void _k_thread_group_op(u32_t groups, void (*func)(struct k_thread *)) { unsigned int key; __ASSERT(!_is_in_isr(), ""); _sched_lock(); /* Invoke func() on each static thread in the specified group set. */ _FOREACH_STATIC_THREAD(thread_data) { if (is_in_any_group(thread_data, groups)) { key = irq_lock(); func(thread_data->thread); irq_unlock(key); } } /* * If the current thread is still in a ready state, then let the * "unlock scheduler" code determine if any rescheduling is needed. */ if (_is_thread_ready(_current)) { k_sched_unlock(); return; } /* The current thread is no longer in a ready state--reschedule. */ key = irq_lock(); _sched_unlock_no_reschedule(); _Swap(key); }
static void tcoop_ctx(void *p1, void *p2, void *p3) { /** TESTPOINT: The thread's priority is in the cooperative range.*/ zassert_false(k_is_preempt_thread(), NULL); k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(1)); /** TESTPOINT: The thread's priority is in the preemptible range.*/ zassert_true(k_is_preempt_thread(), NULL); k_sched_lock(); /** TESTPOINT: The thread has locked the scheduler.*/ zassert_false(k_is_preempt_thread(), NULL); k_sched_unlock(); /** TESTPOINT: The thread has not locked the scheduler.*/ zassert_true(k_is_preempt_thread(), NULL); k_sem_give(&end_sema); }
void _init_static_threads(void) { unsigned int key; _FOREACH_STATIC_THREAD(thread_data) { _task_group_adjust(thread_data); _new_thread( thread_data->init_stack, thread_data->init_stack_size, thread_data->init_entry, thread_data->init_p1, thread_data->init_p2, thread_data->init_p3, thread_data->init_prio, thread_data->init_options); thread_data->thread->init_data = thread_data; } _sched_lock(); /* Start all (legacy) threads that are part of the EXE task group */ _k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start); /* * Non-legacy static threads may be started immediately or after a * previously specified delay. Even though the scheduler is locked, * ticks can still be delivered and processed. Lock interrupts so * that the countdown until execution begins from the same tick. * * Note that static threads defined using the legacy API have a * delay of K_FOREVER. */ key = irq_lock(); _FOREACH_STATIC_THREAD(thread_data) { if (thread_data->init_delay != K_FOREVER) { schedule_new_thread(thread_data->thread, thread_data->init_delay); } } irq_unlock(key); k_sched_unlock(); }
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, s32_t timeout) { struct k_thread *writer; struct k_pipe_desc *desc; sys_dlist_t xfer_list; unsigned int key; size_t num_bytes_read = 0; size_t bytes_copied; __ASSERT(min_xfer <= bytes_to_read, ""); __ASSERT(bytes_read != NULL, ""); key = irq_lock(); /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!_pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers, pipe->bytes_used, bytes_to_read, min_xfer, timeout)) { irq_unlock(key); *bytes_read = 0; return -EIO; } _sched_lock(); irq_unlock(key); num_bytes_read = _pipe_buffer_get(pipe, data, bytes_to_read); /* * 1. 'xfer_list' currently contains a list of writer threads that can * have their write requests fulfilled by the current call. * 2. 'writer' if not NULL points to a thread on the writer wait_q * that can post some of its requested data. * 3. Data will be copied from each writer's buffer to either the * reader's buffer and/or to the pipe's circular buffer. * 4. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 5. If 'writer' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this * call is complete so it is still safe to copy data from it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while (thread && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = _pipe_xfer(data + num_bytes_read, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* * It is expected that the write request will be satisfied. * However, if the read request was satisfied before the * write request was satisfied, then the write request must * finish later when writing to the pipe's circular buffer. */ if (num_bytes_read == bytes_to_read) { break; } _pipe_thread_ready(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if (writer && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)writer->base.swap_data; bytes_copied = _pipe_xfer(data + num_bytes_read, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * Copy as much data as possible from the writers (if any) * into the pipe's circular buffer. */ while (thread) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = _pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* Write request has been satsified */ _pipe_thread_ready(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if (writer) { desc = (struct k_pipe_desc *)writer->base.swap_data; bytes_copied = _pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } if (num_bytes_read == bytes_to_read) { k_sched_unlock(); *bytes_read = num_bytes_read; return 0; } /* Not all data was read. */ struct k_pipe_desc pipe_desc; pipe_desc.buffer = data + num_bytes_read; pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read; if (timeout != K_NO_WAIT) { _current->base.swap_data = &pipe_desc; key = irq_lock(); _sched_unlock_no_reschedule(); _pend_current_thread(&pipe->wait_q.readers, timeout); _Swap(key); } else { k_sched_unlock(); } *bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer; return _pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_read); }
/** * @brief Internal API used to send data to a pipe */ int _k_pipe_put_internal(struct k_pipe *pipe, struct k_pipe_async *async_desc, unsigned char *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, s32_t timeout) { struct k_thread *reader; struct k_pipe_desc *desc; sys_dlist_t xfer_list; unsigned int key; size_t num_bytes_written = 0; size_t bytes_copied; #if (CONFIG_NUM_PIPE_ASYNC_MSGS == 0) ARG_UNUSED(async_desc); #endif key = irq_lock(); /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!_pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers, pipe->size - pipe->bytes_used, bytes_to_write, min_xfer, timeout)) { irq_unlock(key); *bytes_written = 0; return -EIO; } _sched_lock(); irq_unlock(key); /* * 1. 'xfer_list' currently contains a list of reader threads that can * have their read requests fulfilled by the current call. * 2. 'reader' if not NULL points to a thread on the reader wait_q * that can get some of its requested data. * 3. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 4. If 'reader' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this call * is complete so it is still safe to copy data to it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while (thread) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = _pipe_xfer(desc->buffer, desc->bytes_to_xfer, data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* The thread's read request has been satisfied. Ready it. */ key = irq_lock(); _ready_thread(thread); irq_unlock(key); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } /* * Copy any data to the reader that we left on the wait_q. * It is possible no data will be copied. */ if (reader) { desc = (struct k_pipe_desc *)reader->base.swap_data; bytes_copied = _pipe_xfer(desc->buffer, desc->bytes_to_xfer, data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * As much data as possible has been directly copied to any waiting * readers. Add as much as possible to the pipe's circular buffer. */ num_bytes_written += _pipe_buffer_put(pipe, data + num_bytes_written, bytes_to_write - num_bytes_written); if (num_bytes_written == bytes_to_write) { *bytes_written = num_bytes_written; #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) if (async_desc != NULL) { _pipe_async_finish(async_desc); } #endif k_sched_unlock(); return 0; } /* Not all data was copied. */ #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) if (async_desc != NULL) { /* * Lock interrupts and unlock the scheduler before * manipulating the writers wait_q. */ key = irq_lock(); _sched_unlock_no_reschedule(); _pend_thread((struct k_thread *) &async_desc->thread, &pipe->wait_q.writers, K_FOREVER); _reschedule_threads(key); return 0; } #endif struct k_pipe_desc pipe_desc; pipe_desc.buffer = data + num_bytes_written; pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written; if (timeout != K_NO_WAIT) { _current->base.swap_data = &pipe_desc; /* * Lock interrupts and unlock the scheduler before * manipulating the writers wait_q. */ key = irq_lock(); _sched_unlock_no_reschedule(); _pend_current_thread(&pipe->wait_q.writers, timeout); _Swap(key); } else { k_sched_unlock(); } *bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer; return _pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_write); }