예제 #1
0
파일: progress.c 프로젝트: cuidi/gnupg
/* Create a new context for use with the progress filter.  We need to
   allocate such contexts on the heap because there is no guarantee
   that at the end of a function the filter has already been popped
   off.  In general this will happen but with malformed packets it is
   possible that a filter has not yet reached the end-of-stream when
   the function has done all processing.  Checking in each function
   that end-of-stream has been reached would be to cumbersome.

   What we also do is to shortcut the progress handler by having this
   function return NULL if progress information has not been
   requested.
*/
progress_filter_context_t *
new_progress_context (void)
{
  progress_filter_context_t *pfx;

  if (!opt.enable_progress_filter)
    return NULL;

  if (!is_status_enabled ())
    return NULL;

  pfx = xcalloc (1, sizeof *pfx);
  pfx->refcount = 1;

  return pfx;
}
예제 #2
0
/****************
 * Check the secret key
 * Ask up to 3 (or n) times for a correct passphrase
 * If n is negative, disable the key info prompt and make n=abs(n)
 */
int
check_secret_key( PKT_secret_key *sk, int n )
{
    int rc = gpg_error (GPG_ERR_BAD_PASSPHRASE);
    int i,mode;

    if (sk && sk->is_protected && sk->protect.s2k.mode == 1002)
      return 0; /* Let the scdaemon handle this. */

    if(n<0)
      {
	n=abs(n);
	mode=1;
      }
    else
      mode=0;

    if( n < 1 )
	n = 3; /* Use the default value */

    for(i=0; i < n && gpg_err_code (rc) == GPG_ERR_BAD_PASSPHRASE; i++ ) {
        int canceled = 0;
        const char *tryagain = NULL;
	if (i) {
            tryagain = N_("Invalid passphrase; please try again");
            log_info (_("%s ...\n"), _(tryagain));
        }
	rc = do_check( sk, tryagain, mode, &canceled );
	if ( gpg_err_code (rc) == GPG_ERR_BAD_PASSPHRASE
             && is_status_enabled () ) {
	    u32 kid[2];
	    char buf[50];

	    keyid_from_sk( sk, kid );
	    sprintf(buf, "%08lX%08lX", (ulong)kid[0], (ulong)kid[1]);
	    write_status_text( STATUS_BAD_PASSPHRASE, buf );
	}
	if( have_static_passphrase() || canceled)
	    break;
    }

    if( !rc )
	write_status( STATUS_GOOD_PASSPHRASE );

    return rc;
}
예제 #3
0
파일: pkclist.c 프로젝트: FMayzek/gnupg
/****************
 * wrapper around do_we_trust, so we can ask whether to use the
 * key anyway.
 */
static int
do_we_trust_pre( PKT_public_key *pk, unsigned int trustlevel )
{
  int rc;

  rc = do_we_trust( pk, trustlevel );

  if( !opt.batch && !rc )
    {
      print_pubkey_info(NULL,pk);
      print_fingerprint (pk, 2);
      tty_printf("\n");

      tty_printf(
	       _("It is NOT certain that the key belongs to the person named\n"
		 "in the user ID.  If you *really* know what you are doing,\n"
		 "you may answer the next question with yes.\n"));

      tty_printf("\n");


      if (is_status_enabled ())
        {
          u32 kid[2];
          char *hint_str;

          keyid_from_pk (pk, kid);
          hint_str = get_long_user_id_string ( kid );
          write_status_text ( STATUS_USERID_HINT, hint_str );
          xfree (hint_str);
        }

      if( cpr_get_answer_is_yes("untrusted_key.override",
				_("Use this key anyway? (y/N) "))  )
	rc = 1;

      /* Hmmm: Should we set a flag to tell the user about
       *	 his decision the next time he encrypts for this recipient?
       */
    }

  return rc;
}
예제 #4
0
파일: progress.c 프로젝트: cuidi/gnupg
void
handle_progress (progress_filter_context_t *pfx, IOBUF inp, const char *name)
{
  off_t filesize = 0;

  if (!pfx)
    return;

  log_assert (opt.enable_progress_filter);
  log_assert (is_status_enabled ());

  if ( !iobuf_is_pipe_filename (name) && *name )
    filesize = iobuf_get_filelength (inp, NULL);
  else if (opt.set_filesize)
    filesize = opt.set_filesize;

  /* register the progress filter */
  pfx->what = xstrdup (name ? name : "stdin");
  pfx->total = filesize;
  pfx->refcount++;
  iobuf_push_filter (inp, progress_filter, pfx);
}
예제 #5
0
/****************
 * Get the session key from a pubkey enc packet and return
 * it in DEK, which should have been allocated in secure memory.
 */
int
get_session_key( PKT_pubkey_enc *k, DEK *dek )
{
    PKT_secret_key *sk = NULL;
    int rc;

    rc = openpgp_pk_test_algo2 (k->pubkey_algo, PUBKEY_USAGE_ENC);
    if( rc )
	goto leave;

    if( (k->keyid[0] || k->keyid[1]) && !opt.try_all_secrets ) {
	sk = xmalloc_clear( sizeof *sk );
	sk->pubkey_algo = k->pubkey_algo; /* we want a pubkey with this algo*/
	if( !(rc = get_seckey( sk, k->keyid )) )
	    rc = get_it( k, dek, sk, k->keyid );
    }
    else { /* anonymous receiver: Try all available secret keys */
	void *enum_context = NULL;
	u32 keyid[2];
	char *p;

	for(;;) {
	    if( sk )
		free_secret_key( sk );
	    sk = xmalloc_clear( sizeof *sk );
	    rc=enum_secret_keys( &enum_context, sk, 1, 0);
	    if( rc ) {
		rc = G10ERR_NO_SECKEY;
		break;
	    }
	    if( sk->pubkey_algo != k->pubkey_algo )
		continue;
	    keyid_from_sk( sk, keyid );
	    log_info(_("anonymous recipient; trying secret key %s ...\n"),
                     keystr(keyid));

	    if(!opt.try_all_secrets && !is_status_enabled())
	      {
		p=get_last_passphrase();
		set_next_passphrase(p);
		xfree(p);
	      }

	    rc = check_secret_key( sk, opt.try_all_secrets?1:-1 ); /* ask
								      only
								      once */
	    if( !rc )
	      {
		rc = get_it( k, dek, sk, keyid );
		/* Successfully checked the secret key (either it was
		   a card, had no passphrase, or had the right
		   passphrase) but couldn't decrypt the session key,
		   so thus that key is not the anonymous recipient.
		   Move the next passphrase into last for the next
		   round.  We only do this if the secret key was
		   successfully checked as in the normal case,
		   check_secret_key handles this for us via
		   passphrase_to_dek */
		if(rc)
		  next_to_last_passphrase();
	      }

	    if( !rc )
	      {
		log_info(_("okay, we are the anonymous recipient.\n") );
		break;
	      }
	}
	enum_secret_keys( &enum_context, NULL, 0, 0 ); /* free context */
    }

  leave:
    if( sk )
	free_secret_key( sk );
    return rc;
}
예제 #6
0
/* Try to connect to the agent via socket or fork it off and work by
   pipes.  Handle the server's initial greeting */
static int
start_agent (int for_card)
{
    int rc;

    /* Fixme: We need a context for each thread or serialize the access
       to the agent. */
    if (agent_ctx)
        rc = 0;
    else
    {
        rc = start_new_gpg_agent (&agent_ctx,
                                  GPG_ERR_SOURCE_DEFAULT,
                                  opt.homedir,
                                  opt.agent_program,
                                  opt.lc_ctype, opt.lc_messages,
                                  opt.session_env,
                                  opt.verbose, DBG_ASSUAN,
                                  NULL, NULL);
        if (!rc)
        {
            /* Tell the agent that we support Pinentry notifications.
               No error checking so that it will work also with older
               agents.  */
            assuan_transact (agent_ctx, "OPTION allow-pinentry-notify",
                             NULL, NULL, NULL, NULL, NULL, NULL);
        }
    }

    if (!rc && for_card && !did_early_card_test)
    {
        /* Request the serial number of the card for an early test.  */
        struct agent_card_info_s info;

        memset (&info, 0, sizeof info);
        rc = assuan_transact (agent_ctx, "SCD SERIALNO openpgp",
                              NULL, NULL, NULL, NULL,
                              learn_status_cb, &info);
        if (rc)
        {
            switch (gpg_err_code (rc))
            {
            case GPG_ERR_NOT_SUPPORTED:
            case GPG_ERR_NO_SCDAEMON:
                write_status_text (STATUS_CARDCTRL, "6");
                break;
            default:
                write_status_text (STATUS_CARDCTRL, "4");
                log_info ("selecting openpgp failed: %s\n", gpg_strerror (rc));
                break;
            }
        }

        if (!rc && is_status_enabled () && info.serialno)
        {
            char *buf;

            buf = xasprintf ("3 %s", info.serialno);
            write_status_text (STATUS_CARDCTRL, buf);
            xfree (buf);
        }

        agent_release_card_info (&info);

        if (!rc)
            did_early_card_test = 1;
    }


    return rc;
}
예제 #7
0
파일: passphrase.c 프로젝트: cuidi/gnupg
/* Return a new DEK object using the string-to-key specifier S2K.  Use
   KEYID and PUBKEY_ALGO to prompt the user.  Returns NULL is the user
   selected to cancel the passphrase entry and if CANCELED is not
   NULL, sets it to true.

   MODE 0:  Allow cached passphrase
        1:  Ignore cached passphrase
        2:  Ditto, but create a new key
        3:  Allow cached passphrase; use the S2K salt as the cache ID
        4:  Ditto, but create a new key
*/
DEK *
passphrase_to_dek_ext (u32 *keyid, int pubkey_algo,
                       int cipher_algo, STRING2KEY *s2k, int mode,
                       const char *tryagain_text,
                       const char *custdesc, const char *custprompt,
                       int *canceled)
{
  char *pw = NULL;
  DEK *dek;
  STRING2KEY help_s2k;
  int dummy_canceled;
  char s2k_cacheidbuf[1+16+1], *s2k_cacheid = NULL;

  if (!canceled)
    canceled = &dummy_canceled;
  *canceled = 0;

  if ( !s2k )
    {
      log_assert (mode != 3 && mode != 4);
      /* This is used for the old rfc1991 mode
       * Note: This must match the code in encode.c with opt.rfc1991 set */
      s2k = &help_s2k;
      s2k->mode = 0;
      s2k->hash_algo = S2K_DIGEST_ALGO;
    }

  /* Create a new salt or what else to be filled into the s2k for a
     new key.  */
  if ((mode == 2 || mode == 4) && (s2k->mode == 1 || s2k->mode == 3))
    {
      gcry_randomize (s2k->salt, 8, GCRY_STRONG_RANDOM);
      if ( s2k->mode == 3 )
        {
          /* We delay the encoding until it is really needed.  This is
             if we are going to dynamically calibrate it, we need to
             call out to gpg-agent and that should not be done during
             option processing in main().  */
          if (!opt.s2k_count)
            opt.s2k_count = encode_s2k_iterations (0);
          s2k->count = opt.s2k_count;
        }
    }

  /* If we do not have a passphrase available in NEXT_PW and status
     information are request, we print them now. */
  if ( !next_pw && is_status_enabled() )
    {
      char buf[50];

      if ( keyid )
        {
          emit_status_need_passphrase (keyid,
                                       keyid[2] && keyid[3]? keyid+2:NULL,
                                       pubkey_algo);
	}
      else
        {
          snprintf (buf, sizeof buf -1, "%d %d %d",
                    cipher_algo, s2k->mode, s2k->hash_algo );
          write_status_text ( STATUS_NEED_PASSPHRASE_SYM, buf );
	}
    }

  /* If we do have a keyID, we do not have a passphrase available in
     NEXT_PW, we are not running in batch mode and we do not want to
     ignore the passphrase cache (mode!=1), print a prompt with
     information on that key. */
  if ( keyid && !opt.batch && !next_pw && mode!=1 )
    {
      PKT_public_key *pk = xmalloc_clear( sizeof *pk );
      char *p;

      p = get_user_id_native(keyid);
      tty_printf ("\n");
      tty_printf (_("You need a passphrase to unlock the secret key for\n"
                    "user: \"%s\"\n"),p);
      xfree(p);

      if ( !get_pubkey( pk, keyid ) )
        {
          const char *s = openpgp_pk_algo_name ( pk->pubkey_algo );

          tty_printf (_("%u-bit %s key, ID %s, created %s"),
                      nbits_from_pk( pk ), s?s:"?", keystr(keyid),
                      strtimestamp(pk->timestamp) );
          if ( keyid[2] && keyid[3]
               && keyid[0] != keyid[2] && keyid[1] != keyid[3] )
            {
              if ( keystrlen () > 10 )
                {
                  tty_printf ("\n");
                  tty_printf (_("         (subkey on main key ID %s)"),
                              keystr(&keyid[2]) );
                }
              else
                tty_printf ( _(" (main key ID %s)"), keystr(&keyid[2]) );
            }
          tty_printf("\n");
	}

      tty_printf("\n");
      free_public_key (pk);
    }

  if ( next_pw )
    {
      /* Simply return the passphrase we already have in NEXT_PW. */
      pw = next_pw;
      next_pw = NULL;
    }
  else if ( have_static_passphrase () )
    {
      /* Return the passphrase we have stored in FD_PASSWD. */
      pw = xmalloc_secure ( strlen(fd_passwd)+1 );
      strcpy ( pw, fd_passwd );
    }
  else
    {
      if ((mode == 3 || mode == 4) && (s2k->mode == 1 || s2k->mode == 3))
	{
	  memset (s2k_cacheidbuf, 0, sizeof s2k_cacheidbuf);
	  *s2k_cacheidbuf = 'S';
	  bin2hex (s2k->salt, 8, s2k_cacheidbuf + 1);
	  s2k_cacheid = s2k_cacheidbuf;
	}

      if (opt.pinentry_mode == PINENTRY_MODE_LOOPBACK)
        {
          char buf[32];

          snprintf (buf, sizeof (buf), "%u", 100);
          write_status_text (STATUS_INQUIRE_MAXLEN, buf);
        }

      /* Divert to the gpg-agent. */
      pw = passphrase_get (keyid, mode == 2, s2k_cacheid,
                           (mode == 2 || mode == 4)? opt.passphrase_repeat : 0,
                           tryagain_text, custdesc, custprompt, canceled);
      if (*canceled)
        {
          xfree (pw);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }

  if ( !pw || !*pw )
    write_status( STATUS_MISSING_PASSPHRASE );

  /* Hash the passphrase and store it in a newly allocated DEK object.
     Keep a copy of the passphrase in LAST_PW for use by
     get_last_passphrase(). */
  dek = xmalloc_secure_clear ( sizeof *dek );
  dek->algo = cipher_algo;
  if ( (!pw || !*pw) && (mode == 2 || mode == 4))
    dek->keylen = 0;
  else
    {
      gpg_error_t err;

      dek->keylen = openpgp_cipher_get_algo_keylen (dek->algo);
      if (!(dek->keylen > 0 && dek->keylen <= DIM(dek->key)))
        BUG ();
      err = gcry_kdf_derive (pw, strlen (pw),
                             s2k->mode == 3? GCRY_KDF_ITERSALTED_S2K :
                             s2k->mode == 1? GCRY_KDF_SALTED_S2K :
                             /* */           GCRY_KDF_SIMPLE_S2K,
                             s2k->hash_algo, s2k->salt, 8,
                             S2K_DECODE_COUNT(s2k->count),
                             dek->keylen, dek->key);
      if (err)
        {
          log_error ("gcry_kdf_derive failed: %s", gpg_strerror (err));
          xfree (pw);
          xfree (dek);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }
  if (s2k_cacheid)
    memcpy (dek->s2k_cacheid, s2k_cacheid, sizeof dek->s2k_cacheid);
  xfree(last_pw);
  last_pw = pw;
  return dek;
}
예제 #8
0
파일: sig-check.c 프로젝트: CSNW/gnupg
int
signature_check2 (PKT_signature *sig, gcry_md_hd_t digest, u32 *r_expiredate,
		  int *r_expired, int *r_revoked, PKT_public_key *pk )
{
    int rc=0;
    int pk_internal;

    if (pk)
      pk_internal = 0;
    else
      {
	pk_internal = 1;
	pk = xmalloc_clear( sizeof *pk );
      }

    if ( (rc=openpgp_md_test_algo(sig->digest_algo)) )
      ; /* We don't have this digest. */
    else if ((rc=openpgp_pk_test_algo(sig->pubkey_algo)))
      ; /* We don't have this pubkey algo. */
    else if (!gcry_md_is_enabled (digest,sig->digest_algo))
      {
	/* Sanity check that the md has a context for the hash that the
	   sig is expecting.  This can happen if a onepass sig header does
	   not match the actual sig, and also if the clearsign "Hash:"
	   header is missing or does not match the actual sig. */

        log_info(_("WARNING: signature digest conflict in message\n"));
	rc = GPG_ERR_GENERAL;
      }
    else if( get_pubkey( pk, sig->keyid ) )
	rc = GPG_ERR_NO_PUBKEY;
    else if(!pk->flags.valid && !pk->flags.primary)
      {
        /* You cannot have a good sig from an invalid subkey.  */
        rc = GPG_ERR_BAD_PUBKEY;
      }
    else
      {
        if(r_expiredate)
	  *r_expiredate = pk->expiredate;

	rc = do_check( pk, sig, digest, r_expired, r_revoked, NULL );

	/* Check the backsig.  This is a 0x19 signature from the
	   subkey on the primary key.  The idea here is that it should
	   not be possible for someone to "steal" subkeys and claim
	   them as their own.  The attacker couldn't actually use the
	   subkey, but they could try and claim ownership of any
	   signaures issued by it. */
	if(rc==0 && !pk->flags.primary && pk->flags.backsig < 2)
	  {
	    if (!pk->flags.backsig)
	      {
		log_info(_("WARNING: signing subkey %s is not"
			   " cross-certified\n"),keystr_from_pk(pk));
		log_info(_("please see %s for more information\n"),
			 "https://gnupg.org/faq/subkey-cross-certify.html");
		/* --require-cross-certification makes this warning an
                     error.  TODO: change the default to require this
                     after more keys have backsigs. */
		if(opt.flags.require_cross_cert)
		  rc = GPG_ERR_GENERAL;
	      }
	    else if(pk->flags.backsig == 1)
	      {
		log_info(_("WARNING: signing subkey %s has an invalid"
			   " cross-certification\n"),keystr_from_pk(pk));
		rc = GPG_ERR_GENERAL;
	      }
	  }
      }

    if (pk_internal || rc)
      {
	release_public_key_parts (pk);
	if (pk_internal)
	  xfree (pk);
	else
	  /* Be very sure that the caller doesn't try to use *PK.  */
	  memset (pk, 0, sizeof (*pk));
      }

    if( !rc && sig->sig_class < 2 && is_status_enabled() ) {
	/* This signature id works best with DLP algorithms because
	 * they use a random parameter for every signature.  Instead of
	 * this sig-id we could have also used the hash of the document
	 * and the timestamp, but the drawback of this is, that it is
	 * not possible to sign more than one identical document within
	 * one second.	Some remote batch processing applications might
	 * like this feature here.
         *
         * Note that before 2.0.10, we used RIPE-MD160 for the hash
         * and accidently didn't include the timestamp and algorithm
         * information in the hash.  Given that this feature is not
         * commonly used and that a replay attacks detection should
         * not solely be based on this feature (because it does not
         * work with RSA), we take the freedom and switch to SHA-1
         * with 2.0.10 to take advantage of hardware supported SHA-1
         * implementations.  We also include the missing information
         * in the hash.  Note also the SIG_ID as computed by gpg 1.x
         * and gpg 2.x didn't matched either because 2.x used to print
         * MPIs not in PGP format.  */
	u32 a = sig->timestamp;
	int nsig = pubkey_get_nsig( sig->pubkey_algo );
	unsigned char *p, *buffer;
        size_t n, nbytes;
        int i;
        char hashbuf[20];

        nbytes = 6;
	for (i=0; i < nsig; i++ )
          {
	    if (gcry_mpi_print (GCRYMPI_FMT_USG, NULL, 0, &n, sig->data[i]))
              BUG();
            nbytes += n;
          }

        /* Make buffer large enough to be later used as output buffer.  */
        if (nbytes < 100)
          nbytes = 100;
        nbytes += 10;  /* Safety margin.  */

        /* Fill and hash buffer.  */
        buffer = p = xmalloc (nbytes);
	*p++ = sig->pubkey_algo;
	*p++ = sig->digest_algo;
	*p++ = (a >> 24) & 0xff;
	*p++ = (a >> 16) & 0xff;
	*p++ = (a >>  8) & 0xff;
	*p++ =  a & 0xff;
        nbytes -= 6;
	for (i=0; i < nsig; i++ )
          {
	    if (gcry_mpi_print (GCRYMPI_FMT_PGP, p, nbytes, &n, sig->data[i]))
              BUG();
            p += n;
            nbytes -= n;
          }
        gcry_md_hash_buffer (GCRY_MD_SHA1, hashbuf, buffer, p-buffer);

	p = make_radix64_string (hashbuf, 20);
	sprintf (buffer, "%s %s %lu",
		 p, strtimestamp (sig->timestamp), (ulong)sig->timestamp);
	xfree (p);
	write_status_text (STATUS_SIG_ID, buffer);
	xfree (buffer);
    }
예제 #9
0
int
signature_check2( PKT_signature *sig, MD_HANDLE digest,
		  u32 *r_expiredate, int *r_expired )
{
    PKT_public_key *pk = m_alloc_clear( sizeof *pk );
    int rc=0;

    *r_expiredate = 0;

    /* Sanity check that the md has a context for the hash that the
       sig is expecting.  This can happen if a onepass sig header does
       not match the actual sig, and also if the clearsign "Hash:"
       header is missing or does not match the actual sig. */

    if(!md_algo_present(digest,sig->digest_algo)) {
        log_info(_("WARNING: signature digest conflict in message\n"));
	rc=G10ERR_BAD_SIGN;
    }
    else if( get_pubkey( pk, sig->keyid ) )
	rc = G10ERR_NO_PUBKEY;
    else if(!pk->is_valid && !pk->is_primary)
        rc=G10ERR_BAD_PUBKEY; /* you cannot have a good sig from an
				 invalid subkey */
    else {
	*r_expiredate = pk->expiredate;
	rc = do_check( pk, sig, digest, r_expired );
    }

    free_public_key( pk );

    if( !rc && sig->sig_class < 2 && is_status_enabled() ) {
	/* This signature id works best with DLP algorithms because
	 * they use a random parameter for every signature.  Instead of
	 * this sig-id we could have also used the hash of the document
	 * and the timestamp, but the drawback of this is, that it is
	 * not possible to sign more than one identical document within
	 * one second.	Some remote batch processing applications might
	 * like this feature here */
	MD_HANDLE md;
	u32 a = sig->timestamp;
	int i, nsig = pubkey_get_nsig( sig->pubkey_algo );
	byte *p, *buffer;

	md = md_open( DIGEST_ALGO_RMD160, 0);
	md_putc( digest, sig->pubkey_algo );
	md_putc( digest, sig->digest_algo );
	md_putc( digest, (a >> 24) & 0xff );
	md_putc( digest, (a >> 16) & 0xff );
	md_putc( digest, (a >>	8) & 0xff );
	md_putc( digest,  a	   & 0xff );
	for(i=0; i < nsig; i++ ) {
	    unsigned n = mpi_get_nbits( sig->data[i]);

	    md_putc( md, n>>8);
	    md_putc( md, n );
	    p = mpi_get_buffer( sig->data[i], &n, NULL );
	    md_write( md, p, n );
	    m_free(p);
	}
	md_final( md );
	p = make_radix64_string( md_read( md, 0 ), 20 );
	buffer = m_alloc( strlen(p) + 60 );
	sprintf( buffer, "%s %s %lu",
		 p, strtimestamp( sig->timestamp ), (ulong)sig->timestamp );
	write_status_text( STATUS_SIG_ID, buffer );
	m_free(buffer);
	m_free(p);
	md_close(md);
    }
예제 #10
0
파일: passphrase.c 프로젝트: larryv/gnupg
/* Return a new DEK object using the string-to-key specifier S2K.
 * Returns NULL if the user canceled the passphrase entry and if
 * CANCELED is not NULL, sets it to true.
 *
 * If CREATE is true a new passphrase sll be created.  If NOCACHE is
 * true the symmetric key caching will not be used.  */
DEK *
passphrase_to_dek (int cipher_algo, STRING2KEY *s2k,
                   int create, int nocache,
                   const char *tryagain_text, int *canceled)
{
  char *pw = NULL;
  DEK *dek;
  STRING2KEY help_s2k;
  int dummy_canceled;
  char s2k_cacheidbuf[1+16+1];
  char *s2k_cacheid = NULL;

  if (!canceled)
    canceled = &dummy_canceled;
  *canceled = 0;

  if ( !s2k )
    {
      log_assert (create && !nocache);
      /* This is used for the old rfc1991 mode
       * Note: This must match the code in encode.c with opt.rfc1991 set */
      memset (&help_s2k, 0, sizeof (help_s2k));
      s2k = &help_s2k;
      s2k->hash_algo = S2K_DIGEST_ALGO;
    }

  /* Create a new salt or what else to be filled into the s2k for a
     new key.  */
  if (create && (s2k->mode == 1 || s2k->mode == 3))
    {
      gcry_randomize (s2k->salt, 8, GCRY_STRONG_RANDOM);
      if ( s2k->mode == 3 )
        {
          /* We delay the encoding until it is really needed.  This is
             if we are going to dynamically calibrate it, we need to
             call out to gpg-agent and that should not be done during
             option processing in main().  */
          if (!opt.s2k_count)
            opt.s2k_count = encode_s2k_iterations (0);
          s2k->count = opt.s2k_count;
        }
    }

  /* If we do not have a passphrase available in NEXT_PW and status
     information are request, we print them now. */
  if ( !next_pw && is_status_enabled() )
    {
      char buf[50];

      snprintf (buf, sizeof buf, "%d %d %d",
                cipher_algo, s2k->mode, s2k->hash_algo );
      write_status_text ( STATUS_NEED_PASSPHRASE_SYM, buf );
    }

  if ( next_pw )
    {
      /* Simply return the passphrase we already have in NEXT_PW. */
      pw = next_pw;
      next_pw = NULL;
    }
  else if ( have_static_passphrase () )
    {
      /* Return the passphrase we have stored in FD_PASSWD. */
      pw = xmalloc_secure ( strlen(fd_passwd)+1 );
      strcpy ( pw, fd_passwd );
    }
  else
    {
      if (!nocache && (s2k->mode == 1 || s2k->mode == 3))
	{
	  memset (s2k_cacheidbuf, 0, sizeof s2k_cacheidbuf);
	  *s2k_cacheidbuf = 'S';
	  bin2hex (s2k->salt, 8, s2k_cacheidbuf + 1);
	  s2k_cacheid = s2k_cacheidbuf;
	}

      if (opt.pinentry_mode == PINENTRY_MODE_LOOPBACK)
        {
          char buf[32];

          snprintf (buf, sizeof (buf), "%u", 100);
          write_status_text (STATUS_INQUIRE_MAXLEN, buf);
        }

      /* Divert to the gpg-agent. */
      pw = passphrase_get (create && nocache, s2k_cacheid,
                           create? opt.passphrase_repeat : 0,
                           tryagain_text, canceled);
      if (*canceled)
        {
          xfree (pw);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }

  if ( !pw || !*pw )
    write_status( STATUS_MISSING_PASSPHRASE );

  /* Hash the passphrase and store it in a newly allocated DEK object.
     Keep a copy of the passphrase in LAST_PW for use by
     get_last_passphrase(). */
  dek = xmalloc_secure_clear ( sizeof *dek );
  dek->algo = cipher_algo;
  if ( (!pw || !*pw) && create)
    dek->keylen = 0;
  else
    {
      gpg_error_t err;

      dek->keylen = openpgp_cipher_get_algo_keylen (dek->algo);
      if (!(dek->keylen > 0 && dek->keylen <= DIM(dek->key)))
        BUG ();
      err = gcry_kdf_derive (pw, strlen (pw),
                             s2k->mode == 3? GCRY_KDF_ITERSALTED_S2K :
                             s2k->mode == 1? GCRY_KDF_SALTED_S2K :
                             /* */           GCRY_KDF_SIMPLE_S2K,
                             s2k->hash_algo, s2k->salt, 8,
                             S2K_DECODE_COUNT(s2k->count),
                             dek->keylen, dek->key);
      if (err)
        {
          log_error ("gcry_kdf_derive failed: %s", gpg_strerror (err));
          xfree (pw);
          xfree (dek);
	  write_status( STATUS_MISSING_PASSPHRASE );
          return NULL;
        }
    }
  if (s2k_cacheid)
    memcpy (dek->s2k_cacheid, s2k_cacheid, sizeof dek->s2k_cacheid);
  xfree(last_pw);
  last_pw = pw;
  return dek;
}
예제 #11
0
파일: pubkey-enc.c 프로젝트: larryv/gnupg
static gpg_error_t
get_it (ctrl_t ctrl,
        PKT_pubkey_enc *enc, DEK *dek, PKT_public_key *sk, u32 *keyid)
{
  gpg_error_t err;
  byte *frame = NULL;
  unsigned int n;
  size_t nframe;
  u16 csum, csum2;
  int padding;
  gcry_sexp_t s_data;
  char *desc;
  char *keygrip;
  byte fp[MAX_FINGERPRINT_LEN];
  size_t fpn;

  if (DBG_CLOCK)
    log_clock ("decryption start");

  /* Get the keygrip.  */
  err = hexkeygrip_from_pk (sk, &keygrip);
  if (err)
    goto leave;

  /* Convert the data to an S-expression.  */
  if (sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL
      || sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E)
    {
      if (!enc->data[0] || !enc->data[1])
        err = gpg_error (GPG_ERR_BAD_MPI);
      else
        err = gcry_sexp_build (&s_data, NULL, "(enc-val(elg(a%m)(b%m)))",
                               enc->data[0], enc->data[1]);
    }
  else if (sk->pubkey_algo == PUBKEY_ALGO_RSA
           || sk->pubkey_algo == PUBKEY_ALGO_RSA_E)
    {
      if (!enc->data[0])
        err = gpg_error (GPG_ERR_BAD_MPI);
      else
        err = gcry_sexp_build (&s_data, NULL, "(enc-val(rsa(a%m)))",
                               enc->data[0]);
    }
  else if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
    {
      if (!enc->data[0] || !enc->data[1])
        err = gpg_error (GPG_ERR_BAD_MPI);
      else
        err = gcry_sexp_build (&s_data, NULL, "(enc-val(ecdh(s%m)(e%m)))",
                               enc->data[1], enc->data[0]);
    }
  else
    err = gpg_error (GPG_ERR_BUG);

  if (err)
    goto leave;

  if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
    {
      fingerprint_from_pk (sk, fp, &fpn);
      log_assert (fpn == 20);
    }

  /* Decrypt. */
  desc = gpg_format_keydesc (ctrl, sk, FORMAT_KEYDESC_NORMAL, 1);
  err = agent_pkdecrypt (NULL, keygrip,
                         desc, sk->keyid, sk->main_keyid, sk->pubkey_algo,
                         s_data, &frame, &nframe, &padding);
  xfree (desc);
  gcry_sexp_release (s_data);
  if (err)
    goto leave;

  /* Now get the DEK (data encryption key) from the frame
   *
   * Old versions encode the DEK in this format (msb is left):
   *
   *     0  1  DEK(16 bytes)  CSUM(2 bytes)  0  RND(n bytes) 2
   *
   * Later versions encode the DEK like this:
   *
   *     0  2  RND(n bytes)  0  A  DEK(k bytes)  CSUM(2 bytes)
   *
   * (mpi_get_buffer already removed the leading zero).
   *
   * RND are non-zero randow bytes.
   * A   is the cipher algorithm
   * DEK is the encryption key (session key) with length k
   * CSUM
   */
  if (DBG_CRYPTO)
    log_printhex (frame, nframe, "DEK frame:");
  n = 0;

  if (sk->pubkey_algo == PUBKEY_ALGO_ECDH)
    {
      gcry_mpi_t shared_mpi;
      gcry_mpi_t decoded;

      /* At the beginning the frame are the bytes of shared point MPI.  */
      err = gcry_mpi_scan (&shared_mpi, GCRYMPI_FMT_USG, frame, nframe, NULL);
      if (err)
        {
          err = gpg_error (GPG_ERR_WRONG_SECKEY);
          goto leave;
        }

      err = pk_ecdh_decrypt (&decoded, fp, enc->data[1]/*encr data as an MPI*/,
                             shared_mpi, sk->pkey);
      mpi_release (shared_mpi);
      if(err)
        goto leave;

      xfree (frame);
      err = gcry_mpi_aprint (GCRYMPI_FMT_USG, &frame, &nframe, decoded);
      mpi_release (decoded);
      if (err)
        goto leave;

      /* Now the frame are the bytes decrypted but padded session key.  */

      /* Allow double padding for the benefit of DEK size concealment.
         Higher than this is wasteful. */
      if (!nframe || frame[nframe-1] > 8*2 || nframe <= 8
          || frame[nframe-1] > nframe)
        {
          err = gpg_error (GPG_ERR_WRONG_SECKEY);
          goto leave;
        }
      nframe -= frame[nframe-1]; /* Remove padding.  */
      log_assert (!n); /* (used just below) */
    }
  else
    {
      if (padding)
        {
          if (n + 7 > nframe)
            {
              err = gpg_error (GPG_ERR_WRONG_SECKEY);
              goto leave;
            }
          if (frame[n] == 1 && frame[nframe - 1] == 2)
            {
              log_info (_("old encoding of the DEK is not supported\n"));
              err = gpg_error (GPG_ERR_CIPHER_ALGO);
              goto leave;
            }
          if (frame[n] != 2) /* Something went wrong.  */
            {
              err = gpg_error (GPG_ERR_WRONG_SECKEY);
              goto leave;
            }
          for (n++; n < nframe && frame[n]; n++) /* Skip the random bytes.  */
            ;
          n++; /* Skip the zero byte.  */
        }
    }

  if (n + 4 > nframe)
    {
      err = gpg_error (GPG_ERR_WRONG_SECKEY);
      goto leave;
    }

  dek->keylen = nframe - (n + 1) - 2;
  dek->algo = frame[n++];
  err = openpgp_cipher_test_algo (dek->algo);
  if (err)
    {
      if (!opt.quiet && gpg_err_code (err) == GPG_ERR_CIPHER_ALGO)
        {
          log_info (_("cipher algorithm %d%s is unknown or disabled\n"),
                    dek->algo,
                    dek->algo == CIPHER_ALGO_IDEA ? " (IDEA)" : "");
        }
      dek->algo = 0;
      goto leave;
    }
  if (dek->keylen != openpgp_cipher_get_algo_keylen (dek->algo))
    {
      err = gpg_error (GPG_ERR_WRONG_SECKEY);
      goto leave;
    }

  /* Copy the key to DEK and compare the checksum.  */
  csum = buf16_to_u16 (frame+nframe-2);
  memcpy (dek->key, frame + n, dek->keylen);
  for (csum2 = 0, n = 0; n < dek->keylen; n++)
    csum2 += dek->key[n];
  if (csum != csum2)
    {
      err = gpg_error (GPG_ERR_WRONG_SECKEY);
      goto leave;
    }
  if (DBG_CLOCK)
    log_clock ("decryption ready");
  if (DBG_CRYPTO)
    log_printhex (dek->key, dek->keylen, "DEK is:");

  /* Check that the algo is in the preferences and whether it has
   * expired.  Also print a status line with the key's fingerprint.  */
  {
    PKT_public_key *pk = NULL;
    PKT_public_key *mainpk = NULL;
    KBNODE pkb = get_pubkeyblock (ctrl, keyid);

    if (!pkb)
      {
        err = -1;
        log_error ("oops: public key not found for preference check\n");
      }
    else if (pkb->pkt->pkt.public_key->selfsigversion > 3
             && dek->algo != CIPHER_ALGO_3DES
             && !opt.quiet
             && !is_algo_in_prefs (pkb, PREFTYPE_SYM, dek->algo))
      log_info (_("WARNING: cipher algorithm %s not found in recipient"
                  " preferences\n"), openpgp_cipher_algo_name (dek->algo));

    if (!err)
      {
        kbnode_t k;
        int first = 1;

        for (k = pkb; k; k = k->next)
          {
            if (k->pkt->pkttype == PKT_PUBLIC_KEY
                || k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
              {
                u32 aki[2];

                if (first)
                  {
                    first = 0;
                    mainpk = k->pkt->pkt.public_key;
                  }

                keyid_from_pk (k->pkt->pkt.public_key, aki);
                if (aki[0] == keyid[0] && aki[1] == keyid[1])
                  {
                    pk = k->pkt->pkt.public_key;
                    break;
                  }
              }
          }
        if (!pk)
          BUG ();
        if (pk->expiredate && pk->expiredate <= make_timestamp ())
          {
            log_info (_("Note: secret key %s expired at %s\n"),
                      keystr (keyid), asctimestamp (pk->expiredate));
          }
      }

    if (pk && pk->flags.revoked)
      {
        log_info (_("Note: key has been revoked"));
        log_printf ("\n");
        show_revocation_reason (ctrl, pk, 1);
      }

    if (is_status_enabled () && pk && mainpk)
      {
        char pkhex[MAX_FINGERPRINT_LEN*2+1];
        char mainpkhex[MAX_FINGERPRINT_LEN*2+1];

        hexfingerprint (pk, pkhex, sizeof pkhex);
        hexfingerprint (mainpk, mainpkhex, sizeof mainpkhex);

        /* Note that we do not want to create a trustdb just for
         * getting the ownertrust: If there is no trustdb there can't
         * be ulitmately trusted key anyway and thus the ownertrust
         * value is irrelevant.  */
        write_status_printf (STATUS_DECRYPTION_KEY, "%s %s %c",
                             pkhex, mainpkhex,
                             get_ownertrust_info (ctrl, mainpk, 1));

      }

    release_kbnode (pkb);
    err = 0;
  }

 leave:
  xfree (frame);
  xfree (keygrip);
  return err;
}
int
signature_check2( PKT_signature *sig, MD_HANDLE digest, u32 *r_expiredate, 
		  int *r_expired, int *r_revoked, PKT_public_key *ret_pk )
{
    PKT_public_key *pk = xmalloc_clear( sizeof *pk );
    int rc=0;

    if( (rc=check_digest_algo(sig->digest_algo)) )
      ; /* we don't have this digest */
    else if((rc=check_pubkey_algo(sig->pubkey_algo)))
      ; /* we don't have this pubkey algo */
    else if(!md_algo_present(digest,sig->digest_algo))
      {
	/* Sanity check that the md has a context for the hash that the
	   sig is expecting.  This can happen if a onepass sig header does
	   not match the actual sig, and also if the clearsign "Hash:"
	   header is missing or does not match the actual sig. */

        log_info(_("WARNING: signature digest conflict in message\n"));
	rc=G10ERR_GENERAL;
      }
    else if( get_pubkey( pk, sig->keyid ) )
	rc = G10ERR_NO_PUBKEY;
    else if(!pk->is_valid && !pk->is_primary)
        rc=G10ERR_BAD_PUBKEY; /* you cannot have a good sig from an
				 invalid subkey */
    else
      {
        if(r_expiredate)
	  *r_expiredate = pk->expiredate;

	rc = do_check( pk, sig, digest, r_expired, r_revoked, ret_pk );

	/* Check the backsig.  This is a 0x19 signature from the
	   subkey on the primary key.  The idea here is that it should
	   not be possible for someone to "steal" subkeys and claim
	   them as their own.  The attacker couldn't actually use the
	   subkey, but they could try and claim ownership of any
	   signaures issued by it. */
	if(rc==0 && !pk->is_primary && pk->backsig<2)
	  {
	    if(pk->backsig==0)
	      {
		log_info(_("WARNING: signing subkey %s is not"
			   " cross-certified\n"),keystr_from_pk(pk));
		log_info(_("please see %s for more information\n"),
			 "http://www.gnupg.org/faq/subkey-cross-certify.html");
		/* --require-cross-certification makes this warning an
                     error.  TODO: change the default to require this
                     after more keys have backsigs. */
		if(opt.flags.require_cross_cert)
		  rc=G10ERR_GENERAL;
	      }
	    else if(pk->backsig==1)
	      {
		log_info(_("WARNING: signing subkey %s has an invalid"
			   " cross-certification\n"),keystr_from_pk(pk));
		rc=G10ERR_GENERAL;
	      }
	  }
      }

    free_public_key( pk );

    if( !rc && sig->sig_class < 2 && is_status_enabled() ) {
	/* This signature id works best with DLP algorithms because
	 * they use a random parameter for every signature.  Instead of
	 * this sig-id we could have also used the hash of the document
	 * and the timestamp, but the drawback of this is, that it is
	 * not possible to sign more than one identical document within
	 * one second.	Some remote batch processing applications might
	 * like this feature here */
	MD_HANDLE md;
	u32 a = sig->timestamp;
	int i, nsig = pubkey_get_nsig( sig->pubkey_algo );
	byte *p, *buffer;

	md = md_open( DIGEST_ALGO_RMD160, 0);
	md_putc( digest, sig->pubkey_algo );
	md_putc( digest, sig->digest_algo );
	md_putc( digest, (a >> 24) & 0xff );
	md_putc( digest, (a >> 16) & 0xff );
	md_putc( digest, (a >>	8) & 0xff );
	md_putc( digest,  a	   & 0xff );
	for(i=0; i < nsig; i++ ) {
	    unsigned n = mpi_get_nbits( sig->data[i]);

	    md_putc( md, n>>8);
	    md_putc( md, n );
	    p = mpi_get_buffer( sig->data[i], &n, NULL );
	    md_write( md, p, n );
	    xfree(p);
	}
	md_final( md );
	p = make_radix64_string( md_read( md, 0 ), 20 );
	buffer = xmalloc( strlen(p) + 60 );
	sprintf( buffer, "%s %s %lu",
		 p, strtimestamp( sig->timestamp ), (ulong)sig->timestamp );
	write_status_text( STATUS_SIG_ID, buffer );
	xfree(buffer);
	xfree(p);
	md_close(md);
    }