wells_mask_t * wells_mask_read(FILE *fp) { int32_t i; wells_mask_t *m; m = ion_calloc(1, sizeof(wells_mask_t), __func__, "m"); if(fread(&m->num_rows, sizeof(int32_t), 1, fp) != 1 || fread(&m->num_cols, sizeof(int32_t), 1, fp) != 1) { free(m); return NULL; } m->masks = ion_malloc(m->num_rows * sizeof(uint16_t*), __func__, "m->mask"); for(i=0;i<m->num_rows;i++) { m->masks[i] = ion_malloc(m->num_cols * sizeof(uint16_t), __func__, "m->masks[i]"); if(fread(m->masks[i], sizeof(uint16_t), m->num_cols, fp) != m->num_cols) { // free while(0 <= i) { free(m->masks[i]); i--; } free(m); return NULL; } } return m; }
wells_data_t * wells_data_read(FILE *fp, wells_header_t *header) { wells_data_t *data; data = ion_malloc(sizeof(wells_data_t), __func__, "data"); data->flow_values = ion_malloc(sizeof(float)*header->num_flows, __func__, "data->flow_values"); if(NULL == wells_data_read1(fp, header, data)) { wells_data_destroy(data); return NULL; } return data; }
void sff_sort(sff_file_t *fp_in, sff_file_t *fp_out) { int32_t i, row, col; sff_t *sff; int32_t requires_sort = 0; sff_sort_t *sffs = NULL; int32_t sffs_mem = 0, sffs_len = 0; // initialize memory sffs_mem = 1024; sffs = ion_malloc(sizeof(sff_sort_t) * sffs_mem, __func__, "sffs"); // go through the input file while(NULL != (sff = sff_read(fp_in))) { // get the row/col co-ordinates if(0 == ion_readname_to_rowcol(sff->rheader->name->s, &row, &col)) { ion_error(__func__, "could not understand the read name", Exit, OutOfRange); } // copy over while(sffs_mem <= sffs_len) { sffs_mem <<= 1; // double sffs = ion_realloc(sffs, sizeof(sff_sort_t) * sffs_mem, __func__, "sffs"); } sffs[sffs_len].row = row; sffs[sffs_len].col = col; sffs[sffs_len].sff = sff; sff = NULL; // check if we need to sort, for later if(0 < sffs_len && __sff_sort_lt(sffs[sffs_len], sffs[sffs_len-1])) { requires_sort = 1; } sffs_len++; } // resize sffs_mem = sffs_len; sffs = ion_realloc(sffs, sizeof(sff_sort_t) * sffs_mem, __func__, "sffs"); if(1 == requires_sort) { // sort ion_sort_introsort(sff_sort, sffs_len, sffs); } // write for(i=0;i<sffs_len;i++) { if(0 == sff_write(fp_out, sffs[i].sff)) { ion_error(__func__, "sff_write", Exit, WriteFileError); } } // destroy for(i=0;i<sffs_len;i++) { sff_destroy(sffs[i].sff); } free(sffs); }
dat_frame_t * dat_frame_read(FILE *fp, dat_frame_t *prev, dat_header_t *header) { dat_frame_t *cur = NULL; // malloc cur = ion_malloc(sizeof(dat_frame_t), __func__, "cur"); cur->data = ion_malloc(sizeof(uint16_t)*header->rows*header->cols, __func__, "cur->data"); // read in the data if(NULL == dat_frame_read1(fp, cur, prev, header)) { free(cur->data); free(cur); } return cur; }
sff_read_t * sff_read_read(FILE *fp, sff_header_t *gh, sff_read_header_t *rh) { sff_read_t *r = NULL; uint32_t i, n = 0; r = sff_read_init(); r->flowgram = ion_malloc(sizeof(uint16_t)*gh->flow_length, __func__, "r->flowgram"); r->flow_index = ion_malloc(sizeof(uint8_t)*rh->n_bases, __func__, "r->flow_index"); r->bases = ion_string_init(rh->n_bases+1); r->quality = ion_string_init(rh->n_bases+1); if(gh->flow_length != fread(r->flowgram, sizeof(uint16_t), gh->flow_length, fp) || rh->n_bases != fread(r->flow_index, sizeof(uint8_t), rh->n_bases, fp) || rh->n_bases != fread(r->bases->s, sizeof(char), rh->n_bases, fp) || rh->n_bases != fread(r->quality->s, sizeof(char), rh->n_bases, fp)) { // truncated file, error ion_error(__func__, "fread", Exit, ReadFileError); } n += sizeof(uint16_t)*gh->flow_length + 3*sizeof(uint8_t)*rh->n_bases; // set length and null-terminators r->bases->l = rh->n_bases; r->quality->l = rh->n_bases; r->bases->s[r->bases->l]='\0'; r->quality->s[r->quality->l]='\0'; // convert flowgram to host order for(i=0;i<gh->flow_length;i++) { r->flowgram[i] = ntohs(r->flowgram[i]); } n += ion_read_padding(fp, n); #ifdef ION_SFF_DEBUG sff_read_print(stderr, r, gh, rh); #endif return r; }
sff_index_t * sff_index_read(FILE *fp) { int32_t i; uint32_t n = 0; uint64_t len = 0; sff_index_t *idx; idx = sff_index_init(); // index header if(1 != fread(&idx->index_magic_number, sizeof(uint32_t), 1, fp) || 1 != fread(&idx->index_version, sizeof(uint32_t), 1, fp) || 1 != fread(&idx->num_rows, sizeof(int32_t), 1, fp) || 1 != fread(&idx->num_cols, sizeof(int32_t), 1, fp) || 1 != fread(&idx->type, sizeof(int32_t), 1, fp)) { ion_error(__func__, "fread", Exit, WriteFileError); } n += sizeof(uint32_t)*2 + sizeof(int32_t)*3; // convert values from big-endian sff_index_ntoh(idx); // offsets if(SFF_INDEX_ROW_ONLY == idx->type) { len = 1 + idx->num_rows; } else if(SFF_INDEX_ALL == idx->type) { len = 1 + (idx->num_rows * idx->num_cols); } else { ion_error(__func__, "could not understand index type", Exit, OutOfRange); } // alloc idx->offset = ion_malloc(sizeof(uint64_t) * len, __func__, "idx->offset"); // read if(len != fread(idx->offset, sizeof(uint64_t), len, fp)) { ion_error(__func__, "fread", Exit, WriteFileError); } // convert values from big-endian for(i=0;i<len;i++) { idx->offset[i] = ntohll(idx->offset[i]); } n += sizeof(uint64_t) * len; // padding n += ion_read_padding(fp, n); return idx; }
static sff_read_t * sff_read_clone(sff_read_t *r, sff_header_t *gh, sff_read_header_t *rh) { sff_read_t *ret = NULL; int32_t i; ret = ion_calloc(1, sizeof(sff_read_t), __func__, "r"); ret->flowgram = ion_malloc(sizeof(uint16_t)*gh->flow_length, __func__, "ret->flowgram"); for(i=0;i<gh->flow_length;i++) { ret->flowgram[i] = r->flowgram[i]; } ret->flow_index = ion_malloc(sizeof(uint8_t)*rh->n_bases, __func__, "ret->flow_index"); for(i=0;i<rh->n_bases;i++) { ret->flow_index[i] = r->flow_index[i]; } ret->bases = ion_string_clone(r->bases); ret->quality = ion_string_clone(r->quality); return ret; }
dat_header_t * dat_header_read(FILE *fp) { dat_header_t *h=NULL; h = ion_malloc(sizeof(dat_header_t), __func__, "h"); if(fread_big_endian_uint32_t(fp, &h->signature) != 1 || fread_big_endian_uint32_t(fp, &h->version) != 1 || fread_big_endian_uint32_t(fp, &h->header_size) != 1 || fread_big_endian_uint32_t(fp, &h->data_size) != 1 || fread_big_endian_uint32_t(fp, &h->wall_time) != 1 || fread_big_endian_uint16_t(fp, &h->rows) != 1 || fread_big_endian_uint16_t(fp, &h->cols) != 1 || fread_big_endian_uint16_t(fp, &h->channels) != 1 || fread_big_endian_uint16_t(fp, &h->interlace_type) != 1 || fread_big_endian_uint16_t(fp, &h->frames_in_file) != 1 || fread_big_endian_uint16_t(fp, &h->reserved) != 1 || fread_big_endian_uint32_t(fp, &h->sample_rate) != 1 || fread_big_endian_uint16_t(fp, &h->full_scale_voltage[0]) != 1 || fread_big_endian_uint16_t(fp, &h->full_scale_voltage[1]) != 1 || fread_big_endian_uint16_t(fp, &h->full_scale_voltage[2]) != 1 || fread_big_endian_uint16_t(fp, &h->full_scale_voltage[3]) != 1 || fread_big_endian_uint16_t(fp, &h->channel_offsets[0]) != 1 || fread_big_endian_uint16_t(fp, &h->channel_offsets[1]) != 1 || fread_big_endian_uint16_t(fp, &h->channel_offsets[2]) != 1 || fread_big_endian_uint16_t(fp, &h->channel_offsets[3]) != 1 || fread_big_endian_uint16_t(fp, &h->ref_electrode_offset) != 1 || fread_big_endian_uint16_t(fp, &h->frame_interval) != 1) { free(h); return NULL; } if(3 != h->version) { // from Image.cpp ion_error(__func__, "h->version", Exit, OutOfRange); } // Check signature if(h->signature != DAT_HEADER_SIGNATURE) { ion_error(__func__, "h->signature", Exit, OutOfRange); } return h; }
wells_header_t * wells_header_read(FILE *fp) { wells_header_t *h; h = ion_calloc(1, sizeof(wells_header_t), __func__, "h"); if(fread(&h->num_wells, sizeof(uint32_t), 1, fp) != 1 || fread(&h->num_flows, sizeof(uint16_t), 1, fp) != 1) { free(h); return NULL; } h->flow_order = ion_malloc(sizeof(char)*(h->num_flows+1), __func__, "h"); if(fread(h->flow_order, sizeof(char), h->num_flows, fp) != h->num_flows) { free(h); return NULL; } h->flow_order[h->num_flows]='\0'; return h; }
dat_frame_t * dat_frame_read1(FILE *fp, dat_frame_t *cur, dat_frame_t *prev, dat_header_t *header) { int32_t i, mode; uint32_t ctr, compressed; int8_t *tmp_data8=NULL; //FILE *fp_debug = stdout; // for debuggin // read the timestamp and compression flag for this frame if(fread_big_endian_uint32_t(fp, &cur->timestamp) != 1 || fread_big_endian_uint32_t(fp, &compressed) != 1) { return NULL; } // the first frame is always uncompressed... if(NULL == prev || DAT_HEADER_UNINTERLACED == header->interlace_type) { if(0 != compressed) { ion_error(__func__, "compressed", Exit, OutOfRange); } // read in the data if(fread(cur->data, sizeof(uint16_t), header->rows*header->cols, fp) != header->rows*header->cols) { // image data return NULL; } // manually convert from big-endian for(i=0;i<header->rows*header->cols;i++) { cur->data[i] = ntohs(cur->data[i]) & DAT_FRAME_DATA_MASK; // unmask data } } else { uint32_t len, transitions, total, sentinel; uint32_t observed_transitions = 0; // read in the length of the frame, the # of transitions, the // total sum of hte pixel values, and hte sentinel if(fread_big_endian_uint32_t(fp, &len) != 1 || fread_big_endian_uint32_t(fp, &transitions) != 1 || fread_big_endian_uint32_t(fp, &total) != 1 || fread_big_endian_uint32_t(fp, &sentinel) != 1) { return NULL; } // check the sentinel if(sentinel != DAT_HEADER_SIGNATURE) { ion_error(__func__, "cur->sentinel", Exit, OutOfRange); } // subtract len, transitions, total, sentinel len -= sizeof(uint32_t)*4; assert(0 < len); // initialize memory cur->data = ion_calloc(header->rows*header->cols, sizeof(uint16_t), __func__, "cur->data"); tmp_data8 = ion_malloc(len*sizeof(int8_t), __func__, "tmp_data8"); // read in the whole frame // NOTE: could read in byte-by-byte and process to reduce memory overhead if(len != fread(tmp_data8, sizeof(int8_t), len, fp)) { free(tmp_data8); return NULL; } // de-interlace the data i=mode=ctr=0; while(ctr < header->rows*header->cols) { if(len <= i) { // not enough bytes read ion_error(__func__, "len <= i", Exit, OutOfRange); } // switch to 8-bit mode, or 16-bit mode where appropriate if(i < len-1 && DAT_FRAME_KEY_0 == (uint8_t)tmp_data8[i]) { if(DAT_FRAME_KEY_8_1 == (uint8_t)tmp_data8[i+1]) { // 16-bit to 8-bit observed_transitions++; /* fprintf(stderr, "[%d-%d] from %d-bit mode to 8-bit mode #%d/%d ctr=%d\n", i, i+1, mode, observed_transitions, transitions, ctr); */ mode = 8; i+=2; } else if(DAT_FRAME_KEY_16_1 == (uint8_t)tmp_data8[i+1]) { // 8-bit to 16-bit observed_transitions++; /* fprintf(stderr, "[%d-%d] from %d-bit mode to 16-bit mode #%d/%d ctr=%d\n", i, i+1, mode, observed_transitions, transitions, ctr); */ mode = 16; i+=2; } } // Note: assumes we must have data read between mode switches // read in data switch(mode) { case 8: // 8-bit mode cur->data[ctr] = tmp_data8[i] + prev->data[ctr]; ctr++; i++; break; case 16: // 16-bit mode cur->data[ctr] = (ntohs((int16_t)((tmp_data8[i] << 8) | tmp_data8[i+1])) & DAT_FRAME_DATA_MASK) + prev->data[ctr]; ctr++; i+=2; break; default: // mode? ion_error(__func__, "mode", Exit, OutOfRange); break; } } if(((i+3) & ~0x3) != len) { // check that the data was quad-word aligned ion_error(__func__, "quad word alignment", Exit, OutOfRange); } // free tmp_data8 free(tmp_data8); // check that the observed # of transitions equals the state # of // transitions if(transitions != observed_transitions) { ion_error(__func__, "transitions != observed_transitions", Exit, OutOfRange); } } return cur; }
// TODO: should we change the header: // - must trake index_length // - assumes row-major order sff_index_t* sff_index_create(sff_file_t *fp_in, sff_header_t *fp_out_header, int32_t num_rows, int32_t num_cols, int32_t type) { int64_t len = 0; int32_t i, prev_row, prev_col, row, col; sff_index_t *idx; sff_t *sff; uint64_t fp_in_start, prev_pos; idx = sff_index_init(); idx->num_rows = num_rows; idx->num_cols = num_cols; idx->type = type; // alloc switch(type) { case SFF_INDEX_ROW_ONLY: len = 1 + idx->num_rows; idx->offset = ion_malloc(len * sizeof(uint64_t), __func__, "idx->offset"); break; case SFF_INDEX_ALL: len = 1 + (idx->num_rows * idx->num_cols); idx->offset = ion_malloc(len * sizeof(uint64_t), __func__, "idx->offset"); break; default: ion_error(__func__, "this index type is currently not supported", Exit, OutOfRange); } // save where the sff entries started prev_pos = fp_in_start = ftell(fp_in->fp); if(-1L == fp_in_start) { ion_error(__func__, "ftell", Exit, ReadFileError); } // go through the input file i = 0; prev_row = prev_col = 0; while(NULL != (sff = sff_read(fp_in))) { // out of range if(len-1 <= i) { ion_error(__func__, "bug encountered", Exit, OutOfRange); } // get the row/col co-ordinates if(0 == ion_readname_to_rowcol(sff->rheader->name->s, &row, &col)) { ion_error(__func__, "could not understand the read name", Exit, OutOfRange); } // assumes row-major order, skips over reads that are not present if(row < prev_row || (row == prev_row && col < prev_col)) { ion_error(__func__, "SFF file was not sorted in row-major order", Exit, OutOfRange); } while(row != prev_row || col != prev_col) { // add in empty entry switch(type) { case SFF_INDEX_ROW_ONLY: if(0 == prev_col) { // first column idx->offset[i] = UINT64_MAX; // do not increment i, since we only do this when moving to a new row } break; case SFF_INDEX_ALL: // all rows and columns idx->offset[i] = UINT64_MAX; i++; break; default: ion_error(__func__, "this index type is currently not supported", Exit, OutOfRange); } if(len-1 <= i) { ion_error(__func__, "x/y was out of range", Exit, OutOfRange); } prev_col++; if(prev_col == idx->num_cols) { // new row prev_col = 0; prev_row++; if(SFF_INDEX_ROW_ONLY == type) { i++; } } } // add to the index switch(type) { case SFF_INDEX_ROW_ONLY: if(0 == col) { // first column idx->offset[i] = prev_pos; } else if(0 < col && UINT64_MAX == idx->offset[i]) { idx->offset[i] = prev_pos; // do not move onto the next } break; case SFF_INDEX_ALL: // all rows and columns idx->offset[i] = prev_pos; i++; break; default: ion_error(__func__, "this index type is currently not supported", Exit, OutOfRange); } prev_row = row; prev_col = col; // destroy sff_destroy(sff); // next prev_col++; if(prev_col == idx->num_cols) { // new row prev_col = 0; prev_row++; if(SFF_INDEX_ROW_ONLY == type) { i++; } } prev_pos = ftell(fp_in->fp); if(-1L == prev_pos) { ion_error(__func__, "ftell", Exit, ReadFileError); } } // get the last offset idx->offset[len-1] = prev_pos; // update the index offset in the header fp_out_header->index_offset = fp_in_start; // insert between the header and sff entries // update the index length in the header fp_out_header->index_length = sff_index_length(idx); // update the offsets based on the index length for(i=0;i<len;i++) { if(UINT64_MAX != idx->offset[i]) { idx->offset[i] += fp_out_header->index_length; } } return idx; }