oprtype put_lit(mval *x) { mliteral *a; triple *ref; ref = newtriple(OC_LIT); ref->operand[0].oprclass = MLIT_REF; dqloop(&literal_chain,que,a) if (is_equ(x,&(a->v))) { a->rt_addr--; ref->operand[0].oprval.mlit = a; return put_tref(ref); } ref->operand[0].oprval.mlit = a = (mliteral *) mcalloc(sizeof(mliteral)); dqins(&literal_chain,que,a); a->rt_addr = -1; a->v = *x; mlitmax++; return put_tref(ref); }
void bx_boollit_tail(triple *t, boolean_t jmp_type_one, boolean_t jmp_to_next, boolean_t sense, oprtype *addr) /* search the Boolean in t (recursively) for literal leaves; the logic is similar to bx_tail * the rest of the arguments parallel those in bx_boolop and used primarily handling basic Boolean operations (ON, NOR, AND, NAND) * to get the jump target and sense right for the left-hand operand of the operation * jmp_type_one gives the sense of the jump associated with the first operand * jmp_to_next gives whether we need a second jump to complete the operation * sense gives the sense of the requested operation * *addr points the operand for the jump and is eventually used by logic back in the invocation stack to fill in a target location */ { boolean_t sin[ARRAYSIZE(t->operand)], tv[ARRAYSIZE(t->operand)]; int com, comval, dummy, j, neg, num, tvr; mval *mv, *v[ARRAYSIZE(t->operand)]; opctype c; oprtype *i, *p; triple *cob[ARRAYSIZE(t->operand)], *ref0, *tl[ARRAYSIZE(t->operand)]; assert(OCT_BOOL & oc_tab[t->opcode].octype); assert(TRIP_REF == t->operand[0].oprclass); assert((OC_COBOOL != t->opcode) && (OC_COM != t->opcode) || (TRIP_REF == t->operand[1].oprclass)); for (i = t->operand, j = 0; i < ARRAYTOP(t->operand); i++, j++) { /* checkout an operand to see if we can simplify it */ p = i; com = 0; for (tl[j] = i->oprval.tref; OCT_UNARY & oc_tab[(c = tl[j]->opcode)].octype; tl[j] = p->oprval.tref) { /* find the real object of affection; WARNING assignment above */ assert((TRIP_REF == tl[j]->operand[0].oprclass) && (NO_REF == tl[j]->operand[1].oprclass)); com ^= (OC_COM == c); /* if we make a recursive call below, COM matters, but NEG and FORCENUM don't */ p = &tl[j]->operand[0]; } if (OCT_ARITH & oc_tab[c].octype) ex_tail(p); /* chained arithmetic */ else if (OCT_BOOL & oc_tab[c].octype) { /* recursively check an operand */ sin[j] = sense; p = addr; if (!j && !(OCT_REL & oc_tab[t->opcode].octype)) { /* left hand operand of parent */ sin[j] = jmp_type_one; if (jmp_to_next) { /* left operands need extra attention to decide between jump next or to the end */ p = (oprtype *)mcalloc(SIZEOF(oprtype)); *p = put_tjmp(t); } } bx_boollit(tl[j], sin[j] ^ com, p); } if ((OC_JMPTRUE != tl[j]->opcode) && (OC_JMPFALSE != tl[j]->opcode) && (OC_LIT != tl[j]->opcode)) return; /* this operation doesn't qualify */ com = comval = neg = num = 0; cob[j] = NULL; for (ref0 = i->oprval.tref; OCT_UNARY & oc_tab[(c = ref0->opcode)].octype; ref0 = ref0->operand[0].oprval.tref) { /* we may be able to clean up this operand; WARNING assignment above */ assert((TRIP_REF == ref0->operand[0].oprclass) && (NO_REF == ref0->operand[1].oprclass)); num += (OC_FORCENUM == c); com += (OC_COM == c); if (!com) /* "outside" com renders neg mute */ neg ^= (OC_NEG == c); if (!comval && (NULL == cob[j])) { if (comval = (OC_COMVAL == c)) /* WARNING assignment */ { if (ref0 != t->operand[j].oprval.tref) dqdel(t->operand[j].oprval.tref, exorder); t->operand[j].oprval.tref = tl[j]; /* need mval: no COBOOL needed */ } else if (OC_COBOOL == c) { /* the operand needs a COBOOL in case its operator remains unresolved */ cob[j] = t->operand[j].oprval.tref; if (ref0 == cob[j]) continue; /* already where it belongs */ cob[j]->opcode = OC_COBOOL; cob[j]->operand[0].oprval.tref = tl[j]; } else if (ref0 == t->operand[j].oprval.tref) continue; } dqdel(ref0, exorder); } assert(ref0 == tl[j]); if (!comval && (NULL == cob[j]) && (tl[j] != t->operand[j].oprval.tref)) { /* left room for a COBOOL, but there's no need */ dqdel(t->operand[j].oprval.tref, exorder); t->operand[j].oprval.tref = tl[j]; } if ((OC_JMPTRUE == ref0->opcode) || (OC_JMPFALSE == ref0->opcode)) { /* switch to a literal representation of TRUE / FALSE */ assert(INDR_REF == ref0->operand[0].oprclass); ref0->operand[1] = ref0->operand[0]; /* track info as we switch opcode */ PUT_LITERAL_TRUTH((sin[j] ? OC_JMPFALSE : OC_JMPTRUE) == ref0->opcode, ref0); ref0->opcode = OC_LIT; com = 0; /* already accounted for by sin */ } assert((OC_LIT == ref0->opcode) && (MLIT_REF == ref0->operand[0].oprclass)); v[j] = &ref0->operand[0].oprval.mlit->v; if (com) { /* any complement reduces the literal value to [unsigned] 1 or 0 */ unuse_literal(v[j]); tv[j] = (0 == v[j]->m[1]); assert(ref0 == tl[j]); PUT_LITERAL_TRUTH(tv[j], ref0); v[j] = &ref0->operand[0].oprval.mlit->v; num = 0; /* any complement trumps num */ } if (neg || num) { /* get literal into uniform state */ unuse_literal(v[j]); mv = (mval *)mcalloc(SIZEOF(mval)); *mv = *v[j]; if (neg) { if (MV_INT & mv->mvtype) { if (0 != mv->m[1]) mv->m[1] = -mv->m[1]; else mv->sgn = 0; } else if (MV_NM & mv->mvtype) mv->sgn = !mv->sgn; } else s2n(mv); n2s(mv); v[j] = mv; assert(ref0 == tl[j]); put_lit_s(v[j], ref0); } } assert(tl[0] != tl[1]); /* start processing a live one */ for (tvr = j, j = 0; j < tvr; j++) { /* both arguments are literals, so do the operation at compile time */ if (NULL != cob[j]) dqdel(cob[j], exorder); v[j] = &tl[j]->operand[0].oprval.mlit->v; tv[j] = (0 != v[j]->m[1]); unuse_literal(v[j]); tl[j]->opcode = OC_NOOP; tl[j]->operand[0].oprclass = NO_REF; } t->operand[1].oprclass = NO_REF; switch (c = t->opcode) /* WARNING assignment */ { /* optimize the Boolean operations here */ case OC_NAND: case OC_AND: tvr = (tv[0] && tv[1]); break; case OC_NOR: case OC_OR: tvr = (tv[0] || tv[1]); break; case OC_NCONTAIN: case OC_CONTAIN: tvr = 1; (void)matchc(v[1]->str.len, (unsigned char *)v[1]->str.addr, v[0]->str.len, (unsigned char *)v[0]->str.addr, &dummy, &tvr); tvr ^= 1; break; case OC_NEQU: case OC_EQU: tvr = is_equ(v[0], v[1]); break; case OC_NFOLLOW: case OC_FOLLOW: tvr = 0 < memvcmp(v[0]->str.addr, v[0]->str.len, v[1]->str.addr, v[1]->str.len); break; case OC_NGT: case OC_GT: tvr = 0 < numcmp(v[0], v[1]); break; case OC_NLT: case OC_LT: tvr = 0 > numcmp(v[0], v[1]); break; case OC_NPATTERN: case OC_PATTERN: tvr = !(*(uint4 *)v[1]->str.addr) ? do_pattern(v[0], v[1]) : do_patfixed(v[0], v[1]); break; case OC_NSORTS_AFTER: case OC_SORTS_AFTER: tvr = 0 < sorts_after(v[0], v[1]); break; default: assertpro(FALSE); } tvr ^= !sense; t->operand[0] = put_indr(addr); t->opcode = tvr ? OC_JMPFALSE : OC_JMPTRUE; return; }