/** * ir_rc6_decode() - Decode one RC6 pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rc6_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rc6_dec *data = &dev->raw->rc6; u32 scancode; u8 toggle; enum rc_proto protocol; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) goto out; again: IR_dprintk(2, "RC6 decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; /* Note: larger margin on first pulse since each RC6_UNIT is quite short and some hardware takes some time to adjust to the signal */ if (!eq_margin(ev.duration, RC6_PREFIX_PULSE, RC6_UNIT)) break; data->state = STATE_PREFIX_SPACE; data->count = 0; return 0; case STATE_PREFIX_SPACE: if (ev.pulse) break; if (!eq_margin(ev.duration, RC6_PREFIX_SPACE, RC6_UNIT / 2)) break; data->state = STATE_HEADER_BIT_START; data->header = 0; return 0; case STATE_HEADER_BIT_START: if (!eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) break; data->header <<= 1; if (ev.pulse) data->header |= 1; data->count++; data->state = STATE_HEADER_BIT_END; return 0; case STATE_HEADER_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == RC6_HEADER_NBITS) data->state = STATE_TOGGLE_START; else data->state = STATE_HEADER_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_TOGGLE_START: if (!eq_margin(ev.duration, RC6_TOGGLE_START, RC6_UNIT / 2)) break; data->toggle = ev.pulse; data->state = STATE_TOGGLE_END; return 0; case STATE_TOGGLE_END: if (!is_transition(&ev, &dev->raw->prev_ev) || !geq_margin(ev.duration, RC6_TOGGLE_END, RC6_UNIT / 2)) break; if (!(data->header & RC6_STARTBIT_MASK)) { IR_dprintk(1, "RC6 invalid start bit\n"); break; } data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_TOGGLE_END); data->count = 0; data->body = 0; switch (rc6_mode(data)) { case RC6_MODE_0: data->wanted_bits = RC6_0_NBITS; break; case RC6_MODE_6A: data->wanted_bits = RC6_6A_NBITS; break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } goto again; case STATE_BODY_BIT_START: if (eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) { /* Discard LSB's that won't fit in data->body */ if (data->count++ < CHAR_BIT * sizeof data->body) { data->body <<= 1; if (ev.pulse) data->body |= 1; } data->state = STATE_BODY_BIT_END; return 0; } else if (RC6_MODE_6A == rc6_mode(data) && !ev.pulse && geq_margin(ev.duration, RC6_SUFFIX_SPACE, RC6_UNIT / 2)) { data->state = STATE_FINISHED; goto again; } break; case STATE_BODY_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == data->wanted_bits) data->state = STATE_FINISHED; else data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_FINISHED: if (ev.pulse) break; switch (rc6_mode(data)) { case RC6_MODE_0: scancode = data->body; toggle = data->toggle; protocol = RC_PROTO_RC6_0; IR_dprintk(1, "RC6(0) scancode 0x%04x (toggle: %u)\n", scancode, toggle); break; case RC6_MODE_6A: if (data->count > CHAR_BIT * sizeof data->body) { IR_dprintk(1, "RC6 too many (%u) data bits\n", data->count); goto out; } scancode = data->body; switch (data->count) { case 20: protocol = RC_PROTO_RC6_6A_20; toggle = 0; break; case 24: protocol = RC_PROTO_RC6_6A_24; toggle = 0; break; case 32: if ((scancode & RC6_6A_LCC_MASK) == RC6_6A_MCE_CC) { protocol = RC_PROTO_RC6_MCE; toggle = !!(scancode & RC6_6A_MCE_TOGGLE_MASK); scancode &= ~RC6_6A_MCE_TOGGLE_MASK; } else { protocol = RC_PROTO_RC6_6A_32; toggle = 0; } break; default: IR_dprintk(1, "RC6(6A) unsupported length\n"); goto out; } IR_dprintk(1, "RC6(6A) proto 0x%04x, scancode 0x%08x (toggle: %u)\n", protocol, scancode, toggle); break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } rc_keydown(dev, protocol, scancode, toggle); data->state = STATE_INACTIVE; return 0; } out: IR_dprintk(1, "RC6 decode failed at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_sanyo_decode() - Decode one SANYO pulse or space * @dev: the struct rc_dev descriptor of the device * @duration: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_sanyo_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct sanyo_dec *data = &dev->raw->sanyo; u32 scancode; u8 address, command, not_command; if (!(dev->raw->enabled_protocols & RC_BIT_SANYO)) return 0; if (!is_timing_event(ev)) { if (ev.reset) { IR_dprintk(1, "SANYO event reset received. reset to state 0\n"); data->state = STATE_INACTIVE; } return 0; } IR_dprintk(2, "SANYO decode started at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (eq_margin(ev.duration, SANYO_HEADER_PULSE, SANYO_UNIT / 2)) { data->count = 0; data->state = STATE_HEADER_SPACE; return 0; } break; case STATE_HEADER_SPACE: if (ev.pulse) break; if (eq_margin(ev.duration, SANYO_HEADER_SPACE, SANYO_UNIT / 2)) { data->state = STATE_BIT_PULSE; return 0; } break; case STATE_BIT_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, SANYO_BIT_PULSE, SANYO_UNIT / 2)) break; data->state = STATE_BIT_SPACE; return 0; case STATE_BIT_SPACE: if (ev.pulse) break; if (!data->count && geq_margin(ev.duration, SANYO_REPEAT_SPACE, SANYO_UNIT / 2)) { if (!dev->keypressed) { IR_dprintk(1, "SANYO discarding last key repeat: event after key up\n"); } else { rc_repeat(dev); IR_dprintk(1, "SANYO repeat last key\n"); data->state = STATE_INACTIVE; } return 0; } data->bits <<= 1; if (eq_margin(ev.duration, SANYO_BIT_1_SPACE, SANYO_UNIT / 2)) data->bits |= 1; else if (!eq_margin(ev.duration, SANYO_BIT_0_SPACE, SANYO_UNIT / 2)) break; data->count++; if (data->count == SANYO_NBITS) data->state = STATE_TRAILER_PULSE; else data->state = STATE_BIT_PULSE; return 0; case STATE_TRAILER_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, SANYO_TRAILER_PULSE, SANYO_UNIT / 2)) break; data->state = STATE_TRAILER_SPACE; return 0; case STATE_TRAILER_SPACE: if (ev.pulse) break; if (!geq_margin(ev.duration, SANYO_TRAILER_SPACE, SANYO_UNIT / 2)) break; address = bitrev16((data->bits >> 29) & 0x1fff) >> 3; /* not_address = bitrev16((data->bits >> 16) & 0x1fff) >> 3; */ command = bitrev8((data->bits >> 8) & 0xff); not_command = bitrev8((data->bits >> 0) & 0xff); if ((command ^ not_command) != 0xff) { IR_dprintk(1, "SANYO checksum error: received 0x%08Lx\n", data->bits); data->state = STATE_INACTIVE; return 0; } scancode = address << 8 | command; IR_dprintk(1, "SANYO scancode: 0x%06x\n", scancode); rc_keydown(dev, scancode, 0); data->state = STATE_INACTIVE; return 0; } IR_dprintk(1, "SANYO decode failed at count %d state %d (%uus %s)\n", data->count, data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_nec_decode() - Decode one NEC pulse or space * @input_dev: the struct input_dev descriptor of the device * @duration: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_nec_decode(struct input_dev *input_dev, struct ir_raw_event ev) { struct ir_input_dev *ir_dev = input_get_drvdata(input_dev); struct nec_dec *data = &ir_dev->raw->nec; u32 scancode; u8 address, not_address, command, not_command; if (!(ir_dev->raw->enabled_protocols & IR_TYPE_NEC)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } IR_dprintk(2, "NEC decode started at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (eq_margin(ev.duration, NEC_HEADER_PULSE, NEC_UNIT / 2)) { data->is_nec_x = false; data->necx_repeat = false; } else if (eq_margin(ev.duration, NECX_HEADER_PULSE, NEC_UNIT / 2)) data->is_nec_x = true; else break; data->count = 0; data->state = STATE_HEADER_SPACE; return 0; case STATE_HEADER_SPACE: if (ev.pulse) break; if (eq_margin(ev.duration, NEC_HEADER_SPACE, NEC_UNIT / 2)) { data->state = STATE_BIT_PULSE; return 0; } else if (eq_margin(ev.duration, NEC_REPEAT_SPACE, NEC_UNIT / 2)) { ir_repeat(input_dev); IR_dprintk(1, "Repeat last key\n"); data->state = STATE_TRAILER_PULSE; return 0; } break; case STATE_BIT_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, NEC_BIT_PULSE, NEC_UNIT / 2)) break; data->state = STATE_BIT_SPACE; return 0; case STATE_BIT_SPACE: if (ev.pulse) break; if (data->necx_repeat && data->count == NECX_REPEAT_BITS && geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2)) { IR_dprintk(1, "Repeat last key\n"); ir_repeat(input_dev); data->state = STATE_INACTIVE; return 0; } else if (data->count > NECX_REPEAT_BITS) data->necx_repeat = false; data->bits <<= 1; if (eq_margin(ev.duration, NEC_BIT_1_SPACE, NEC_UNIT / 2)) data->bits |= 1; else if (!eq_margin(ev.duration, NEC_BIT_0_SPACE, NEC_UNIT / 2)) break; data->count++; if (data->count == NEC_NBITS) data->state = STATE_TRAILER_PULSE; else data->state = STATE_BIT_PULSE; return 0; case STATE_TRAILER_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, NEC_TRAILER_PULSE, NEC_UNIT / 2)) break; data->state = STATE_TRAILER_SPACE; return 0; case STATE_TRAILER_SPACE: if (ev.pulse) break; if (!geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2)) break; address = bitrev8((data->bits >> 24) & 0xff); not_address = bitrev8((data->bits >> 16) & 0xff); command = bitrev8((data->bits >> 8) & 0xff); not_command = bitrev8((data->bits >> 0) & 0xff); if ((command ^ not_command) != 0xff) { IR_dprintk(1, "NEC checksum error: received 0x%08x\n", data->bits); break; } if ((address ^ not_address) != 0xff) { /* Extended NEC */ scancode = address << 16 | not_address << 8 | command; IR_dprintk(1, "NEC (Ext) scancode 0x%06x\n", scancode); } else { /* Normal NEC */ scancode = address << 8 | command; IR_dprintk(1, "NEC scancode 0x%04x\n", scancode); } if (data->is_nec_x) data->necx_repeat = true; ir_keydown(input_dev, scancode, 0); data->state = STATE_INACTIVE; return 0; } IR_dprintk(1, "NEC decode failed at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_rc5_decode() - Decode one RC-5 pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rc5_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rc5_dec *data = &dev->raw->rc5; u8 toggle; u32 scancode; if (!(dev->raw->enabled_protocols & RC_TYPE_RC5)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) goto out; again: IR_dprintk(2, "RC5(x) decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; data->state = STATE_BIT_START; data->count = 1; /* We just need enough bits to get to STATE_CHECK_RC5X */ data->wanted_bits = RC5X_NBITS; decrease_duration(&ev, RC5_BIT_START); goto again; case STATE_BIT_START: if (!eq_margin(ev.duration, RC5_BIT_START, RC5_UNIT / 2)) break; data->bits <<= 1; if (!ev.pulse) data->bits |= 1; data->count++; data->state = STATE_BIT_END; return 0; case STATE_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == data->wanted_bits) data->state = STATE_FINISHED; else if (data->count == CHECK_RC5X_NBITS) data->state = STATE_CHECK_RC5X; else data->state = STATE_BIT_START; decrease_duration(&ev, RC5_BIT_END); goto again; case STATE_CHECK_RC5X: if (!ev.pulse && geq_margin(ev.duration, RC5X_SPACE, RC5_UNIT / 2)) { /* RC5X */ data->wanted_bits = RC5X_NBITS; decrease_duration(&ev, RC5X_SPACE); } else { /* RC5 */ data->wanted_bits = RC5_NBITS; } data->state = STATE_BIT_START; goto again; case STATE_FINISHED: if (ev.pulse) break; if (data->wanted_bits == RC5X_NBITS) { /* RC5X */ u8 xdata, command, system; xdata = (data->bits & 0x0003F) >> 0; command = (data->bits & 0x00FC0) >> 6; system = (data->bits & 0x1F000) >> 12; toggle = (data->bits & 0x20000) ? 1 : 0; command += (data->bits & 0x01000) ? 0 : 0x40; scancode = system << 16 | command << 8 | xdata; IR_dprintk(1, "RC5X scancode 0x%06x (toggle: %u)\n", scancode, toggle); } else {
/** * ir_rc6_decode() - Decode one RC6 pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rc6_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rc6_dec *data = &dev->raw->rc6; u32 scancode; u8 toggle; if (!(dev->raw->enabled_protocols & RC_TYPE_RC6)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) goto out; again: IR_dprintk(2, "RC6 decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; /* Note: larger margin on first pulse since each RC6_UNIT is quite short and some hardware takes some time to adjust to the signal */ if (!eq_margin(ev.duration, RC6_PREFIX_PULSE, RC6_UNIT)) break; data->state = STATE_PREFIX_SPACE; data->count = 0; return 0; case STATE_PREFIX_SPACE: if (ev.pulse) break; if (!eq_margin(ev.duration, RC6_PREFIX_SPACE, RC6_UNIT / 2)) break; data->state = STATE_HEADER_BIT_START; return 0; case STATE_HEADER_BIT_START: if (!eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) break; data->header <<= 1; if (ev.pulse) data->header |= 1; data->count++; data->state = STATE_HEADER_BIT_END; return 0; case STATE_HEADER_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == RC6_HEADER_NBITS) data->state = STATE_TOGGLE_START; else data->state = STATE_HEADER_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_TOGGLE_START: if (!eq_margin(ev.duration, RC6_TOGGLE_START, RC6_UNIT / 2)) break; data->toggle = ev.pulse; data->state = STATE_TOGGLE_END; return 0; case STATE_TOGGLE_END: if (!is_transition(&ev, &dev->raw->prev_ev) || !geq_margin(ev.duration, RC6_TOGGLE_END, RC6_UNIT / 2)) break; if (!(data->header & RC6_STARTBIT_MASK)) { IR_dprintk(1, "RC6 invalid start bit\n"); break; } data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_TOGGLE_END); data->count = 0; switch (rc6_mode(data)) { case RC6_MODE_0: data->wanted_bits = RC6_0_NBITS; break; case RC6_MODE_6A: /* This might look weird, but we basically check the value of the first body bit to determine the number of bits in mode 6A */ if ((!ev.pulse && !geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) || geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) data->wanted_bits = RC6_6A_LARGE_NBITS; else data->wanted_bits = RC6_6A_SMALL_NBITS; break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } goto again; case STATE_BODY_BIT_START: if (!eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) break; data->body <<= 1; if (ev.pulse) data->body |= 1; data->count++; data->state = STATE_BODY_BIT_END; return 0; case STATE_BODY_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == data->wanted_bits) data->state = STATE_FINISHED; else data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_FINISHED: if (ev.pulse) break; switch (rc6_mode(data)) { case RC6_MODE_0: scancode = data->body & 0xffff; toggle = data->toggle; IR_dprintk(1, "RC6(0) scancode 0x%04x (toggle: %u)\n", scancode, toggle); break; case RC6_MODE_6A: if (data->wanted_bits == RC6_6A_LARGE_NBITS) { toggle = data->body & RC6_6A_MCE_TOGGLE_MASK ? 1 : 0; scancode = data->body & ~RC6_6A_MCE_TOGGLE_MASK; } else { toggle = 0; scancode = data->body & 0xffffff; } IR_dprintk(1, "RC6(6A) scancode 0x%08x (toggle: %u)\n", scancode, toggle); break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } rc_keydown(dev, scancode, toggle); data->state = STATE_INACTIVE; return 0; } out: IR_dprintk(1, "RC6 decode failed at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_rc5_decode() - Decode one RC-5 pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rc5_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rc5_dec *data = &dev->raw->rc5; u8 toggle; u32 scancode; enum rc_type protocol; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) goto out; again: IR_dprintk(2, "RC5(x/sz) decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; data->state = STATE_BIT_START; data->count = 1; decrease_duration(&ev, RC5_BIT_START); goto again; case STATE_BIT_START: if (!ev.pulse && geq_margin(ev.duration, RC5_TRAILER, RC5_UNIT / 2)) { data->state = STATE_FINISHED; goto again; } if (!eq_margin(ev.duration, RC5_BIT_START, RC5_UNIT / 2)) break; data->bits <<= 1; if (!ev.pulse) data->bits |= 1; data->count++; data->state = STATE_BIT_END; return 0; case STATE_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == CHECK_RC5X_NBITS) data->state = STATE_CHECK_RC5X; else data->state = STATE_BIT_START; decrease_duration(&ev, RC5_BIT_END); goto again; case STATE_CHECK_RC5X: if (!ev.pulse && geq_margin(ev.duration, RC5X_SPACE, RC5_UNIT / 2)) { data->is_rc5x = true; decrease_duration(&ev, RC5X_SPACE); } else data->is_rc5x = false; data->state = STATE_BIT_START; goto again; case STATE_FINISHED: if (ev.pulse) break; if (data->is_rc5x && data->count == RC5X_NBITS) { /* RC5X */ u8 xdata, command, system; if (!(dev->enabled_protocols & RC_BIT_RC5X)) { data->state = STATE_INACTIVE; return 0; } xdata = (data->bits & 0x0003F) >> 0; command = (data->bits & 0x00FC0) >> 6; system = (data->bits & 0x1F000) >> 12; toggle = (data->bits & 0x20000) ? 1 : 0; command += (data->bits & 0x01000) ? 0 : 0x40; scancode = system << 16 | command << 8 | xdata; protocol = RC_TYPE_RC5X; } else if (!data->is_rc5x && data->count == RC5_NBITS) {
/** * ir_nec_decode() - Decode one NEC pulse or space * @dev: the struct rc_dev descriptor of the device * @duration: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_nec_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct nec_dec *data = &dev->raw->nec; u32 scancode; u8 address, not_address, command, not_command; bool send_32bits = false; if (!(dev->raw->enabled_protocols & RC_TYPE_NEC)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } IR_dprintk(2, "NEC decode started at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (eq_margin(ev.duration, NEC_HEADER_PULSE, NEC_UNIT / 2)) { data->is_nec_x = false; data->necx_repeat = false; } else if (eq_margin(ev.duration, NECX_HEADER_PULSE, NEC_UNIT / 2)) data->is_nec_x = true; else break; data->count = 0; data->state = STATE_HEADER_SPACE; return 0; case STATE_HEADER_SPACE: if (ev.pulse) break; if (eq_margin(ev.duration, NEC_HEADER_SPACE, NEC_UNIT / 2)) { data->state = STATE_BIT_PULSE; return 0; } else if (eq_margin(ev.duration, NEC_REPEAT_SPACE, NEC_UNIT / 2)) { if (!dev->keypressed) { IR_dprintk(1, "Discarding last key repeat: event after key up\n"); } else { rc_repeat(dev); IR_dprintk(1, "Repeat last key\n"); data->state = STATE_TRAILER_PULSE; } return 0; } break; case STATE_BIT_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, NEC_BIT_PULSE, NEC_UNIT / 2)) break; data->state = STATE_BIT_SPACE; return 0; case STATE_BIT_SPACE: if (ev.pulse) break; if (data->necx_repeat && data->count == NECX_REPEAT_BITS && geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2)) { IR_dprintk(1, "Repeat last key\n"); rc_repeat(dev); data->state = STATE_INACTIVE; return 0; } else if (data->count > NECX_REPEAT_BITS) data->necx_repeat = false; data->bits <<= 1; if (eq_margin(ev.duration, NEC_BIT_1_SPACE, NEC_UNIT / 2)) data->bits |= 1; else if (!eq_margin(ev.duration, NEC_BIT_0_SPACE, NEC_UNIT / 2)) break; data->count++; if (data->count == NEC_NBITS) data->state = STATE_TRAILER_PULSE; else data->state = STATE_BIT_PULSE; return 0; case STATE_TRAILER_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, NEC_TRAILER_PULSE, NEC_UNIT / 2)) break; data->state = STATE_TRAILER_SPACE; return 0; case STATE_TRAILER_SPACE: if (ev.pulse) break; if (!geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2)) break; address = bitrev8((data->bits >> 24) & 0xff); not_address = bitrev8((data->bits >> 16) & 0xff); command = bitrev8((data->bits >> 8) & 0xff); not_command = bitrev8((data->bits >> 0) & 0xff); if ((command ^ not_command) != 0xff) { IR_dprintk(1, "NEC checksum error: received 0x%08x\n", data->bits); send_32bits = true; } if (send_32bits) { /* NEC transport, but modified protocol, used by at * least Apple and TiVo remotes */ scancode = data->bits; IR_dprintk(1, "NEC (modified) scancode 0x%08x\n", scancode); } else if ((address ^ not_address) != 0xff) { /* Extended NEC */ scancode = address << 16 | not_address << 8 | command; IR_dprintk(1, "NEC (Ext) scancode 0x%06x\n", scancode); } else { /* Normal NEC */ scancode = address << 8 | command; IR_dprintk(1, "NEC scancode 0x%04x\n", scancode); } if (data->is_nec_x) data->necx_repeat = true; rc_keydown(dev, scancode, 0); data->state = STATE_INACTIVE; return 0; } IR_dprintk(1, "NEC decode failed at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_rc5_sz_decode() - Decode one RC-5 Streamzap pulse or space * @input_dev: the struct input_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rc5_sz_decode(struct input_dev *input_dev, struct ir_raw_event ev) { struct ir_input_dev *ir_dev = input_get_drvdata(input_dev); struct rc5_sz_dec *data = &ir_dev->raw->rc5_sz; u8 toggle, command, system; u32 scancode; if (!(ir_dev->raw->enabled_protocols & IR_TYPE_RC5_SZ)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) goto out; again: IR_dprintk(2, "RC5-sz decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC5_UNIT, RC5_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; data->state = STATE_BIT_START; data->count = 1; data->wanted_bits = RC5_SZ_NBITS; decrease_duration(&ev, RC5_BIT_START); goto again; case STATE_BIT_START: if (!eq_margin(ev.duration, RC5_BIT_START, RC5_UNIT / 2)) break; data->bits <<= 1; if (!ev.pulse) data->bits |= 1; data->count++; data->state = STATE_BIT_END; return 0; case STATE_BIT_END: if (!is_transition(&ev, &ir_dev->raw->prev_ev)) break; if (data->count == data->wanted_bits) data->state = STATE_FINISHED; else data->state = STATE_BIT_START; decrease_duration(&ev, RC5_BIT_END); goto again; case STATE_FINISHED: if (ev.pulse) break; /* RC5-sz */ command = (data->bits & 0x0003F) >> 0; system = (data->bits & 0x02FC0) >> 6; toggle = (data->bits & 0x01000) ? 1 : 0; scancode = system << 6 | command; IR_dprintk(1, "RC5-sz scancode 0x%04x (toggle: %u)\n", scancode, toggle); ir_keydown(input_dev, scancode, toggle); data->state = STATE_INACTIVE; return 0; } out: IR_dprintk(1, "RC5-sz decode failed at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_sony_decode() - Decode one Sony pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_sony_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct sony_dec *data = &dev->raw->sony; u32 scancode; u8 device, subdevice, function; if (!(dev->raw->enabled_protocols & RC_TYPE_SONY)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, SONY_UNIT, SONY_UNIT / 2)) goto out; IR_dprintk(2, "Sony decode started at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (!eq_margin(ev.duration, SONY_HEADER_PULSE, SONY_UNIT / 2)) break; data->count = 0; data->state = STATE_HEADER_SPACE; return 0; case STATE_HEADER_SPACE: if (ev.pulse) break; if (!eq_margin(ev.duration, SONY_HEADER_SPACE, SONY_UNIT / 2)) break; data->state = STATE_BIT_PULSE; return 0; case STATE_BIT_PULSE: if (!ev.pulse) break; data->bits <<= 1; if (eq_margin(ev.duration, SONY_BIT_1_PULSE, SONY_UNIT / 2)) data->bits |= 1; else if (!eq_margin(ev.duration, SONY_BIT_0_PULSE, SONY_UNIT / 2)) break; data->count++; data->state = STATE_BIT_SPACE; return 0; case STATE_BIT_SPACE: if (ev.pulse) break; if (!geq_margin(ev.duration, SONY_BIT_SPACE, SONY_UNIT / 2)) break; decrease_duration(&ev, SONY_BIT_SPACE); if (!geq_margin(ev.duration, SONY_UNIT, SONY_UNIT / 2)) { data->state = STATE_BIT_PULSE; return 0; } data->state = STATE_FINISHED; /* Fall through */ case STATE_FINISHED: if (ev.pulse) break; if (!geq_margin(ev.duration, SONY_TRAILER_SPACE, SONY_UNIT / 2)) break; switch (data->count) { case 12: device = bitrev8((data->bits << 3) & 0xF8); subdevice = 0; function = bitrev8((data->bits >> 4) & 0xFE); break; case 15: device = bitrev8((data->bits >> 0) & 0xFF); subdevice = 0; function = bitrev8((data->bits >> 7) & 0xFD); break; case 20: device = bitrev8((data->bits >> 5) & 0xF8); subdevice = bitrev8((data->bits >> 0) & 0xFF); function = bitrev8((data->bits >> 12) & 0xFE); break; default: IR_dprintk(1, "Sony invalid bitcount %u\n", data->count); goto out; } scancode = device << 16 | subdevice << 8 | function; IR_dprintk(1, "Sony(%u) scancode 0x%05x\n", data->count, scancode); rc_keydown(dev, scancode, 0); data->state = STATE_INACTIVE; return 0; } out: IR_dprintk(1, "Sony decode failed at state %d (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
static int ir_rc6_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rc6_dec *data = &dev->raw->rc6; u32 scancode; u8 toggle; if (!(dev->raw->enabled_protocols & RC_TYPE_RC6)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) goto out; again: IR_dprintk(2, "RC6 decode started at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); if (!geq_margin(ev.duration, RC6_UNIT, RC6_UNIT / 2)) return 0; switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (!eq_margin(ev.duration, RC6_PREFIX_PULSE, RC6_UNIT)) break; data->state = STATE_PREFIX_SPACE; data->count = 0; return 0; case STATE_PREFIX_SPACE: if (ev.pulse) break; if (!eq_margin(ev.duration, RC6_PREFIX_SPACE, RC6_UNIT / 2)) break; data->state = STATE_HEADER_BIT_START; data->header = 0; return 0; case STATE_HEADER_BIT_START: if (!eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) break; data->header <<= 1; if (ev.pulse) data->header |= 1; data->count++; data->state = STATE_HEADER_BIT_END; return 0; case STATE_HEADER_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == RC6_HEADER_NBITS) data->state = STATE_TOGGLE_START; else data->state = STATE_HEADER_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_TOGGLE_START: if (!eq_margin(ev.duration, RC6_TOGGLE_START, RC6_UNIT / 2)) break; data->toggle = ev.pulse; data->state = STATE_TOGGLE_END; return 0; case STATE_TOGGLE_END: if (!is_transition(&ev, &dev->raw->prev_ev) || !geq_margin(ev.duration, RC6_TOGGLE_END, RC6_UNIT / 2)) break; if (!(data->header & RC6_STARTBIT_MASK)) { IR_dprintk(1, "RC6 invalid start bit\n"); break; } data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_TOGGLE_END); data->count = 0; data->body = 0; switch (rc6_mode(data)) { case RC6_MODE_0: data->wanted_bits = RC6_0_NBITS; break; case RC6_MODE_6A: data->wanted_bits = RC6_6A_NBITS; break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } goto again; case STATE_BODY_BIT_START: if (eq_margin(ev.duration, RC6_BIT_START, RC6_UNIT / 2)) { if (data->count++ < CHAR_BIT * sizeof data->body) { data->body <<= 1; if (ev.pulse) data->body |= 1; } data->state = STATE_BODY_BIT_END; return 0; } else if (RC6_MODE_6A == rc6_mode(data) && !ev.pulse && geq_margin(ev.duration, RC6_SUFFIX_SPACE, RC6_UNIT / 2)) { data->state = STATE_FINISHED; goto again; } break; case STATE_BODY_BIT_END: if (!is_transition(&ev, &dev->raw->prev_ev)) break; if (data->count == data->wanted_bits) data->state = STATE_FINISHED; else data->state = STATE_BODY_BIT_START; decrease_duration(&ev, RC6_BIT_END); goto again; case STATE_FINISHED: if (ev.pulse) break; switch (rc6_mode(data)) { case RC6_MODE_0: scancode = data->body; toggle = data->toggle; IR_dprintk(1, "RC6(0) scancode 0x%04x (toggle: %u)\n", scancode, toggle); break; case RC6_MODE_6A: if (data->count > CHAR_BIT * sizeof data->body) { IR_dprintk(1, "RC6 too many (%u) data bits\n", data->count); goto out; } scancode = data->body; if (data->count == RC6_6A_32_NBITS && (scancode & RC6_6A_LCC_MASK) == RC6_6A_MCE_CC) { toggle = (scancode & RC6_6A_MCE_TOGGLE_MASK) ? 1 : 0; scancode &= ~RC6_6A_MCE_TOGGLE_MASK; } else { toggle = 0; } IR_dprintk(1, "RC6(6A) scancode 0x%08x (toggle: %u)\n", scancode, toggle); break; default: IR_dprintk(1, "RC6 unknown mode\n"); goto out; } rc_keydown(dev, scancode, toggle); data->state = STATE_INACTIVE; return 0; } out: IR_dprintk(1, "RC6 decode failed at state %i (%uus %s)\n", data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }
/** * ir_xmp_decode() - Decode one XMP pulse or space * @dev: the struct rc_dev descriptor of the device * @duration: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_xmp_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct xmp_dec *data = &dev->raw->xmp; if (!(dev->enabled_protocols & RC_BIT_XMP)) return 0; if (!is_timing_event(ev)) { if (ev.reset) data->state = STATE_INACTIVE; return 0; } IR_dprintk(2, "XMP decode started at state %d %d (%uus %s)\n", data->state, data->count, TO_US(ev.duration), TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (eq_margin(ev.duration, XMP_LEADER, XMP_UNIT / 2)) { data->count = 0; data->state = STATE_NIBBLE_SPACE; } return 0; case STATE_LEADER_PULSE: if (!ev.pulse) break; if (eq_margin(ev.duration, XMP_LEADER, XMP_UNIT / 2)) data->state = STATE_NIBBLE_SPACE; return 0; case STATE_NIBBLE_SPACE: if (ev.pulse) break; if (geq_margin(ev.duration, XMP_TRAILER_SPACE, XMP_NIBBLE_PREFIX)) { int divider, i; u8 addr, subaddr, subaddr2, toggle, oem, obc1, obc2, sum1, sum2; u32 *n; u32 scancode; if (data->count != 16) { IR_dprintk(2, "received TRAILER period at index %d: %u\n", data->count, ev.duration); data->state = STATE_INACTIVE; return -EINVAL; } n = data->durations; /* * the 4th nibble should be 15 so base the divider on this * to transform durations into nibbles. Substract 2000 from * the divider to compensate for fluctuations in the signal */ divider = (n[3] - XMP_NIBBLE_PREFIX) / 15 - 2000; if (divider < 50) { IR_dprintk(2, "divider to small %d.\n", divider); data->state = STATE_INACTIVE; return -EINVAL; } /* convert to nibbles and do some sanity checks */ for (i = 0; i < 16; i++) n[i] = (n[i] - XMP_NIBBLE_PREFIX) / divider; sum1 = (15 + n[0] + n[1] + n[2] + n[3] + n[4] + n[5] + n[6] + n[7]) % 16; sum2 = (15 + n[8] + n[9] + n[10] + n[11] + n[12] + n[13] + n[14] + n[15]) % 16; if (sum1 != 15 || sum2 != 15) { IR_dprintk(2, "checksum errors sum1=0x%X sum2=0x%X\n", sum1, sum2); data->state = STATE_INACTIVE; return -EINVAL; } subaddr = n[0] << 4 | n[2]; subaddr2 = n[8] << 4 | n[11]; oem = n[4] << 4 | n[5]; addr = n[6] << 4 | n[7]; toggle = n[10]; obc1 = n[12] << 4 | n[13]; obc2 = n[14] << 4 | n[15]; if (subaddr != subaddr2) { IR_dprintk(2, "subaddress nibbles mismatch 0x%02X != 0x%02X\n", subaddr, subaddr2); data->state = STATE_INACTIVE; return -EINVAL; } if (oem != 0x44) IR_dprintk(1, "Warning: OEM nibbles 0x%02X. Expected 0x44\n", oem); scancode = addr << 24 | subaddr << 16 | obc1 << 8 | obc2; IR_dprintk(1, "XMP scancode 0x%06x\n", scancode); if (toggle == 0) { rc_keydown(dev, RC_TYPE_XMP, scancode, 0); } else { rc_repeat(dev); IR_dprintk(1, "Repeat last key\n"); } data->state = STATE_INACTIVE; return 0; } else if (geq_margin(ev.duration, XMP_HALFFRAME_SPACE, XMP_NIBBLE_PREFIX)) { /* Expect 8 or 16 nibble pulses. 16 in case of 'final' frame */ if (data->count == 16) { IR_dprintk(2, "received half frame pulse at index %d. Probably a final frame key-up event: %u\n", data->count, ev.duration); /* * TODO: for now go back to half frame position * so trailer can be found and key press * can be handled. */ data->count = 8; } else if (data->count != 8) IR_dprintk(2, "received half frame pulse at index %d: %u\n", data->count, ev.duration); data->state = STATE_LEADER_PULSE; return 0; } else if (geq_margin(ev.duration, XMP_NIBBLE_PREFIX, XMP_UNIT)) { /* store nibble raw data, decode after trailer */ if (data->count == 16) { IR_dprintk(2, "to many pulses (%d) ignoring: %u\n", data->count, ev.duration); data->state = STATE_INACTIVE; return -EINVAL; } data->durations[data->count] = ev.duration; data->count++; data->state = STATE_LEADER_PULSE; return 0; } break; } IR_dprintk(1, "XMP decode failed at count %d state %d (%uus %s)\n", data->count, data->state, TO_US(ev.duration), TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; }