예제 #1
0
static void
copy_array_to_vbo_array(struct brw_context *brw,
			struct brw_vertex_element *element,
			int min, int max,
			struct brw_vertex_buffer *buffer,
			GLuint dst_stride)
{
   int src_stride = element->glarray->StrideB;
   const unsigned char *src = element->glarray->Ptr + min * src_stride;
   int count = max - min + 1;
   GLuint size = count * dst_stride;

   if (dst_stride == src_stride) {
      intel_upload_data(&brw->intel, src, size, dst_stride,
			&buffer->bo, &buffer->offset);
   } else {
      char * const map = intel_upload_map(&brw->intel, size, dst_stride);
      char *dst = map;

      while (count--) {
	 memcpy(dst, src, dst_stride);
	 src += src_stride;
	 dst += dst_stride;
      }
      intel_upload_unmap(&brw->intel, map, size, dst_stride,
			 &buffer->bo, &buffer->offset);
   }
   buffer->stride = dst_stride;
}
예제 #2
0
static void
copy_array_to_vbo_array(struct brw_context *brw,
			struct brw_vertex_element *element,
			int min, int max,
			struct brw_vertex_buffer *buffer,
			GLuint dst_stride)
{
   if (min == -1) {
      /* If we don't have computed min/max bounds, then this must be a use of
       * the current attribute, which has a 0 stride.  Otherwise, we wouldn't
       * know what data to upload.
       */
      assert(element->glarray->StrideB == 0);

      intel_upload_data(&brw->intel, element->glarray->Ptr,
                        element->element_size,
                        element->element_size,
			&buffer->bo, &buffer->offset);

      buffer->stride = 0;
      return;
   }

   int src_stride = element->glarray->StrideB;
   const unsigned char *src = element->glarray->Ptr + min * src_stride;
   int count = max - min + 1;
   GLuint size = count * dst_stride;

   if (dst_stride == src_stride) {
      intel_upload_data(&brw->intel, src, size, dst_stride,
			&buffer->bo, &buffer->offset);
   } else {
      char * const map = intel_upload_map(&brw->intel, size, dst_stride);
      char *dst = map;

      while (count--) {
	 memcpy(dst, src, dst_stride);
	 src += src_stride;
	 dst += dst_stride;
      }
      intel_upload_unmap(&brw->intel, map, size, dst_stride,
			 &buffer->bo, &buffer->offset);
   }
   buffer->stride = dst_stride;
}
예제 #3
0
static void
copy_array_to_vbo_array(struct brw_context *brw,
			struct brw_vertex_element *element,
			int min, int max,
			struct brw_vertex_buffer *buffer,
			GLuint dst_stride)
{
   const int src_stride = element->glarray->StrideB;

   /* If the source stride is zero, we just want to upload the current
    * attribute once and set the buffer's stride to 0.  There's no need
    * to replicate it out.
    */
   if (src_stride == 0) {
      intel_upload_data(brw, element->glarray->Ptr,
                        element->glarray->_ElementSize,
                        element->glarray->_ElementSize,
			&buffer->bo, &buffer->offset);

      buffer->stride = 0;
      return;
   }

   const unsigned char *src = element->glarray->Ptr + min * src_stride;
   int count = max - min + 1;
   GLuint size = count * dst_stride;

   if (dst_stride == src_stride) {
      intel_upload_data(brw, src, size, dst_stride,
			&buffer->bo, &buffer->offset);
   } else {
      char * const map = intel_upload_map(brw, size, dst_stride);
      char *dst = map;

      while (count--) {
	 memcpy(dst, src, dst_stride);
	 src += src_stride;
	 dst += dst_stride;
      }
      intel_upload_unmap(brw, map, size, dst_stride,
			 &buffer->bo, &buffer->offset);
   }
   buffer->stride = dst_stride;
}
예제 #4
0
static void brw_prepare_vertices(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->intel.ctx;
   struct intel_context *intel = intel_context(ctx);
   /* CACHE_NEW_VS_PROG */
   GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
   const unsigned char *ptr = NULL;
   GLuint interleaved = 0, total_size = 0;
   unsigned int min_index = brw->vb.min_index;
   unsigned int max_index = brw->vb.max_index;
   int delta, i, j;
   GLboolean can_merge_uploads = GL_TRUE;

   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
   GLuint nr_uploads = 0;

   /* First build an array of pointers to ve's in vb.inputs_read
    */
   if (0)
      printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);

   /* Accumulate the list of enabled arrays. */
   brw->vb.nr_enabled = 0;
   while (vs_inputs) {
      GLuint i = ffsll(vs_inputs) - 1;
      struct brw_vertex_element *input = &brw->vb.inputs[i];

      vs_inputs &= ~BITFIELD64_BIT(i);
      if (input->glarray->Size && get_size(input->glarray->Type))
         brw->vb.enabled[brw->vb.nr_enabled++] = input;
   }

   if (brw->vb.nr_enabled == 0)
      return;

   if (brw->vb.nr_buffers)
      goto prepare;

   for (i = j = 0; i < brw->vb.nr_enabled; i++) {
      struct brw_vertex_element *input = brw->vb.enabled[i];
      const struct gl_client_array *glarray = input->glarray;
      int type_size = get_size(glarray->Type);

      input->element_size = type_size * glarray->Size;

      if (_mesa_is_bufferobj(glarray->BufferObj)) {
	 struct intel_buffer_object *intel_buffer =
	    intel_buffer_object(glarray->BufferObj);
	 int k;

	 for (k = 0; k < i; k++) {
	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
	    if (glarray->BufferObj == other->BufferObj &&
		glarray->StrideB == other->StrideB &&
		glarray->InstanceDivisor == other->InstanceDivisor &&
		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
	    {
	       input->buffer = brw->vb.enabled[k]->buffer;
	       input->offset = glarray->Ptr - other->Ptr;
	       break;
	    }
	 }
	 if (k == i) {
	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];

	    /* Named buffer object: Just reference its contents directly. */
            buffer->bo = intel_bufferobj_source(intel,
                                                intel_buffer, type_size,
						&buffer->offset);
	    drm_intel_bo_reference(buffer->bo);
	    buffer->offset += (uintptr_t)glarray->Ptr;
	    buffer->stride = glarray->StrideB;
	    buffer->step_rate = glarray->InstanceDivisor;

	    input->buffer = j++;
	    input->offset = 0;
	 }

	 /* This is a common place to reach if the user mistakenly supplies
	  * a pointer in place of a VBO offset.  If we just let it go through,
	  * we may end up dereferencing a pointer beyond the bounds of the
	  * GTT.  We would hope that the VBO's max_index would save us, but
	  * Mesa appears to hand us min/max values not clipped to the
	  * array object's _MaxElement, and _MaxElement frequently appears
	  * to be wrong anyway.
	  *
	  * The VBO spec allows application termination in this case, and it's
	  * probably a service to the poor programmer to do so rather than
	  * trying to just not render.
	  */
	 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
      } else {
	 /* Queue the buffer object up to be uploaded in the next pass,
	  * when we've decided if we're doing interleaved or not.
	  */
	 if (nr_uploads == 0) {
	    /* Position array not properly enabled:
	     */
	    if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) {
               intel->Fallback = true; /* boolean, not bitfield */
               return;
            }

	    interleaved = glarray->StrideB;
	    ptr = glarray->Ptr;
	 }
	 else if (interleaved != glarray->StrideB ||
		  (uintptr_t)(glarray->Ptr - ptr) > interleaved)
	 {
	    interleaved = 0;
	 }
	 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
	 {
	    /* enforce natural alignment (for doubles) */
	    interleaved = 0;
	 }

	 upload[nr_uploads++] = input;

	 total_size = ALIGN(total_size, type_size);
	 total_size += input->element_size;

         if (glarray->InstanceDivisor != 0) {
            can_merge_uploads = GL_FALSE;
         }
      }
   }

   /* If we need to upload all the arrays, then we can trim those arrays to
    * only the used elements [min_index, max_index] so long as we adjust all
    * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
    */
   brw->vb.start_vertex_bias = 0;
   delta = min_index;
   if (nr_uploads == brw->vb.nr_enabled) {
      brw->vb.start_vertex_bias = -delta;
      delta = 0;
   }
   if (delta && !brw->intel.intelScreen->relaxed_relocations)
      min_index = delta = 0;

   /* Handle any arrays to be uploaded. */
   if (nr_uploads > 1) {
      if (interleaved && interleaved <= 2*total_size) {
	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
	 /* All uploads are interleaved, so upload the arrays together as
	  * interleaved.  First, upload the contents and set up upload[0].
	  */
	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
				 buffer, interleaved);
	 buffer->offset -= delta * interleaved;

	 for (i = 0; i < nr_uploads; i++) {
	    /* Then, just point upload[i] at upload[0]'s buffer. */
	    upload[i]->offset =
	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
	    upload[i]->buffer = j;
	 }
	 j++;

	 nr_uploads = 0;
      }
      else if ((total_size < 2048) && can_merge_uploads) {
	 /* Upload non-interleaved arrays into a single interleaved array */
	 struct brw_vertex_buffer *buffer;
	 int count = MAX2(max_index - min_index + 1, 1);
	 int offset;
	 char *map;

	 map = intel_upload_map(&brw->intel, total_size * count, total_size);
	 for (i = offset = 0; i < nr_uploads; i++) {
	    const unsigned char *src = upload[i]->glarray->Ptr;
	    int size = upload[i]->element_size;
	    int stride = upload[i]->glarray->StrideB;
	    char *dst;
	    int n;

	    offset = ALIGN(offset, get_size(upload[i]->glarray->Type));
	    dst = map + offset;
	    src += min_index * stride;

	    for (n = 0; n < count; n++) {
	       memcpy(dst, src, size);
	       src += stride;
	       dst += total_size;
	    }

	    upload[i]->offset = offset;
	    upload[i]->buffer = j;

	    offset += size;
	 }
	 assert(offset == total_size);
	 buffer = &brw->vb.buffers[j++];
	 intel_upload_unmap(&brw->intel, map, offset * count, offset,
			    &buffer->bo, &buffer->offset);
	 buffer->stride = offset;
	 buffer->step_rate = 0;
	 buffer->offset -= delta * offset;

	 nr_uploads = 0;
      }
   }
   /* Upload non-interleaved arrays */
   for (i = 0; i < nr_uploads; i++) {
      struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
      if (upload[i]->glarray->InstanceDivisor == 0) {
         copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
                                 buffer, upload[i]->element_size);
      } else {
         /* This is an instanced attribute, since its InstanceDivisor
          * is not zero. Therefore, its data will be stepped after the
          * instanced draw has been run InstanceDivisor times.
          */
         uint32_t instanced_attr_max_index =
            (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
         copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
                                 buffer, upload[i]->element_size);
      }
      buffer->offset -= delta * buffer->stride;
      buffer->step_rate = upload[i]->glarray->InstanceDivisor;
      upload[i]->buffer = j++;
      upload[i]->offset = 0;
   }

   /* can we simply extend the current vb? */
   if (j == brw->vb.nr_current_buffers) {
      int delta = 0;
      for (i = 0; i < j; i++) {
	 int d;

	 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
	     brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
	     brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
	    break;

	 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
	 if (d < 0)
	    break;
	 if (i == 0)
	    delta = d / brw->vb.current_buffers[i].stride;
	 if (delta * brw->vb.current_buffers[i].stride != d)
	    break;
      }

      if (i == j) {
	 brw->vb.start_vertex_bias += delta;
	 while (--j >= 0)
	    drm_intel_bo_unreference(brw->vb.buffers[j].bo);
	 j = 0;
      }
   }

   brw->vb.nr_buffers = j;

prepare:
   brw_prepare_query_begin(brw);
}