예제 #1
0
void dijkstra(MGraph *G, int s)
{
    int i, *set, u, v;
    MinQueue queue;
    initialize_single_source(G, s);
    set = malloc(sizeof(int)*G->numVertexes);
    queue.size = G->numVertexes;
    queue.heap = malloc(sizeof(int)*(G->numVertexes+1));
    //初始化集合S为空
    for(i=0;i<G->numVertexes;i++)
    {
        set[i] = 0;
    }
    set[s] = 1;
    //初始化队列为空
    for(i=0;i<G->numVertexes;i++)
    {
        queue.heap[i+1] = i;
    }
    
    //逐步添加最小权值边
    while(queue.size>0)
    {
        build_min_heap(&queue);
        u = extract_min(&queue);
        set[u] = 1;
        for(i=0;i<G->numVertexes;i++)
        {
            if(G->edges[u][i] != INFINITY)
            {
                relax(u,i, G->edges[u][i]);
            }
        }
    }
}
예제 #2
0
void dijkstra_normal(MGraph *G, int s)
{ 
    printf("This is dijkstra O(n2)\n");
    int i ,j, u, *set, min;
    initialize_single_source(G, s);
    set = malloc(sizeof(int)*G->numVertexes);
    for(i=0;i<G->numVertexes;i++)
    {
        set[i] = 0;
    }
    for(i=0;i<G->numVertexes;i++)
    {
        min = INFINITY;
        for(j=0;j<G->numVertexes;j++)
        {
            if((set[j]==0) && d[j] < min)
            {
                u = j;
                min = d[j];
            }
        }
        set[u] = 1;
        for(j=0;j<G->numVertexes;j++)
        {
            if(G->edges[u][j] != INFINITY)
            {
                if(d[j] > d[u] +G->edges[u][j])
                {
                    d[j] = d[u] + G->edges[u][j];
                    p[j] = u;
                }
            }
        }
    }
}
// 将d[]拷贝到优先队列中,在优先队列中对d进行修改(decreace_key)
// 处理完成后,再拷贝出来
// 假定graph,d[],parent[]均已分配内存
void dijkstra(AdjList* graph, int numVertices, int s, int d[], int parent[])
{
    int i;
    AdjListNodePtr v;
    FibHeap h = make_fib_heap();
    FibHeapNodePtr fpnArray[numVertices];
    initialize_single_source(graph, numVertices, s, d, parent);
    construct_queue(graph, numVertices, d, h, fpnArray);
    fib_heap_root_print(h->min);
    while(h->min !=  NIL)
    {
	FibHeapNodePtr u = fib_heap_extract_min(h);
	printf("extract_min: %d\n", u->ref);
	// 指示顶点u已不再优先队列中
	u->inq = FALSE;
	v = graph[u->ref];
	// 对以u->ref为顶点的每条边进行松弛
	while(v)
	{
	    // 有无代码依赖于parent[]的修改?
	    // 循环的下一次迭代依赖于优先队列中关键字域的修改
	    dijkstra_relax(u->ref, v->vertex, v->weight, parent, fpnArray, h);
	    v = v->next;
	}
	
    }
    // 将队列中关键字的值拷贝回d中,利用fpnArray[]
    for (i = 0; i < numVertices; i++) {
	d[i] = fpnArray[i]->key;
    }
    // 释放优先队列中的内存...
}
예제 #4
0
파일: bellman.c 프로젝트: mlboua/Graphe
/* Run the Bellman-Ford algorithm from vertex s.  Fills in arrays d
   and pi. */
int bellman_ford(int first[], int node[], int next[], double w[], double d[],
		 int pi[], int s, int n) {
  int u, v, i, j;

  initialize_single_source(d, pi, s, n);

  for (i = 1; i <= n-1; ++i) {
    for (u = 1; u <= n; ++u) {
      j = first[u];// pour chaque sommet 

      while (j > 0) {
	v = node[j];
	relax(u, v, w[j], d, pi);
	j = next[j];
      }
    }
  }

  for (u = 1; u <= n; ++u) {
    j = first[u];

    while (j > 0) {
      v = node[j];
      if (d[v] > d[u] + w[j])
	return 0;
      j = next[j];
    }
  }

  return 1;
}
예제 #5
0
파일: graph_ops.c 프로젝트: childhood/dsLib
/**
 * @brief Dijkstra's shortest path algorithm 
 *
 * @param[in] g The graph to operate on
 * @param[in] s The starting vertex
 * @param[in] cb The function to call when a shortest spath vertex is determined.  
 */
void sp_dijkstra (GRAPH_T* g, unsigned long s, SP_DJ_FP_T cb)
{
   HEAP_T* h;
   VTX_D_T* u = NULL;
   VTX_D_T* v;
   unsigned long key, no;
   char* ctx = NULL;
   EDGE_T* e;
   void* p;
   
   initialize_single_source (g, s);
   h = heap_create (DS_HEAP_MIN, GRAPH_NO_VERTICES(g));

   while (NULL != (u = graph_vertex_next_get (g, u)))
   {
      heap_min_insert (h, D_SP_AUX_SPEST(u), u, &D_SP_AUX_I(u));
   }

   while (HEAP_SIZE(h))
   {
      heap_extract_min (h, &p, &key);
      u = (VTX_D_T*)p;

      ctx = NULL;
      no = ((VTX_D_T*)u)->no;

      while (no)
      {
         e = graph_vertex_next_edge_get (g, u, &ctx);
         if (e->v1 == u)
            v = e->v2;
         else
            v = e->v1;
         if (v->id.iid == s)
         {
            no--;
            continue;
         }
         DEBUG_PRINT ("Relaxing v=%lu (OLD weight: %lu; NEW weight: u=%lu w=%lu)\n",
                 v->id.iid, D_SP_AUX_SPEST(v), u->id.iid, e->weight);
         relax (g, u, v, e->weight);
         heap_decrease_key (h, D_SP_AUX_I(v), D_SP_AUX_SPEST(v));
         no--;
      }
   }

   if (cb)
   {
      v = NULL;
      while (NULL != (v = graph_vertex_next_get (g, v)))
      {
         cb (v);
         //fprintf (stderr, "vid = %lu sp=%lu\n", v->id.iid, D_SP_AUX_SPEST(v));
      }
   }
}
예제 #6
0
/*Caminhos mínimos por Bellman-Ford: */
void BellmanFord (Graph *G, int source) {
    int i, u;
   int pai[G->V];  /*Árvore de caminhos mínimos.*/
   int dist[G->V]; /*Distâncias mínimas.*/
   Queue *Q = criar_queue (G->V);

   initialize_single_source (source, pai, dist, Q, G->V);

   /*****************************/
   /*FAZER: termine o algoritmo!*/
   /*****************************/
   Node *v;
     /*Variável para percorrer a lista de adjacência do vértice {u}*/

    for(i = 0; i< G->V - 1; i++)
    {

        int u;
        for(u = 0; u < G->V; u++)
        {
            for(v = G->listadj[u]; v != NULL; v = v->proximo)
            {
                relax (u, v->id, G, pai, dist);
            }
        }


    }

    for(u = 0; u < G->V; u++)
    {
        for(v = G->listadj[u]; v != NULL; v = v->proximo)
        {
            if(dist[v->id] > dist[u] + v->id)
            {
                printf("Falso\n");
                printf("Tem solução\n");
                exit(0);
            }
            printf("Verdadeiro");
            exit(1);
        }
    }


}
예제 #7
0
/*Caminhos mínimos por Dijkstra: */
void Dijkstra (Graph *G, int source) {

   int pai[G->V];  /*Árvore de caminhos mínimos.*/
   int dist[G->V]; /*Distâncias mínimas.*/
   Queue *Q = criar_queue (G->V);

   initialize_single_source (source, pai, dist, Q, G->V);

   while (!vazio_queue(Q)) {
      int u = extract_min (Q, dist, G->V);
      Node *v; /*Variável para percorrer a lista de adjacência do vértice {u}*/
      for (v = G->listadj[u]; v != NULL; v = v->proximo) {
         relax (u, v->id, G, pai, dist);
      }
      printf("Nó = %d (predecessor = %d), caminho mínimo do nó %d até o nó %d = %d\n", u, pai[u], source, u, dist[u]);
   }
}
예제 #8
0
파일: sample2.c 프로젝트: huizhedmth/SC0x39
/* Run Dijkstra's algorithm from vertex s.  Fills in arrays d and pi. */
void dijkstra(int first[], int node[], int next[], double w[], double d[],
	      int pi[], int s, int n, int handle[], int heap_index[]) {
  int size = n;
  int u, v, i;

  initialize_single_source(d, handle, heap_index, pi, s, n);
  while (size > 0) {
    u = handle[1];
    extract_min(d, handle, heap_index, size);
    --size;
    i = first[u];
    while (i > 0) {
      v = node[i];
      relax(u, v, w[i], d, handle, heap_index, size, pi);
      i = next[i];
    }
  }
}
void dag_shortest_path(AdjList* graph, int length, int s, int d[], int parent[])
{
    AdjListNodePtr adjNode;
    List list = NULL, x = NULL;
    // toplogically sort the vertices of G
    toplogical_sort(graph, length, &list);
    initialize_single_source(graph, length, s, d, parent);
    x = list;
    while(x->value != s){
	x = x->next;
    }
    while(x)
    {
	adjNode = graph[x->value];
	while(adjNode)
	{
	    relax(x->value, adjNode->vertex, adjNode->weight ,d, parent);
	    adjNode = adjNode->next;
	}
	x = x->next;
    }
    free_list(list);
}