT1 from terestrial time and deltaT. iauTtut1(TT1, TT2, deltaT, &UT11, &UT12); //Find the Earth rotation angle for the given UT1 time. era = iauEra00(UT11, UT12); //Construct the rotation matrix. CIRS2TIRS[0][0]=1; CIRS2TIRS[0][1]=0; CIRS2TIRS[0][2]=0; CIRS2TIRS[1][0]=0; CIRS2TIRS[1][1]=1; CIRS2TIRS[1][2]=0; CIRS2TIRS[2][0]=0; CIRS2TIRS[2][1]=0; CIRS2TIRS[2][2]=1; iauRz(era, CIRS2TIRS); //To go from the TIRS to the GCRS, we need to use the inverse rotation //matrix, which is just the transpose of the rotation matrix. iauTr(CIRS2TIRS, TIRS2CIRS); //Next, to be able to transform the velocity, the rotation of the Earth //has to be taken into account. //The angular velocity vector of the Earth in the TIRS in radians. omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate"); //Adjust for LOD omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT //day. Omega[0]=0; Omega[1]=0; Omega[2]=omega; } //Allocate space for the return vectors. retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL); retData=(double*)mxGetData(retMat); { size_t curVec; for(curVec=0;curVec<numVec;curVec++) { //Multiply the position vector with the rotation matrix. iauRxp(TIRS2CIRS, xVec+numRow*curVec, retData+numRow*curVec); //If a velocity vector was given. if(numRow>3) { double *posTIRS=xVec+numRow*curVec; double *velTIRS=xVec+numRow*curVec+3;//Velocity in GCRS double *retDataVel=retData+numRow*curVec+3; double rotVel[3]; //Evaluate the cross product for the angular velocity due //to the Earth's rotation. iauPxp(Omega, posTIRS, rotVel); //Add the instantaneous velocity due to rotation. iauPpp(velTIRS, rotVel, retDataVel); //Rotate from TIRS to GCRS iauRxp(TIRS2CIRS, retDataVel, retDataVel); } } } plhs[0]=retMat; if(nlhs>1) { double *elPtr; size_t i,j; plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL); elPtr=(double*)mxGetData(plhs[1]); for (i=0;i<3;i++) { for(j=0;j<3;j++) { elPtr[i+3*j]=TIRS2CIRS[i][j]; } } } }
void iauAtciq(double rc, double dc, double pr, double pd, double px, double rv, iauASTROM *astrom, double *ri, double *di) /* ** - - - - - - - - - ** i a u A t c i q ** - - - - - - - - - ** ** Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed ** star-independent astrometry parameters. ** ** Use of this function is appropriate when efficiency is important and ** where many star positions are to be transformed for one date. The ** star-independent parameters can be obtained by calling one of the ** functions iauApci[13], iauApcg[13], iauApco[13] or iauApcs[13]. ** ** If the parallax and proper motions are zero the iauAtciqz function ** can be used instead. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** rc,dc double ICRS RA,Dec at J2000.0 (radians) ** pr double RA proper motion (radians/year; Note 3) ** pd double Dec proper motion (radians/year) ** px double parallax (arcsec) ** rv double radial velocity (km/s, +ve if receding) ** astrom iauASTROM* star-independent astrometry parameters: ** pmt double PM time interval (SSB, Julian years) ** eb double[3] SSB to observer (vector, au) ** eh double[3] Sun to observer (unit vector) ** em double distance from Sun to observer (au) ** v double[3] barycentric observer velocity (vector, c) ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor ** bpn double[3][3] bias-precession-nutation matrix ** along double longitude + s' (radians) ** xpl double polar motion xp wrt local meridian (radians) ** ypl double polar motion yp wrt local meridian (radians) ** sphi double sine of geodetic latitude ** cphi double cosine of geodetic latitude ** diurab double magnitude of diurnal aberration vector ** eral double "local" Earth rotation angle (radians) ** refa double refraction constant A (radians) ** refb double refraction constant B (radians) ** ** Returned: ** ri,di double CIRS RA,Dec (radians) ** ** Notes: ** ** 1) All the vectors are with respect to BCRS axes. ** ** 2) Star data for an epoch other than J2000.0 (for example from the ** Hipparcos catalog, which has an epoch of J1991.25) will require a ** preliminary call to iauPmsafe before use. ** ** 3) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt. ** ** Called: ** iauPmpx proper motion and parallax ** iauLdsun light deflection by the Sun ** iauAb stellar aberration ** iauRxp product of r-matrix and pv-vector ** iauC2s p-vector to spherical ** iauAnp normalize angle into range 0 to 2pi ** ** This revision: 2013 October 9 ** ** SOFA release 2016-05-03 ** ** Copyright (C) 2016 IAU SOFA Board. See notes at end. */ { double pco[3], pnat[3], ppr[3], pi[3], w; /* Proper motion and parallax, giving BCRS coordinate direction. */ iauPmpx(rc, dc, pr, pd, px, rv, astrom->pmt, astrom->eb, pco); /* Light deflection by the Sun, giving BCRS natural direction. */ iauLdsun(pco, astrom->eh, astrom->em, pnat); /* Aberration, giving GCRS proper direction. */ iauAb(pnat, astrom->v, astrom->em, astrom->bm1, ppr); /* Bias-precession-nutation, giving CIRS proper direction. */ iauRxp(astrom->bpn, ppr, pi); /* CIRS RA,Dec. */ iauC2s(pi, &w, di); *ri = iauAnp(w); /* Finished. */ /*---------------------------------------------------------------------- ** ** Copyright (C) 2016 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauFk52h(double r5, double d5, double dr5, double dd5, double px5, double rv5, double *rh, double *dh, double *drh, double *ddh, double *pxh, double *rvh) /* ** - - - - - - - - - ** i a u F k 5 2 h ** - - - - - - - - - ** ** Transform FK5 (J2000.0) star data into the Hipparcos system. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given (all FK5, equinox J2000.0, epoch J2000.0): ** r5 double RA (radians) ** d5 double Dec (radians) ** dr5 double proper motion in RA (dRA/dt, rad/Jyear) ** dd5 double proper motion in Dec (dDec/dt, rad/Jyear) ** px5 double parallax (arcsec) ** rv5 double radial velocity (km/s, positive = receding) ** ** Returned (all Hipparcos, epoch J2000.0): ** rh double RA (radians) ** dh double Dec (radians) ** drh double proper motion in RA (dRA/dt, rad/Jyear) ** ddh double proper motion in Dec (dDec/dt, rad/Jyear) ** pxh double parallax (arcsec) ** rvh double radial velocity (km/s, positive = receding) ** ** Notes: ** ** 1) This function transforms FK5 star positions and proper motions ** into the system of the Hipparcos catalog. ** ** 2) The proper motions in RA are dRA/dt rather than ** cos(Dec)*dRA/dt, and are per year rather than per century. ** ** 3) The FK5 to Hipparcos transformation is modeled as a pure ** rotation and spin; zonal errors in the FK5 catalog are not ** taken into account. ** ** 4) See also iauH2fk5, iauFk5hz, iauHfk5z. ** ** Called: ** iauStarpv star catalog data to space motion pv-vector ** iauFk5hip FK5 to Hipparcos rotation and spin ** iauRxp product of r-matrix and p-vector ** iauPxp vector product of two p-vectors ** iauPpp p-vector plus p-vector ** iauPvstar space motion pv-vector to star catalog data ** ** Reference: ** ** F.Mignard & M.Froeschle, Astron. Astrophys. 354, 732-739 (2000). ** ** This revision: 2013 June 18 ** ** SOFA release 2015-02-09 ** ** Copyright (C) 2015 IAU SOFA Board. See notes at end. */ { int i; double pv5[2][3], r5h[3][3], s5h[3], wxp[3], vv[3], pvh[2][3]; /* FK5 barycentric position/velocity pv-vector (normalized). */ iauStarpv(r5, d5, dr5, dd5, px5, rv5, pv5); /* FK5 to Hipparcos orientation matrix and spin vector. */ iauFk5hip(r5h, s5h); /* Make spin units per day instead of per year. */ for ( i = 0; i < 3; s5h[i++] /= 365.25 ); /* Orient the FK5 position into the Hipparcos system. */ iauRxp(r5h, pv5[0], pvh[0]); /* Apply spin to the position giving an extra space motion component. */ iauPxp(pv5[0], s5h, wxp); /* Add this component to the FK5 space motion. */ iauPpp(wxp, pv5[1], vv); /* Orient the FK5 space motion into the Hipparcos system. */ iauRxp(r5h, vv, pvh[1]); /* Hipparcos pv-vector to spherical. */ iauPvstar(pvh, rh, dh, drh, ddh, pxh, rvh); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2015 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauRxpv(double r[3][3], double pv[2][3], double rpv[2][3]) /* ** - - - - - - - - ** i a u R x p v ** - - - - - - - - ** ** Multiply a pv-vector by an r-matrix. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: vector/matrix support function. ** ** Given: ** r double[3][3] r-matrix ** pv double[2][3] pv-vector ** ** Returned: ** rpv double[2][3] r * pv ** ** Note: ** It is permissible for pv and rpv to be the same array. ** ** Called: ** iauRxp product of r-matrix and p-vector ** ** This revision: 2013 June 18 ** ** SOFA release 2015-02-09 ** ** Copyright (C) 2015 IAU SOFA Board. See notes at end. */ { iauRxp(r, pv[0], rpv[0]); iauRxp(r, pv[1], rpv[1]); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2015 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { size_t numRow,numVec; mxArray *retMat; double *xVec, *retData; double TT1, TT2, UT11, UT12; //The if-statements below should properly initialize all of the EOP. //The following initializations to zero are to suppress warnings when //compiling with -Wconditional-uninitialized. double xp=0; double yp=0; double deltaT=0; double LOD=0; double ITRS2TEME[3][3]; double PEF2TEME[3][3]; double WInv[3][3];//The inverse polar motion matrix to go from ITRS to PEF. double Omega[3];//The angular velocity vector for the Earth's rotation. if(nrhs<3||nrhs>6){ mexErrMsgTxt("Wrong number of inputs"); } if(nlhs>2) { mexErrMsgTxt("Wrong number of outputs."); return; } checkRealDoubleArray(prhs[0]); numRow = mxGetM(prhs[0]); numVec = mxGetN(prhs[0]); if(!(numRow==3||numRow==6)) { mexErrMsgTxt("The input vector has a bad dimensionality."); } xVec=(double*)mxGetData(prhs[0]); TT1=getDoubleFromMatlab(prhs[1]); TT2=getDoubleFromMatlab(prhs[2]); //If some values from the function getEOP will be needed if(nrhs<6||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])||mxIsEmpty(prhs[5])) { mxArray *retVals[5]; double *xpyp; mxArray *JulUTCMATLAB[2]; double JulUTC[2]; int retVal; //Get the time in UTC to look up the parameters by going to TAI and //then UTC. retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]); if(retVal!=0) { mexErrMsgTxt("An error occurred computing TAI."); } retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]); switch(retVal){ case 1: mexWarnMsgTxt("Dubious Date entered."); break; case -1: mexErrMsgTxt("Unacceptable date entered"); break; default: break; } JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1); JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1); //Get the Earth orientation parameters for the given date. mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP"); mxDestroyArray(JulUTCMATLAB[0]); mxDestroyArray(JulUTCMATLAB[1]); checkRealDoubleArray(retVals[0]); checkRealDoubleArray(retVals[1]); if(mxGetM(retVals[0])!=2||mxGetN(retVals[0])!=1||mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) { mxDestroyArray(retVals[0]); mxDestroyArray(retVals[1]); mxDestroyArray(retVals[2]); mxDestroyArray(retVals[3]); mxDestroyArray(retVals[4]); mexErrMsgTxt("Error using the getEOP function."); return; } xpyp=(double*)mxGetData(retVals[0]); xp=xpyp[0]; yp=xpyp[1]; //The celestial pole offsets are not used. //This is TT-UT1 deltaT=getDoubleFromMatlab(retVals[3]); LOD=getDoubleFromMatlab(retVals[4]); //Free the returned arrays. mxDestroyArray(retVals[0]); mxDestroyArray(retVals[1]); mxDestroyArray(retVals[2]); mxDestroyArray(retVals[3]); mxDestroyArray(retVals[4]); } //If deltaT=TT-UT1 is given if(nrhs>3&&!mxIsEmpty(prhs[3])) { deltaT=getDoubleFromMatlab(prhs[3]); } //Obtain UT1 from terestrial time and deltaT. iauTtut1(TT1, TT2, deltaT, &UT11, &UT12); //Get polar motion values, if given. if(nrhs>4&&!mxIsEmpty(prhs[4])) { size_t dim1, dim2; checkRealDoubleArray(prhs[4]); dim1 = mxGetM(prhs[4]); dim2 = mxGetN(prhs[4]); if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) { double *xpyp=(double*)mxGetData(prhs[4]); xp=xpyp[0]; yp=xpyp[1]; } else { mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality."); return; } } //If LOD is given if(nrhs>5&&!mxIsEmpty(prhs[5])) { LOD=getDoubleFromMatlab(prhs[5]); } { double GMST1982=iauGmst82(UT11, UT12); double TEME2PEF[3][3]; double TEME2ITRS[3][3]; double W[3][3]; double omega; //Get Greenwhich mean sidereal time under the IAU's 1982 model. This //is given in radians and will be used to build a rotation matrix to //rotate into the PEF system. GMST1982=iauGmst82(UT11, UT12); { double cosGMST,sinGMST; cosGMST=cos(GMST1982); sinGMST=sin(GMST1982); //Build the rotation matrix to rotate by GMST about the z-axis. This //will put the position vector in the PEF system. TEME2PEF[0][0]=cosGMST; TEME2PEF[0][1]=sinGMST; TEME2PEF[0][2]=0; TEME2PEF[1][0]=-sinGMST; TEME2PEF[1][1]=cosGMST; TEME2PEF[1][2]=0; TEME2PEF[2][0]=0; TEME2PEF[2][1]=0; TEME2PEF[2][2]=1.0; } //The inverse rotation is just the transpose iauTr(TEME2PEF, PEF2TEME); //To go from PEF to ITRS, we need to build the polar motion matrix //using the IAU's 1980 conventions. { double cosXp,sinXp,cosYp,sinYp; cosXp=cos(xp); sinXp=sin(xp); cosYp=cos(yp); sinYp=sin(yp); W[0][0]=cosXp; W[0][1]=sinXp*sinYp; W[0][2]=sinXp*cosYp; W[1][0]=0; W[1][1]=cosYp; W[1][2]=-sinYp; W[2][0]=-sinXp; W[2][1]=cosXp*sinXp; W[2][2]=cosXp*cosYp; } //The inverse rotation is just the transpose iauTr(W, WInv); //The total rotation matrix is thus the product of the two rotations. //TEME2ITRS=W*TEME2PEF; iauRxr(W, TEME2PEF, TEME2ITRS); //We want the inverse rotation iauTr(TEME2ITRS, ITRS2TEME); //The angular velocity vector of the Earth in the TIRS in radians. omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate"); //Adjust for LOD omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT day. Omega[0]=0; Omega[1]=0; Omega[2]=omega; } //Allocate space for the return vectors. retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL); retData=(double*)mxGetData(retMat); { size_t curVec; for(curVec=0;curVec<numVec;curVec++) { //Multiply the position vector with the rotation matrix. iauRxp(ITRS2TEME, xVec+numRow*curVec, retData+numRow*curVec); //If a velocity vector was given. if(numRow>3) { double *posITRS=xVec+numRow*curVec; double *velITRS=xVec+numRow*curVec+3;//Velocity in TEME double posPEF[3]; double velPEF[3]; double *retDataVel=retData+numRow*curVec+3; double rotVel[3]; //If a velocity was provided with the position, first //convert to PEF coordinates, then account for the rotation //of the Earth, then rotate into TEME coordinates. //Convert velocity from ITRS to PEF. iauRxp(WInv, velITRS, velPEF); //Convert position from ITRS to PEF iauRxp(WInv, posITRS, posPEF); //Evaluate the cross product for the angular velocity due //to the Earth's rotation. iauPxp(Omega, posPEF, rotVel); //Add the instantaneous velocity due to rotation. iauPpp(velPEF, rotVel, retDataVel); //Rotate from the PEF into the TEME iauRxp(PEF2TEME, retDataVel, retDataVel); } } } plhs[0]=retMat; if(nlhs>1) { double *elPtr; size_t i,j; plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL); elPtr=(double*)mxGetData(plhs[1]); for (i=0;i<3;i++) { for(j=0;j<3;j++) { elPtr[i+3*j]=ITRS2TEME[i][j]; } } } }
void iauLteqec(double epj, double dr, double dd, double *dl, double *db) /* ** - - - - - - - - - - ** i a u L t e q e c ** - - - - - - - - - - ** ** Transformation from ICRS equatorial coordinates to ecliptic ** coordinates (mean equinox and ecliptic of date) using a long-term ** precession model. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** epj double Julian epoch (TT) ** dr,dd double ICRS right ascension and declination (radians) ** ** Returned: ** dl,db double ecliptic longitude and latitude (radians) ** ** 1) No assumptions are made about whether the coordinates represent ** starlight and embody astrometric effects such as parallax or ** aberration. ** ** 2) The transformation is approximately that from mean J2000.0 right ** ascension and declination to ecliptic longitude and latitude ** (mean equinox and ecliptic of date), with only frame bias (always ** less than 25 mas) to disturb this classical picture. ** ** 3) The Vondrak et al. (2011, 2012) 400 millennia precession model ** agrees with the IAU 2006 precession at J2000.0 and stays within ** 100 microarcseconds during the 20th and 21st centuries. It is ** accurate to a few arcseconds throughout the historical period, ** worsening to a few tenths of a degree at the end of the ** +/- 200,000 year time span. ** ** Called: ** iauS2c spherical coordinates to unit vector ** iauLtecm J2000.0 to ecliptic rotation matrix, long term ** iauRxp product of r-matrix and p-vector ** iauC2s unit vector to spherical coordinates ** iauAnp normalize angle into range 0 to 2pi ** iauAnpm normalize angle into range +/- pi ** ** References: ** ** Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession ** expressions, valid for long time intervals, Astron.Astrophys. 534, ** A22 ** ** Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession ** expressions, valid for long time intervals (Corrigendum), ** Astron.Astrophys. 541, C1 ** ** This revision: 2016 February 9 ** ** SOFA release 2016-05-03 ** ** Copyright (C) 2016 IAU SOFA Board. See notes at end. */ { double rm[3][3], v1[3], v2[3], a, b; /* Spherical to Cartesian. */ iauS2c(dr, dd, v1); /* Rotation matrix, ICRS equatorial to ecliptic. */ iauLtecm(epj, rm); /* The transformation from ICRS to ecliptic. */ iauRxp(rm, v1, v2); /* Cartesian to spherical. */ iauC2s(v2, &a, &b); /* Express in conventional ranges. */ *dl = iauAnp(a); *db = iauAnpm(b); /*---------------------------------------------------------------------- ** ** Copyright (C) 2016 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauRxpv(double r[3][3], double pv[2][3], double rpv[2][3]) /* ** - - - - - - - - ** i a u R x p v ** - - - - - - - - ** ** Multiply a pv-vector by an r-matrix. ** ** Status: vector/matrix support function. ** ** Given: ** r double[3][3] r-matrix ** pv double[2][3] pv-vector ** ** Returned: ** rpv double[2][3] r * pv ** ** Note: ** It is permissible for pv and rpv to be the same array. ** ** Called: ** iauRxp product of r-matrix and p-vector ** ** This revision: 2008 October 28 ** ** Original version 2012-03-01 ** ** Copyright (C) 2013 Naoki Arita. See notes at end. */ { iauRxp(r, pv[0], rpv[0]); iauRxp(r, pv[1], rpv[1]); return; /*---------------------------------------------------------------------- ** ** Celes is a wrapper of the SOFA Library for Ruby. ** ** This file is redistributed and relicensed in accordance with ** the SOFA Software License (http://www.iausofa.org/tandc.html). ** ** The original library is available from IAU Standards of ** Fundamental Astronomy (http://www.iausofa.org/). ** ** ** ** ** ** Copyright (C) 2013, Naoki Arita ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1 Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** ** 2 Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** ** 3 Neither the name of the Standards Of Fundamental Astronomy Board, ** the International Astronomical Union nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ** POSSIBILITY OF SUCH DAMAGE. ** **--------------------------------------------------------------------*/ }