예제 #1
0
파일: MCLinOp.cpp 프로젝트: dwillcox/BoxLib
void
MCLinOp::applyBC (MultiFab& inout,
		  int       level,
		  MCBC_Mode bc_mode)
{
    //
    // The inout MultiFab must have at least MCLinOp_grow ghost cells
    // for applyBC()
    //
    BL_ASSERT(inout.nGrow() >= MCLinOp_grow);
    //
    // The inout MultiFab must have at least Periodic_BC_grow cells for the
    // algorithms taking care of periodic boundary conditions.
    //
    BL_ASSERT(inout.nGrow() >= MCLinOp_grow);
    //
    // No coarsened boundary values, cannot apply inhomog at lev>0.
    //
    BL_ASSERT(!(level>0 && bc_mode == MCInhomogeneous_BC));
    
    int flagden = 1;	// fill in the bndry data and undrrelxr
    int flagbc  = 1;	// with values
    if (bc_mode == MCHomogeneous_BC)
        flagbc = 0; // nodata if homog
    int nc = inout.nComp();
    BL_ASSERT(nc == numcomp );

    inout.setBndry(-1.e30);
    inout.FillBoundary();
    prepareForLevel(level);

    geomarray[level].FillPeriodicBoundary(inout,0,nc);
    //
    // Fill boundary cells.
    //
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter mfi(inout); mfi.isValid(); ++mfi)
    {
        const int gn = mfi.index();

        BL_ASSERT(gbox[level][gn] == inout.box(gn));

        const BndryData::RealTuple&      bdl = bgb.bndryLocs(gn);
        const Array< Array<BoundCond> >& bdc = bgb.bndryConds(gn);
        const MaskTuple&                 msk = maskvals[level][gn];

        for (OrientationIter oitr; oitr; ++oitr)
        {
            const Orientation face = oitr();
            FabSet& f  = (*undrrelxr[level])[face];
            FabSet& td = (*tangderiv[level])[face];
            int cdr(face);
            const FabSet& fs = bgb.bndryValues(face);
	    Real bcl = bdl[face];
            const Array<BoundCond>& bc = bdc[face];
	    const int *bct = (const int*) bc.dataPtr();
	    const FArrayBox& fsfab = fs[gn];
	    const Real* bcvalptr = fsfab.dataPtr();
            //
	    // Way external derivs stored.
            //
	    const Real* exttdptr = fsfab.dataPtr(numcomp); 
	    const int* fslo      = fsfab.loVect();
	    const int* fshi      = fsfab.hiVect();
	    FArrayBox& inoutfab  = inout[gn];
	    FArrayBox& denfab    = f[gn];
	    FArrayBox& tdfab     = td[gn];
#if BL_SPACEDIM==2
            int cdir = face.coordDir(), perpdir = -1;
	    if (cdir == 0)
                perpdir = 1;
	    else if (cdir == 1)
                perpdir = 0;
	    else
                BoxLib::Abort("MCLinOp::applyBC(): bad logic");

	    const Mask& m    = *msk[face];
	    const Mask& mphi = *msk[Orientation(perpdir,Orientation::high)];
	    const Mask& mplo = *msk[Orientation(perpdir,Orientation::low)];
	    FORT_APPLYBC(
		&flagden, &flagbc, &maxorder,
		inoutfab.dataPtr(), 
                ARLIM(inoutfab.loVect()), ARLIM(inoutfab.hiVect()),
		&cdr, bct, &bcl,
		bcvalptr, ARLIM(fslo), ARLIM(fshi),
		m.dataPtr(),    ARLIM(m.loVect()),    ARLIM(m.hiVect()),
		mphi.dataPtr(), ARLIM(mphi.loVect()), ARLIM(mphi.hiVect()),
		mplo.dataPtr(), ARLIM(mplo.loVect()), ARLIM(mplo.hiVect()),
		denfab.dataPtr(), 
		ARLIM(denfab.loVect()), ARLIM(denfab.hiVect()),
		exttdptr, ARLIM(fslo), ARLIM(fshi),
		tdfab.dataPtr(),ARLIM(tdfab.loVect()),ARLIM(tdfab.hiVect()),
		inout.box(gn).loVect(), inout.box(gn).hiVect(),
		&nc, h[level]);
#elif BL_SPACEDIM==3
	    const Mask& mn = *msk[Orientation(1,Orientation::high)];
	    const Mask& me = *msk[Orientation(0,Orientation::high)];
	    const Mask& mw = *msk[Orientation(0,Orientation::low)];
	    const Mask& ms = *msk[Orientation(1,Orientation::low)];
	    const Mask& mt = *msk[Orientation(2,Orientation::high)];
	    const Mask& mb = *msk[Orientation(2,Orientation::low)];
	    FORT_APPLYBC(
		&flagden, &flagbc, &maxorder,
		inoutfab.dataPtr(), 
                ARLIM(inoutfab.loVect()), ARLIM(inoutfab.hiVect()),
		&cdr, bct, &bcl,
		bcvalptr, ARLIM(fslo), ARLIM(fshi),
		mn.dataPtr(),ARLIM(mn.loVect()),ARLIM(mn.hiVect()),
		me.dataPtr(),ARLIM(me.loVect()),ARLIM(me.hiVect()),
		mw.dataPtr(),ARLIM(mw.loVect()),ARLIM(mw.hiVect()),
		ms.dataPtr(),ARLIM(ms.loVect()),ARLIM(ms.hiVect()),
		mt.dataPtr(),ARLIM(mt.loVect()),ARLIM(mt.hiVect()),
		mb.dataPtr(),ARLIM(mb.loVect()),ARLIM(mb.hiVect()),
		denfab.dataPtr(), 
		ARLIM(denfab.loVect()), ARLIM(denfab.hiVect()),
		exttdptr, ARLIM(fslo), ARLIM(fshi),
		tdfab.dataPtr(),ARLIM(tdfab.loVect()),ARLIM(tdfab.hiVect()),
		inout.box(gn).loVect(), inout.box(gn).hiVect(),
		&nc, h[level]);
#endif
	}
    }

#if 0
  // This "probably" works, but is not strictly needed just because of the way Bill
  // coded up the tangential derivative stuff.  It's handy code though, so I want to
  // keep it around/

  // Clean up corners:
  // The problem here is that APPLYBC fills only grow cells normal to the boundary.
  // As a result, any corner cell on the boundary (either coarse-fine or fine-fine)
  // is not filled.  For coarse-fine, the operator adjusts itself, sliding away from
  // the box edge to avoid referencing that corner point.  On the physical boundary
  // though, the corner point is needed.  Particularly if a fine-fine boundary intersects
  // the physical boundary, since we want the stencil to be independent of the box
  // blocking.  FillBoundary operations wont fix the problem because the "good"
  // data we need is living in the grow region of adjacent fabs.  So, here we play
  // the usual games to treat the newly filled grow cells as "valid" data.

  // Note that we only need to do something where the grids touch the physical boundary.

  const Geometry& geomlev = geomarray[level];
  const BoxArray& grids = inout.boxArray();
  const Box& domain = geomlev.Domain();
  int nGrow = 1;
  int src_comp = 0;
  int num_comp = BL_SPACEDIM;


  // Lets do a quick check to see if we need to do anything at all here
  BoxArray BIGba = BoxArray(grids).grow(nGrow);

  if (! (domain.contains(BIGba.minimalBox())) ) {

    BoxArray boundary_pieces;
    Array<int> proc_idxs;
    Array<Array<int> > old_to_new(grids.size());
    const DistributionMapping& dmap=inout.DistributionMap();

    for (int d=0; d<BL_SPACEDIM; ++d) {
      if (! (geomlev.isPeriodic(d)) ) {

        BoxArray gba = BoxArray(grids).grow(d,nGrow);
        for (int i=0; i<gba.size(); ++i) {
          BoxArray new_pieces = BoxLib::boxComplement(gba[i],domain);
          int size_new = new_pieces.size();
          if (size_new>0) {
            int size_old = boundary_pieces.size();
            boundary_pieces.resize(size_old+size_new);
            proc_idxs.resize(boundary_pieces.size());
            for (int j=0; j<size_new; ++j) {
              boundary_pieces.set(size_old+j,new_pieces[j]);
              proc_idxs[size_old+j] = dmap[i];
              old_to_new[i].push_back(size_old+j);
            }
          }
        }
      }
    }

    proc_idxs.push_back(ParallelDescriptor::MyProc());

    MultiFab boundary_data(boundary_pieces,num_comp,nGrow,
                           DistributionMapping(proc_idxs));

    for (MFIter mfi(inout); mfi.isValid(); ++mfi) {
      const FArrayBox& src_fab = inout[mfi];
      for (int j=0; j<old_to_new[mfi.index()].size(); ++j) {
        int new_box_idx = old_to_new[mfi.index()][j];
        boundary_data[new_box_idx].copy(src_fab,src_comp,0,num_comp);
      }
    }

    boundary_data.FillBoundary();

    // Use a hacked Geometry object to handle the periodic intersections for us.
    // Here, the "domain" is the plane of cells on non-periodic boundary faces.
    // and there may be cells over the periodic boundary in the remaining directions.
    // We do a Geometry::PFB on each non-periodic face to sync these up.
    if (geomlev.isAnyPeriodic()) {
      Array<int> is_per(BL_SPACEDIM,0);
      for (int d=0; d<BL_SPACEDIM; ++d) {
        is_per[d] = geomlev.isPeriodic(d);
      }
      for (int d=0; d<BL_SPACEDIM; ++d) {
        if (! is_per[d]) {
          Box tmpLo = BoxLib::adjCellLo(geomlev.Domain(),d,1);
          Geometry tmpGeomLo(tmpLo,&(geomlev.ProbDomain()),(int)geomlev.Coord(),is_per.dataPtr());
          tmpGeomLo.FillPeriodicBoundary(boundary_data);

          Box tmpHi = BoxLib::adjCellHi(geomlev.Domain(),d,1);
          Geometry tmpGeomHi(tmpHi,&(geomlev.ProbDomain()),(int)geomlev.Coord(),is_per.dataPtr());
          tmpGeomHi.FillPeriodicBoundary(boundary_data);
        }
      }
    }

    for (MFIter mfi(inout); mfi.isValid(); ++mfi) {
      int idx = mfi.index();
      FArrayBox& dst_fab = inout[mfi];
      for (int j=0; j<old_to_new[idx].size(); ++j) {
        int new_box_idx = old_to_new[mfi.index()][j];
        const FArrayBox& src_fab = boundary_data[new_box_idx];
        const Box& src_box = src_fab.box();

        BoxArray pieces_outside_domain = BoxLib::boxComplement(src_box,domain);
        for (int k=0; k<pieces_outside_domain.size(); ++k) {
          const Box& outside = pieces_outside_domain[k] & dst_fab.box();
          if (outside.ok()) {
            dst_fab.copy(src_fab,outside,0,outside,src_comp,num_comp);
          }
        }
      }
    }
  }
#endif
}
예제 #2
0
파일: main.cpp 프로젝트: qinyubo/BoxLib
int main(int argc, char* argv[])
{
  BoxLib::Initialize(argc,argv);

  BL_PROFILE_VAR("main()", pmain);

  std::cout << std::setprecision(15);

  ParmParse ppmg("mg");  
  ppmg.query("v", verbose);
  ppmg.query("maxorder", maxorder);
  
  ParmParse pp;

  {
    std::string solver_type_s;
    pp.get("solver_type",solver_type_s);
    if (solver_type_s == "BoxLib_C") {
      solver_type = BoxLib_C;
    }
    else if (solver_type_s == "BoxLib_C4") {
      solver_type = BoxLib_C4;
    }
    else if (solver_type_s == "BoxLib_F") {
#ifdef USE_F90_SOLVERS
      solver_type = BoxLib_F;      
#else
      BoxLib::Error("Set USE_FORTRAN=TRUE in GNUmakefile");
#endif
    }
    else if (solver_type_s == "Hypre") {
#ifdef USEHYPRE
      solver_type = Hypre;
#else
      BoxLib::Error("Set USE_HYPRE=TRUE in GNUmakefile");
#endif
    }
    else if (solver_type_s == "All") {
      solver_type = All;
    }  
    else {
      if (ParallelDescriptor::IOProcessor()) {
	std::cout << "Don't know this solver type: " << solver_type << std::endl;
      }
      BoxLib::Error("");
    }
  }

  {
    std::string bc_type_s;
    pp.get("bc_type",bc_type_s);
    if (bc_type_s == "Dirichlet") {
      bc_type = Dirichlet;
#ifdef USEHPGMG
      domain_boundary_condition = BC_DIRICHLET;
#endif
    }
    else if (bc_type_s == "Neumann") {
      bc_type = Neumann;
#ifdef USEHPGMG
      BoxLib::Error("HPGMG does not support Neumann boundary conditions");
#endif
    }
    else if (bc_type_s == "Periodic") {
      bc_type = Periodic;
#ifdef USEHPGMG
      domain_boundary_condition = BC_PERIODIC;
#endif
    }
    else {
      if (ParallelDescriptor::IOProcessor()) {
	std::cout << "Don't know this boundary type: " << bc_type << std::endl;
      }
      BoxLib::Error("");
    }
  }

  pp.query("tol_rel", tolerance_rel);
  pp.query("tol_abs", tolerance_abs);
  pp.query("maxiter", maxiter);
  pp.query("plot_rhs" , plot_rhs);
  pp.query("plot_beta", plot_beta);
  pp.query("plot_soln", plot_soln);
  pp.query("plot_asol", plot_asol);
  pp.query("plot_err", plot_err);
  pp.query("comp_norm", comp_norm);

  Real a, b;
  pp.get("a",  a);
  pp.get("b",  b);

  pp.get("n_cell",n_cell);
  pp.get("max_grid_size",max_grid_size);

  // Define a single box covering the domain
  IntVect dom_lo(D_DECL(0,0,0));
  IntVect dom_hi(D_DECL(n_cell-1,n_cell-1,n_cell-1));
  Box domain(dom_lo,dom_hi);

  // Initialize the boxarray "bs" from the single box "bx"
  BoxArray bs(domain);

  // Break up boxarray "bs" into chunks no larger than "max_grid_size" along a direction
  bs.maxSize(max_grid_size);

  // This defines the physical size of the box.  Right now the box is [0,1] in each direction.
  RealBox real_box;
  for (int n = 0; n < BL_SPACEDIM; n++) {
    real_box.setLo(n, 0.0);
    real_box.setHi(n, 1.0);
  }
 
  // This says we are using Cartesian coordinates
  int coord = 0;
  
  // This sets the boundary conditions to be periodic or not
  Array<int> is_per(BL_SPACEDIM,1);
  
  if (bc_type == Dirichlet || bc_type == Neumann) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "Using Dirichlet or Neumann boundary conditions." << std::endl;
    }
    for (int n = 0; n < BL_SPACEDIM; n++) is_per[n] = 0;
  } 
  else {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "Using periodic boundary conditions." << std::endl;
    }
    for (int n = 0; n < BL_SPACEDIM; n++) is_per[n] = 1;
  }
 
  // This defines a Geometry object which is useful for writing the plotfiles
  Geometry geom(domain,&real_box,coord,is_per.dataPtr());

  for ( int n=0; n<BL_SPACEDIM; n++ ) {
    dx[n] = ( geom.ProbHi(n) - geom.ProbLo(n) )/domain.length(n);
  }

  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "Grid resolution : " << n_cell << " (cells)" << std::endl;
    std::cout << "Domain size     : " << real_box.hi(0) - real_box.lo(0) << " (length unit) " << std::endl;
    std::cout << "Max_grid_size   : " << max_grid_size << " (cells)" << std::endl;
    std::cout << "Number of grids : " << bs.size() << std::endl;
  }

  // Allocate and define the right hand side.
  bool do_4th = (solver_type==BoxLib_C4 || solver_type==All);
  int ngr = (do_4th ? 1 : 0);
  MultiFab rhs(bs, Ncomp, ngr); 
  setup_rhs(rhs, geom);

  // Set up the Helmholtz operator coefficients.
  MultiFab alpha(bs, Ncomp, 0);
  PArray<MultiFab> beta(BL_SPACEDIM, PArrayManage);
  for ( int n=0; n<BL_SPACEDIM; ++n ) {
    BoxArray bx(bs);
    beta.set(n, new MultiFab(bx.surroundingNodes(n), Ncomp, 0, Fab_allocate));
  }

  // The way HPGMG stores face-centered data is completely different than the
  // way BoxLib does it, and translating between the two directly via indexing
  // magic is a nightmare. Happily, the way this tutorial calculates
  // face-centered values is by first calculating cell-centered values and then
  // interpolating to the cell faces. HPGMG can do the same thing, so rather
  // than converting directly from BoxLib's face-centered data to HPGMG's, just
  // give HPGMG the cell-centered data and let it interpolate itself.

  MultiFab beta_cc(bs,Ncomp,1); // cell-centered beta
  setup_coeffs(bs, alpha, beta, geom, beta_cc);

  MultiFab alpha4, beta4;
  if (do_4th) {
    alpha4.define(bs, Ncomp, 4, Fab_allocate);
    beta4.define(bs, Ncomp, 3, Fab_allocate);
    setup_coeffs4(bs, alpha4, beta4, geom);
  }

  MultiFab anaSoln;
  if (comp_norm || plot_err || plot_asol) {
    anaSoln.define(bs, Ncomp, 0, Fab_allocate);
    compute_analyticSolution(anaSoln,Array<Real>(BL_SPACEDIM,0.5));
    
    if (plot_asol) {
      writePlotFile("ASOL", anaSoln, geom);
    }
  }

  // Allocate the solution array 
  // Set the number of ghost cells in the solution array.
  MultiFab soln(bs, Ncomp, 1);
  MultiFab soln4;
  if (do_4th) {
    soln4.define(bs, Ncomp, 3, Fab_allocate);
  }
  MultiFab gphi(bs, BL_SPACEDIM, 0);

#ifdef USEHYPRE
  if (solver_type == Hypre || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with Hypre " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, Hypre);
  }
#endif

  if (solver_type == BoxLib_C || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib C++ solver " << std::endl;
    }
    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, BoxLib_C);
  }

  if (solver_type == BoxLib_C4 || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib C++ 4th order solver " << std::endl;
    }

    solve4(soln4, anaSoln, a, b, alpha4, beta4, rhs, bs, geom);
  }

#ifdef USE_F90_SOLVERS
  if (solver_type == BoxLib_F || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib F90 solver " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, BoxLib_F);
  }
#endif

#ifdef USEHPGMG
  if (solver_type == HPGMG || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with HPGMG solver " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, HPGMG);
  }
#endif

  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "----------------------------------------" << std::endl;
  }
  
  BL_PROFILE_VAR_STOP(pmain);

  BoxLib::Finalize();
}