예제 #1
0
/* ==============================================================
 Main MEX function - interface to Matlab.
============================================================== */
void mexFunction( int nlhs, mxArray *plhs[],
		  int nrhs, const mxArray *prhs[] )
{
   long i, j, k, m;
   long nsv, new_dim, num_data;
   double *Alpha;
   double *b;
   double *Y;
   double k_ij;

  
   ker_cnt = 0;

   /* Y = kernelproj_mex(X, Alpha, b, sv_X, ker, arg ) */
   /* ------------------------------------------- */
   if( nrhs == 6) 
   {
      /* data matrix [dim x num_data] */
      if( !mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) ||
        mxIsEmpty(prhs[0])    || mxIsComplex(prhs[0]) )
        mexErrMsgTxt("Input data must be a real matrix.");

      /* multipliers Alpha [nsv  x new_dim] */
      if( !mxIsNumeric(prhs[1]) || !mxIsDouble(prhs[1]) ||
        mxIsEmpty(prhs[1])    || mxIsComplex(prhs[1]) )
        mexErrMsgTxt("Input Alpha must be a real matrix.");

      /* vector b [nsv  x 1] */
      if( !mxIsNumeric(prhs[2]) || !mxIsDouble(prhs[2]) ||
        mxIsEmpty(prhs[2])    || mxIsComplex(prhs[2]) )
        mexErrMsgTxt("Input b must be a real vector.");

      /* kernel identifier */
      ker = kernel_id( prhs[4] );
      if( ker == -1 ) 
        mexErrMsgTxt("Improper kernel identifier.");
      
     /*  get pointer to arguments  */
     arg1 = mxGetPr(prhs[5]);

     /* get pointer at input vectors */
     dataA = mxGetPr(prhs[0]);   
     Alpha = mxGetPr(prhs[1]);
     b = mxGetPr(prhs[2]);
     dataB = mxGetPr(prhs[3]);  

     /* get data dimensions */ 
     dim = mxGetM(prhs[0]);      
     num_data = mxGetN(prhs[0]);       
     nsv = mxGetM(prhs[1]);
     new_dim = mxGetN(prhs[1]);

     if( mxGetM(prhs[2]) != new_dim)
        mexErrMsgTxt("Number of rows of Alpha must equal to size of vector b.");

     /* creates output kernel matrix. */
     plhs[0] = mxCreateDoubleMatrix(new_dim,num_data,mxREAL);
     Y = mxGetPr(plhs[0]);

     /* computes kernel projection */
     for( i = 0; i < num_data; i++ ) {

       for( k = 0; k < new_dim; k++) { 
         Y[k+i*new_dim] = b[k]; 
       }

       for( j = 0; j < nsv; j++ ) {
         k_ij = kernel(i,j);

         for( k = 0; k < new_dim; k++) { 
           if(Alpha[j+k*nsv] != 0 )
              Y[k+i*new_dim] += k_ij*Alpha[j+k*nsv]; 
         }
       }
     }
   } 
   else
   {
      mexErrMsgTxt("Wrong number of input arguments.");
   }

   return;
}
예제 #2
0
파일: smo_mex.c 프로젝트: lambday/svc
/* --------------------------------------------------------------
 Finds the second Lagrange multiplayer to be optimize.
-------------------------------------------------------------- */
long examineExample( long i1 )
{
   double y1, alpha1, E1, r1;
   double tmax;
   double E2, temp;
   long k, i2;
   long k0;

   y1 = target[i1];
   alpha1 = alpha[i1];

   if( alpha1 > 0 && alpha1 < C(i1) )
      E1 = error_cache[i1];
   else
      E1 = learned_func(i1) - y1;

   r1 = y1 * E1;
   if(( r1 < -tolerance && alpha1 < C(i1) )
      || (r1 > tolerance && alpha1 > 0)) {
    /* Try i2 by three ways; if successful, then immediately return 1; */

      for( i2 = (-1), tmax = 0, k = 0; k < N; k++ ) {
         if( alpha[k] > 0 && alpha[k] < C(k) ) {
            E2 = error_cache[k];
            temp = fabs(E1 - E2);
            if( temp > tmax ) {
               tmax = temp;
               i2 = k;
            }
         }
      }
      if( i2 >= 0 ) {
         if( takeStep(i1,i2) )
            return( 1 );
      }

#ifdef RANDOM
      for( k0 = rand(), k = k0; k < N + k0; k++ ) {
         i2 = k % N;
#else
      for( k = 0; k < N; k++) {
         i2 = k;
#endif
         if( alpha[i2] > 0 && alpha[i2] < C(i2) ) {
            if( takeStep(i1,i2) )
               return( 1 );
         }
      }

#ifdef RANDOM
      for( k0 = rand(), k = k0; k < N + k0; k++ ) {
         i2 = k % N;
#else
      for( k = 0; k < N; k++) {
         i2 = k;
#endif
         if( takeStep(i1,i2) )
            return( 1 );
      }

   } /* if( ... ) */

   return( 0 );
}

/* --------------------------------------------------------------
 Main SMO optimization cycle.
-------------------------------------------------------------- */
void runSMO( void )
{
   long numChanged = 0;
   long examineAll = 1;
   long k;

   while( numChanged > 0 || examineAll ) {
      numChanged = 0;

      if( examineAll ) {
         for( k = 0; k < N; k++ ) {
            numChanged += examineExample( k );
         }
      }
      else {
         for( k = 0; k < N; k++ ) {
            if( alpha[k] != 0 && alpha[k] != C(k) )
               numChanged += examineExample( k );
         }
      }

      if( examineAll == 1 )
         examineAll = 0;
      else if( numChanged == 0 )
         examineAll = 1;
   }
}

/* ==============================================================
 Main MEX function - interface to Matlab.
============================================================== */
void mexFunction( int nlhs, mxArray *plhs[],
		  int nrhs, const mxArray*prhs[] )
{
   long i,j ;
   double *labels12, *initAlpha, *nsv, *tmp, *trn_err, *margin;
   double nerr;
   double C1, C2;


   /* ---- get input arguments  ----------------------- */
   if(nrhs < 5)
      mexErrMsgTxt("Not enough input arguments.");

   /* data matrix [dim x N ] */
   if( !mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) ||
       mxIsEmpty(prhs[0])    || mxIsComplex(prhs[0]) )
      mexErrMsgTxt("Input X must be a real matrix.");

   /* vector of labels (1,2) */
   if( !mxIsNumeric(prhs[1]) || !mxIsDouble(prhs[1]) ||
       mxIsEmpty(prhs[1])    || mxIsComplex(prhs[1]) ||
       (mxGetN(prhs[1]) != 1 && mxGetM(prhs[1]) != 1))
      mexErrMsgTxt("Input I must be a real vector.");

   labels12 = mxGetPr(prhs[1]);    /* labels (1,2) */
   dataA = mxGetPr(prhs[0]);  /* pointer at patterns */
   dataB = dataA;
   dim = mxGetM(prhs[0]);     /* data dimension */
   N = mxGetN(prhs[0]);       /* number of data */

   /* kernel identifier */
   ker = kernel_id( prhs[2] );
   if( ker == -1 )
     mexErrMsgTxt("Improper kernel identifier.");

   /*  get pointer to arguments  */
   arg1 = mxGetPr(prhs[3]);

   /*  one or two real trade-off constant(s)  */
   if( !mxIsNumeric(prhs[4]) || !mxIsDouble(prhs[4]) ||
       mxIsEmpty(prhs[4])    || mxIsComplex(prhs[4]) ||
       (mxGetN(prhs[4]) != 1  && mxGetM(prhs[4]) != 1 ))
      mexErrMsgTxt("Improper input argument C.");
   else {
      /* allocate memory for constant C */
      if( (const_C = mxCalloc(N, sizeof(double) )) == NULL) {
        mexErrMsgTxt("Not enough memory.");
      }

      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == 1 ) {
        C1 = mxGetScalar(prhs[4]);
        for( i=0; i < N; i++ ) const_C[i] = C1;
      } else
      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == 2 ) {
         tmp = mxGetPr(prhs[4]);
         C1 = tmp[0];
         C2 = tmp[1];
         for( i=0; i < N; i++ ) {
           if( labels12[i]==1) const_C[i] = C1; else const_C[i] = C2;
         }
      } else
      if( MAX( mxGetN(prhs[4]), mxGetM(prhs[4])) == N ) {
         tmp = mxGetPr(prhs[4]);
         for( i=0; i < N; i++ ) const_C[i] = tmp[i];
      } else {
        mexErrMsgTxt("Improper argument C.");
      }
   }

   /* real parameter eps */
   if( nrhs >= 6 ) {
      if( !mxIsNumeric(prhs[5]) || !mxIsDouble(prhs[5]) ||
         mxIsEmpty(prhs[5])    || mxIsComplex(prhs[5]) ||
         mxGetN(prhs[5]) != 1  || mxGetM(prhs[5]) != 1 )
         mexErrMsgTxt("Input eps must be a scalar.");
      else
         eps = mxGetScalar(prhs[5]);   /* take eps argument */
   }

   /* real parameter tol */
   if(nrhs >= 7) {
      if( !mxIsNumeric(prhs[6]) || !mxIsDouble(prhs[6]) ||
         mxIsEmpty(prhs[6])    || mxIsComplex(prhs[6]) ||
         mxGetN(prhs[6]) != 1  || mxGetM(prhs[6]) != 1 )
         mexErrMsgTxt("Input tol must be a scalar.");
      else
         tolerance = mxGetScalar(prhs[6]);  /* take tolerance argument */
   }

   /* real vector of Lagrangeian multipliers */
   if(nrhs >= 8) {
      if( !mxIsNumeric(prhs[7]) || !mxIsDouble(prhs[7]) ||
          mxIsEmpty(prhs[7])    || mxIsComplex(prhs[7]) ||
          (mxGetN(prhs[7]) != 1  && mxGetM(prhs[7]) != 1 ))
          mexErrMsgTxt("Input Alpha must be a vector.");
   }

   /* real scalar - bias */
   if( nrhs >= 9 ) {
      if( !mxIsNumeric(prhs[8]) || !mxIsDouble(prhs[8]) ||
         mxIsEmpty(prhs[8])    || mxIsComplex(prhs[8]) ||
         mxGetN(prhs[8]) != 1  || mxGetM(prhs[8]) != 1 )
         mexErrMsgTxt("Input bias must be a scalar.");
   }

   /* ---- init variables ------------------------------- */

   ker_cnt = 0;

   /* allocate memory for targets (labels) (1,-1) */
   if( (target = mxCalloc(N, sizeof(double) )) == NULL) {
      mexErrMsgTxt("Not enough memory.");
   }

   /* transform labels12 (1,2) from to targets (1,-1) */
   for( i = 0; i < N; i++ ) {
      target[i] = - labels12[i]*2 + 3;
   }

   /* create output variable for bias */
   plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
   b = mxGetPr(plhs[1]);

   /* take init value of bias if given */
   if( nrhs >= 9 ) {
      *b = -mxGetScalar(prhs[8]);
   }

   /* allocate memory for error_cache */
   if( (error_cache = mxCalloc(N, sizeof(double) )) == NULL) {
      mexErrMsgTxt("Not enough memory for error cache.");
   }

   /* create vector for Lagrangeians */
   plhs[0] = mxCreateDoubleMatrix(N,1,mxREAL);
   alpha = mxGetPr(plhs[0]);

   /* if Lagrangeians given then use them as initial values */
   if( nrhs >= 8 ) {
      initAlpha = mxGetPr(prhs[7]);
      for( i = 0; i < N; i++ ) {
         alpha[i] = initAlpha[i];
      }

      /* Init error cache for non-bound multipliers. */
      for( i = 0; i < N; i++ ) {
         if( alpha[i] != 0 && alpha[i] != C(i) ) {
            error_cache[i] = learned_func(i) - target[i];
         }
      }
   }

   /* ---- run SMO ------------------------------------------- */
   runSMO();

   /* ---- outputs  --------------------------------- */
   if( nlhs >= 3 ) {

      /* count number of support vectors */
      plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
      nsv = mxGetPr(plhs[2]);
      *nsv = 0;

      for( i = 0; i < N; i++ ) {
         if( alpha[i] > ZERO_LIM ) (*nsv)++; else alpha[i] = 0;
      }
   }

   if( nlhs >= 4 ) {
     plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);
     (*mxGetPr(plhs[3])) = (double)ker_cnt;
   }

   if( nlhs >= 5) {

     /* evaluates classification error on traning patterns */
     plhs[4] = mxCreateDoubleMatrix(1,1,mxREAL);
     trn_err = mxGetPr(plhs[4]);
     nerr = 0;

     for( i = 0; i < N; i++ ) {
        if( target[i] == 1 ) {
           if( learned_func(i) < 0 ) nerr++;
        }
        else
           if( learned_func(i) >= 0 ) nerr++;
     }

     *trn_err = nerr/N;
   }

   if( nlhs >= 6) {

      /* compute margin */
      plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL);
      margin = mxGetPr(plhs[5]);
      *margin = 0;
      for( i = 0; i < N; i++ ) {
        for( j = 0; j < N; j++ ) {
           if( alpha[i] > 0 && alpha[j] > 0 )
              *margin += alpha[i]*alpha[j]*target[i]*target[j]*kernel(i,j);
        }
      }

      *margin = 1/sqrt(*margin);
   }

   /* decision function of type <w,x>+b is used */
   *b = -*b;

   /* ----- free memory --------------------------------------- */
   mxFree( error_cache );
   mxFree( target );
}