예제 #1
0
int
f4zeroBlockGen(
    struct KgenContext *ctx,
    const SubproblemDim *dim,
    const PGranularity *pgran,
    const char *memPrefix)
{
    char tmp[1024];
    ItemWork work;
    LoopCtl loopCtl;
    GenPriv priv;
    char pref;
    LoopUnrollers unrollers;

    if (!strcmp(memPrefix, "__local")) {
        pref = 'l';
    }
    else if (!strcmp(memPrefix, "__global")) {
        pref = 'g';
    }
    else {
        return -EINVAL;
    }

    if (dim->y != 1) {
        return -EINVAL;
    }

    memset(&loopCtl, 0, sizeof(loopCtl));
    memset(&unrollers, 0, sizeof(unrollers));
    memset(&priv, 0, sizeof(GenPriv));
    initGenPriv(&priv, TYPE_COMPLEX_DOUBLE, FLOAT4_VECLEN * sizeof(cl_float),
                dim, 0, (const ItemWork*)&work, pgran);
    getItemWork(&work, dim, pgran, priv.nfloats, priv.vecLen);

    sprintf(tmp, f4zeroDecl, pref, dim->x, memPrefix);
    kgenDeclareFunction(ctx, tmp);
    kgenBeginFuncBody(ctx);

    // declare local ID variable and set data offset
    kgenDeclareLocalID(ctx, lidVarName, pgran);
    sprintf(tmp, "\ndata += %s * %lu;\n\n",
            lidVarName, work.nrCols);
    kgenAddStmt(ctx, tmp);

    unrollers.genSingle = f4zeroSingle;
    loopCtl.inBound = (unsigned int)work.nrCols;
    unrollers.getVecLen = getVecLen;

    kgenLoopUnroll(ctx, &loopCtl, TYPE_COMPLEX_DOUBLE, &unrollers, &priv);
    if (work.tail) {
        addTailCode(ctx, &priv, NULL, f4zeroSingle);
    }

    return kgenEndFuncBody(ctx);
}
예제 #2
0
// generator working with subproblems of any dimension
static int
copyDBlockGenericGen(
    struct KgenContext *ctx,
    const PGranularity *pgran,
    GenPriv *gpriv)
{
    char fpref;
    const char varPref[2] = {'G', 'L'};
    char tmp[1024];
    bool image;
    const char *s[3];
    int gdir;
    unsigned int i, n, gsize;
    const char *vfield;
    DataType dtype = gpriv->dtype;

    fpref = dtypeToPrefix(dtype);
    if (!fpref || (fpref == 'i')) {
        return -EINVAL;
    }

    image = (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE ||
             gpriv->dir == DBLOCK_LOCAL_TO_IMAGE);
    s[0] = (gpriv->transp) ? "Transp" : "";
    vfield = dtypeUPtrField(dtype);
    n = FLOAT4_VECLEN / gpriv->nfloats;
    gsize = pgran->wgSize[0] * pgran->wgSize[1];

    if (image) {
        char srcStr[1024];
        s[1] = (gpriv->packed) ? "Pack" : "";
        if (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE) {
            sprintf(srcStr, "src.%s += (startRow + lid * n) *"
                    " srcLD + startCol;\n", vfield);
            sprintf(tmp, copyMemGImgDBlockSlowDecl, fpref, s[1]);
        }
        else {
            sprintf(srcStr, "src.%s += srcLD * lid * n;\n", vfield);
            sprintf(tmp, copyMemLImgDBlockSlowDecl, fpref, s[1]);
        }
        kgenDeclareFunction(ctx, tmp);
        kgenBeginFuncBody(ctx);
        sprintf(tmp, "int x, y;\n"
                     "uint i, j, n, jb, jv;\n"
                     "int lsize = %u;\n", gsize);
        kgenAddStmt(ctx, tmp);
        kgenDeclareLocalID(ctx, "lid", pgran);
        if (gpriv->packed) {
            char nLinesStr[1024];
            sprintf(nLinesStr,
                    "nLines = (get_image_width(dst) - startX) * %d / nrCols;\n"
                    "index = lid * n;\n", FLOAT4_VECLEN / gpriv->nfloats);
            sprintf(tmp, "int nLines, index;\n");
            kgenAddStmt(ctx, tmp);
            sprintf(tmp, copyMemDBlockSlowStart[0], 4 * n, 4 * n, n,"",
                    nLinesStr, srcStr);
        }
        else {
            sprintf(tmp, copyMemDBlockSlowStart[0], 4 * n, 4 * n, n, "",
                    "x = startX;\n" "y = startY + lid * n;\n", srcStr);
        }
        kgenAddStmt(ctx, tmp);

        gdir = (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE) ? 0 : 1;
        if (gpriv->packed) {
            sprintf(tmp, copyMemImgDBlockPackedSlow, varPref[gdir],
                    FLOAT4_VECLEN / gpriv->nfloats, vfield);
        }
        else {
            sprintf(tmp, copyMemImgDBlockSlow, varPref[gdir], vfield);
        }
        kgenAddStmt(ctx, tmp);
    }
    else {
        LoopCtl loopCtl;
        LoopUnrollers unrollers;
        char buf[3][256];

        memset(&loopCtl, 0, sizeof(loopCtl));
        memset(&unrollers, 0, sizeof(unrollers));

        s[1] = (gpriv->conjugate) ? "Conj" : "";
        s[2] = (gpriv->notVectorize) ? "Nvec" : "";
        gdir = (gpriv->dir == DBLOCK_GLOBAL_TO_LOCAL) ? 0 : 1;
        sprintf(tmp, copyMemDBlockSlowDecl,
                fpref, s[0], s[1], s[2], varPref[gdir], varPref[1 - gdir],
                varPref[1 - gdir], varPref[gdir]);
        kgenDeclareFunction(ctx, tmp);
        kgenBeginFuncBody(ctx);
        kgenDeclareLocalID(ctx, "lid", pgran);
        sprintf(tmp, "int lsize = %u;\n", gsize);
        kgenAddStmt(ctx, tmp);

        if (dtype == TYPE_COMPLEX_DOUBLE) {
            s[0] = "";
            s[1] = "";
        }
        else {
            s[0] = "uint js;\n";
            s[1] = (gpriv->transp || gpriv->conjugate) ? "float4 tmp;\n" : "";
        }

        // pass over rows or columns?
        i = (gpriv->transp && gdir) ? 1 : 0;

        if (dtype == TYPE_COMPLEX_DOUBLE) {
            buf[0][0] = '\0';
        }
        else {
            const char *boundName;

            // set counter bound to copy tail part, each work less than float4
            boundName = (i) ? "nrRows" : "nrCols";

            /*
             * FIXME: the kludge is introduced due to strange
             * runtime segfault at block transferring for another
             * data types. Verify it later. Now, for non float types
             * keep only simple loop.
             */
            if (i && (dtype != TYPE_FLOAT)) {
                gpriv->notVectorize = true;
            }

            if (gpriv->notVectorize) {
                sprintf(buf[0], "jb = 0;\n"
                                "jv = 0;\n"
                                "js = %s;\n",
                        boundName);
            }
            else {
                sprintf(buf[0], "js = %s - jb * %u - jv * %u;\n",
                        boundName, 4 * n, n);
            }
        }

        // set initial pointers
        if (!gdir) {
            sprintf(buf[1], "src.%s += (startRow + lid * n) * srcLD + "
                                       "startCol;\n", vfield);
            if (gpriv->transp) {
                sprintf(buf[2], "dst.%s += lid * n;\n", vfield);
            }
            else {
                sprintf(buf[2], "dst.%s += dstLD * lid * n;\n", vfield);
            }
        }
        else {
            if (gpriv->transp) {
                sprintf(buf[1], "src.%s += lid * n;\n", vfield);
            }
            else {
                sprintf(buf[1], "src.%s += srcLD * lid * n;\n", vfield);
            }
            sprintf(buf[2], "dst.%s += (startRow + lid * n) * dstLD + "
                                       "startCol;\n", vfield);
        }

        sprintf(tmp, copyMemSlowLvars, s[0], s[1],
                varPref[1 - gdir], varPref[gdir]);
        kgenAddStmt(ctx, tmp);

        sprintf(tmp, copyMemDBlockSlowStart[i],
                4 * n, 4 * n, n, buf[0], buf[1], buf[2]);
        kgenAddStmt(ctx, tmp);

        // prepare to loop unrolling
        gpriv->srcName = "src1";
        gpriv->dstName = "dst1";
        if (gdir) {
            gpriv->locLDName = "srcLD";
            gpriv->globLDName = "dstLD";
        }
        else {
            gpriv->locLDName = "dstLD";
            gpriv->globLDName = "srcLD";
        }

        loopCtl.ocName = "j";

        if (gpriv->transp) {
            unrollers.genSingle = copyMemSingleTransp;
            if (dtype != TYPE_COMPLEX_DOUBLE) {
                unrollers.genSingleVec = copyMemVecTransp;
            }
        }
        else {
            unrollers.genSingle = copyMemSingle;
            if (dtype != TYPE_COMPLEX_DOUBLE) {
                unrollers.genSingleVec = copyMemVec;
            }
        }

        // external loop
        kgenBeginBranch(ctx, "for (i = 0; i < n; i++)");
        copyMemPreUnroll(ctx, gpriv);

        // finally, unroll all loops
        unrollers.getVecLen = getVecLen;

        // copying with 4 float4 words
        if (!gpriv->notVectorize) {
            loopCtl.outBound.name = "jb";
            loopCtl.inBound = 4 * n;
            kgenLoopUnroll(ctx, &loopCtl, dtype, &unrollers, gpriv);

            // copying with float4 words
            loopCtl.outBound.name = "jv";
            loopCtl.inBound = n;
            kgenLoopUnroll(ctx, &loopCtl, dtype, &unrollers, gpriv);
        }

        // copying the remaining tail
        if (dtype != TYPE_COMPLEX_DOUBLE) {
            unrollers.genSingleVec = NULL;
            loopCtl.outBound.name = "js";
            loopCtl.inBound = 1;
            kgenLoopUnroll(ctx, &loopCtl, dtype, &unrollers, gpriv);
        }

        copyMemPostUnroll(ctx, gpriv);
        kgenEndBranch(ctx, NULL);
    }

    return kgenEndFuncBody(ctx);
}
예제 #3
0
// generator optimizing to a subproblem size
static int
copyDBlockOptimGen(
    struct KgenContext *ctx,
    const SubproblemDim *dim,
    const PGranularity *pgran,
    GenPriv *gpriv)
{
    char fpref;
    const char varPref[2] = {'G', 'L'};
    char tmp[1024];
    // lead dimension for right and transposed local block in float words
    ItemWork work;
    LoopCtl loopCtl;
    LoopUnrollers unrollers;
    const char *s, *s1, *s2;
    bool image;
    SubproblemDim newDim;
    // copying direction within the memory or image related function group
    int gdir = 0;
    int r;

    fpref = dtypeToPrefix(gpriv->dtype);
    if (!fpref || (fpref == 'i')) {
        return -EINVAL;
    }

    image = (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE ||
             gpriv->dir == DBLOCK_LOCAL_TO_IMAGE);

    memset(&unrollers, 0, sizeof(unrollers));
    memset(&loopCtl, 0, sizeof(loopCtl));
    memset(&newDim, 0, sizeof(newDim));

    gpriv->dim = &newDim;
    gpriv->work = (const ItemWork*)&work;
    gpriv->globLDName = "ld";
    s = (gpriv->transp) ? "Transp" : "";
    s1 = (gpriv->conjugate) ? "Conj" : "";
    s2 = (gpriv->notVectorize) ? "Nvec" : "";

    if ((gpriv->dir == DBLOCK_LOCAL_TO_GLOBAL) && gpriv->transp) {
        // pass over columns of the block stored in the local memory
        newDim.x = dim->y;
        newDim.y = dim->x;
    }
    else {
        // pass over rows
        newDim.x = dim->x;
        newDim.y = dim->y;
    }

    getItemWork(&work, &newDim, pgran, gpriv->nfloats, gpriv->vecLen);

    if (image) {
        s = (gpriv->packed) ? "Pack" : "";
        if (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE) {
            sprintf(tmp, copyMemGImgDBlockDecl, fpref, s, dim->y, dim->x);
        }
        else {
            sprintf(tmp, copyMemLImgDBlockDecl, fpref, s, dim->y, dim->x);
        }

    }
    else {
        gdir = (gpriv->dir == DBLOCK_GLOBAL_TO_LOCAL) ? 0 : 1;
        sprintf(tmp, copyMemDBlockDecl, fpref, s, s1, s2, varPref[gdir],
                varPref[1 - gdir], dim->y, dim->x, varPref[1 - gdir],
                varPref[gdir]);
    }

    kgenDeclareFunction(ctx, tmp);
    kgenBeginFuncBody(ctx);

    kgenDeclareLocalID(ctx, lidVarName, pgran);

    if (image) {
        // data for loop unrolling
        if (work.nrRows > 1) {
            gpriv->srcName = "src1";
            gpriv->dstName = "dst";
            gpriv->imgXName="x1";
            gpriv->imgYName="y1";
            if(gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE) {
                kgenAddStmt(ctx, "GPtr src1;\n");
            }
            else if(gpriv->dir == DBLOCK_LOCAL_TO_IMAGE) {
                kgenAddStmt(ctx, "LPtr src1;\n");
            }
            kgenAddStmt(ctx, "int x1, y1;\n");

            unrollers.preUnroll = copyImgPreUnroll;
            unrollers.postUnroll = copyImgPostUnroll;
        }
        else {
            gpriv->srcName = "src";
            // dst has image2d_t type here
            gpriv->dstName = "dst";
            gpriv->imgXName="x";
            gpriv->imgYName="y";
        }
    }
    else {
        if ((gpriv->nfloats != FLOAT4_VECLEN) &&
            (gpriv->transp || gpriv->conjugate)) {

            /*
             * temporary variable to transpose or conjugate non double
             * complex elements
             */
            kgenAddStmt(ctx, "float4 tmp;\n");
        }

        if (work.nrRows > 1) {
            sprintf(tmp, privatePtrs, varPref[gdir], varPref[1 - gdir]);
            kgenAddStmt(ctx, tmp);

            // data for loop unrolling
            unrollers.preUnroll = copyMemPreUnroll;
            unrollers.postUnroll = copyMemPostUnroll;
            gpriv->srcName = "src1";
            gpriv->dstName = "dst1";
        }
        else {
            gpriv->srcName = "src";
            gpriv->dstName = "dst";
        }
    }

    if ((work.nrRows > 1) || work.nrItems) {
        prepareLoop(ctx, &work, &loopCtl);
    }
    kgenAddBlankLine(ctx);
    loopCtl.inBound = (unsigned long)work.nrCols;

    // now, prepare all needed for loop unrolling

    if (image) {
        kgenAddStmt(ctx, "int x, y;\n");
        if (gpriv->packed) {
            kgenAddStmt(ctx, "int pLine, index;\n");
        }
        gpriv->lmemLD = fl4RowWidth(dim->x, gpriv->typeSize) *
                           FLOAT4_VECLEN / gpriv->nfloats;
        // set up starting x and y in image
        addSettingImageXYCode(ctx, "x", "y", pgran, gpriv);

        if (gpriv->dir == DBLOCK_GLOBAL_TO_IMAGE) {
            // set initial global pointer
            addSettingPtrCode(ctx, "src", 0, false, pgran, gpriv);
        }
        else if (gpriv->dir == DBLOCK_LOCAL_TO_IMAGE) {
            // set initial local pointer
            addSettingPtrCode(ctx, "src", gpriv->lmemLD, gpriv->transp,
                              pgran, gpriv);
        }

        unrollers.genSingleVec = copyImgVec;
        unrollers.genSingle = copyImgSingle;
    }
    else {
        // set initial global pointer
        s = (gdir) ? "dst" : "src";
        addSettingPtrCode(ctx, s, 0, false, pgran, gpriv);

        s = (gdir) ? "src" : "dst";

        if (!gdir && gpriv->transp) {
            gpriv->lmemLD = fl4RowWidth(dim->y, gpriv->typeSize) *
                           FLOAT4_VECLEN / gpriv->nfloats;
        }
        else {
            gpriv->lmemLD = fl4RowWidth(dim->x, gpriv->typeSize) *
                           FLOAT4_VECLEN / gpriv->nfloats;
        }

        if (gpriv->transp) {
            unrollers.genSingleVec = (gpriv->notVectorize) ? NULL :
                                                             copyMemVecTransp;
            unrollers.genSingle = copyMemSingleTransp;
        }
        else {
            unrollers.genSingleVec = (gpriv->notVectorize) ? NULL : copyMemVec;
            unrollers.genSingle = copyMemSingle;
        }

        addSettingPtrCode(ctx, s, gpriv->lmemLD, gpriv->transp,
                          pgran, gpriv);
    }
    unrollers.getVecLen = getVecLen;

    // unroll for float4 aligned data chunk
    kgenLoopUnroll(ctx, &loopCtl, gpriv->dtype, &unrollers, gpriv);

    /*
     * Unroll for remaining data tail.
     * Block tail reading/writing is done separately
     * when many work items process single row
     * because the compiler don't like any conditional
     * branches in loops
     */
    if ((unrollers.postUnroll == NULL) && work.tail) {
        addCopyTailCode(ctx, gpriv);
    }

    r = kgenEndFuncBody(ctx);

    return r ? -EOVERFLOW : 0;
}
예제 #4
0
파일: trsm.c 프로젝트: AndreasMiller/clBLAS
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    char tmp[1024];
    struct KgenContext *ctx;
    ssize_t ret;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    DataType dtype = kextra->dtype;
    KernelExtraFlags kflags = kextra->flags;
    CLBLASKernExtra extraNew;
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    const char *ptrName;
    UpdateResultFlags upFlags = 0;
    TilePostFetchPrivate pfPriv;
    unsigned int l1Pans;
    bool b;
    Tile parTile;
    TrsmExtraParams *extraParams = (TrsmExtraParams *)kextra->solverPriv;
    int ldsLarge, lds_diagonal;
    bool isInline;
    TileSet tileSet;
    char copy2LDSFuncName[FUNC_NAME_MAXLEN];
    TailStatus tailStatus = 0;
    FetchAddrMode addrMode = 0;
    bool tailM = ((kflags & KEXTRA_TAILS_M) != 0);
    bool tailN = ((kflags & KEXTRA_TAILS_N) != 0);
    size_t alignK;

    if (pgran->wgDim != 1) {
        return -EINVAL;
    }

    l1Pans = (unsigned int)(subdims[0].x / subdims[1].x);

    memset(&gset, 0, sizeof(gset));
    gset.flags = BGF_WHOLE_A | BGF_EXPLICIT_INLINE | BGF_UPTRS;
    memcpy(gset.subdims, subdims, sizeof(SubproblemDim) * 2);
    // there is not need in block structure along K
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;
    subdims = gset.subdims;

    /*
     * Since tiles are changed dynamically, e. g. in the main tilemul
     * loop they are rectangular, but at the second stage both A and B
     * tile storages are used for square tiles. One must adjust physical
     * vectorization accordindly, so as vector length might not be
     * greater than linear size of any tile
     */
    memcpy(&extraNew, kextra, sizeof(extraNew));
    extraNew.vecLenA = umin(kextra->vecLenA, (unsigned int)subdims[1].y);
    extraNew.vecLenB = umin(kextra->vecLenB, (unsigned int)subdims[1].y);

    gset.pgran = pgran;
    gset.kextra = &extraNew;
    initKernelVarNames(&gset.varNames);

    // multiplication options
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;
    mulOpts.core = (kextra->flags & KEXTRA_ENABLE_MAD) ? TILEMUL_MAD :
                                                         TILEMUL_MULADD;
    mulOpts.postFetch = NULL;
    mulOpts.flags = kextraToTilemulFlags(CLBLAS_TRSM, kflags);
    mulOpts.flags |= TILEMUL_EXTERN_RDECL | TILEMUL_NOT_INC_K;
    mulOpts.fctx = createFetchContext();
    if (mulOpts.fctx == NULL) {
        return -ENOMEM;
    }

    disableFetchOptLevels(mulOpts.fctx, FOPTLEV_TMP_COORD_PRECOMPUTING);

    isInline = (gset.flags & BGF_EXPLICIT_INLINE);

    initTiles(&gset, &tileSet, subdims, kflags, dtype,
              PRIV_STORAGE_VARIABLE_SET);

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        destroyFetchContext(mulOpts.fctx);
        return -ENOMEM;
    }

    kgenAddStmt(ctx, "#pragma OPENCL EXTENSION cl_amd_printf : enable\n\n");

    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);
    if (isComplexType(dtype)) {
        genComplexMathOperators(ctx, dtype);
    }
    if(!isInline) {
        genTileInverting(ctx, &gset, &tileSet);
    }

    if ( extraParams->ldsUse != LDS_NO_USE ) {
        SubproblemDim sdims;
        DBlockCopyFlags flags;
        unsigned int vecLen;

        if (!isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_B)) {
            sdims.x = gset.subdims[1].bwidth * extraParams->unrollingFactor;
            sdims.y = gset.subdims[0].x;
        }
        else {
            sdims.x = gset.subdims[0].x;
            sdims.y = gset.subdims[1].bwidth * extraParams->unrollingFactor;
        }

        vecLen = getVecLen(&gset, CLBLAS_TRSM, MATRIX_B);
        flags = (vecLen < 4) ? DBLOCK_COPY_NOT_VECTORIZE : 0;
        copyDataBlockGen(ctx, &sdims, gset.pgran, dtype,
                         DBLOCK_GLOBAL_TO_LOCAL, flags);
        kgenAddBlankLine(ctx);
        kgenGetLastFuncName(copy2LDSFuncName, FUNC_NAME_MAXLEN, ctx);
    }

    declareTrxmKernel(ctx, dtype, pgran, kflags, CLBLAS_TRSM, "Cached", false,
                      true);
    kgenBeginFuncBody(ctx);

    declareLocalVariables(ctx, &gset, &parTile, extraParams);
    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        kgenAddStmt(ctx, "A += offA;\n");
    }
    genTrxmBMatrShift(ctx, kflags, false);

    ptrName = dtypeUPtrField(dtype);

    sprintf(tmp, "uB.%s = B;\n\n", ptrName);
    kgenAddStmt(ctx, tmp);

    // external loop
    sprintf(tmp, "for (m0 = 0; m0 < M; m0 += %lu)", subdims[0].y);
    kgenBeginBranch(ctx, tmp);
    genZeroTile(ctx, &gset.tileCY);
    genSetupCoords(ctx, &gset, BLOCK_UPDATE);

    kgenAddStmt(ctx, "// Stage 1. Multiply and update with large blocks\n");

    gset.tileA = tileSet.rectA;
    gset.tileBX = tileSet.origB;

    if (!isMatrixUpper(kflags) && tailM) {
        addrMode |= FETCH_ADDR_A_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
    }

    ldsLarge = ((extraParams->ldsUse & LDS_USE_LARGE) != 0);
    alignK = subdims[1].bwidth;
    if (ldsLarge) {
        alignK *= extraParams->unrollingFactor;
    }

    if (ldsLarge) {
        const char *oldCoordB;
        FetchAddrMode bamode = addrMode | FETCH_ADDR_K_RELATIVE;
        bool withSkew;

        withSkew = useSkewedFetchB(&gset);
        if (!withSkew) {
            bamode |= FETCH_ADDR_B_RELATIVE;
        }
        else {
            bamode |= FETCH_ADDR_B_CYCLICAL;
        }

        setFetchAddrMode(mulOpts.fctx, bamode);

        if (tailN) {
            /*
             * Conditional branch for those items which hit into
             * matrix B with their matrix coordinates
             */
            sprintf(tmp, "if ((gid + 1) * %lu < N)", subdims[0].x);
            kgenBeginBranch(ctx, tmp);
        }

        if (isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_A)) {
            kgenPrintf(ctx, "uA.%s = A + k0 * lda;\n", ptrName);
        }
        else {
            kgenPrintf(ctx, "uA.%s = A + k0;\n", ptrName);
        }

        if (withSkew) {
            unsigned int bwidthOld;

            oldCoordB = gset.varNames.coordB;
            gset.varNames.coordB = "skewX";
            bwidthOld = gset.subdims[0].bwidth;
            gset.subdims[0].bwidth = (parTile.trans) ? parTile.nrRows :
                                                       parTile.nrCols;
            gset.subdims[0].bwidth = bwidthOld;
        }

        genInternalLoopCtl(ctx, subdims, kflags, alignK, alignK);
        genPreloadedTileMul(ctx, &gset, &mulOpts, &parTile, copy2LDSFuncName);
        genInternalLoopEnd(ctx);                             // loop over K

        if (withSkew) {
            gset.varNames.coordB = oldCoordB;
            setFetchAddrMode(mulOpts.fctx, bamode & ~FETCH_ADDR_B_CYCLICAL);
            // deliver from skew in the result before proceed to the next stage
            genTileCyclicalShift(ctx, &gset);
        }

        if (tailN) {
            kgenEndBranch(ctx, NULL);
            kgenBeginBranch(ctx, "else");
        }

        setFetchAddrMode(mulOpts.fctx, addrMode);
    }

    if (!ldsLarge || tailN) {
        genCheckShiftTailB(ctx, &gset, 0, &tailStatus);
        if ((kflags & KEXTRA_TAILS_N_LOWER) && !tailStatus) {
            addrMode |= FETCH_ADDR_B_CYCLICAL;
            setFetchAddrMode(mulOpts.fctx, addrMode);
        }

        if (tailN) {
            sprintfHitMatrixCond(tmp, MATRIX_B, "if (", ")");
            kgenBeginBranch(ctx, tmp);
        }

        genInternalLoopCtl(ctx, subdims, kflags, subdims[1].bwidth, alignK);
        tileMulGen(ctx, &gset, &mulOpts);
        genInternalLoopEnd(ctx);                             // loop over K

        if (tailN) {
            kgenEndBranch(ctx, NULL);
        }

        if (extraParams->ldsUse & LDS_USE_LARGE) {
            kgenEndBranch(ctx, NULL);
        }
    }

    sprintf(tmp, "uA.%s = A;\n\n", ptrName);
    kgenAddStmt(ctx, tmp);

    // processing tails along update dimension
    if (isMatrixUpper(kflags) &&
        ((kflags & KEXTRA_TAILS_K_LOWER) ||
          (ldsLarge && extraParams->unrolledTail))) {

        unsigned int tailChunks;

        tailChunks = (extraParams->ldsUse & LDS_USE_LARGE) ?
            extraParams->unrolledTail : 1;

        if (tailN) {
            char hitCond[1024];

            sprintfHitMatrixCond(hitCond, MATRIX_B, "(", ")");
            sprintf(tmp, "if ((currM + %lu < M) && %s)",
                    subdims[0].y, hitCond);
        }
        else {
            sprintf(tmp, "if (currM + %lu < M)", subdims[0].y);
        }
        kgenBeginBranch(ctx, tmp);

        if (kflags & KEXTRA_TAILS_K_LOWER) {
            setFetchAddrMode(mulOpts.fctx, addrMode | FETCH_ADDR_K_CYCLICAL);
            setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
        }
        if (tailChunks > 1) {
            mulOpts.flags &= ~TILEMUL_NOT_INC_K;
            sprintf(tmp, "for (uint k1 = 0; k1 < %u; k1++)", tailChunks);
            kgenBeginBranch(ctx, tmp);
        }

		addrMode |= FETCH_ADDR_B_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
        tileMulGen(ctx, &gset, &mulOpts);
        if (tailChunks > 1) {
            kgenEndBranch(ctx, NULL);
            mulOpts.flags |= TILEMUL_NOT_INC_K;
        }

        kgenEndBranch(ctx, NULL);
    }

    gset.tileA = tileSet.squareA;

    kgenAddStmt(ctx, "\n/*\n"
                     " * Stage 2. A part of work items multiply got result on "
                     "a respective\n"
                     " * inverted diagonal block, and the remaining ones wait. "
                     "Then they perform\n"
                     " * one step of further intermediate result evaluation as "
                     "multiplying tile by tile.\n"
                     " * It continues until the whole panel of the "
                     "matrix A is processed\n"
                     " */\n");

    // one must deal further with square blocks strictly
    gset.subdims[0].bwidth = gset.subdims[1].bwidth = gset.subdims[1].y;

    sprintf(tmp, "for (m1 = 0; m1 < %lu; m1++)", subdims[0].y / subdims[1].y);
    kgenBeginBranch(ctx, tmp);

    if (extraParams->ldsUse & LDS_USE_DIAGONAL) {
        sprintf(tmp, "const int bid = lid %% %u;\n\n",
                l1Pans);
        kgenAddStmt(ctx, tmp);
    }

    /*
     * Update the intermediate result multiply on the inverted diagonal tile,
     * and write back
     */
    genSetupCoords(ctx, &gset, TILE_UPDATE);

    sprintfStage2Condition(tmp, &gset, 0);
    ret = kgenBeginBranch(ctx, tmp);

    upFlags = kextraToUpresFlags(CLBLAS_TRSM, kflags);
    upFlags |= tailStatusToUpresFlags(tailStatus);
    upFlags |= UPRES_PRIV_DEST | UPRES_WITH_BETA;
    genUpdateIntermResult(ctx, &gset, false, upFlags);

    kgenAddBlankLine(ctx);

    lds_diagonal = ((extraParams->ldsUse & LDS_USE_DIAGONAL) &&
                    (kflags & (KEXTRA_COLUMN_MAJOR)) == 0 &&
                    !(tailM || tailN) &&
                    !(upFlags & UPRES_NO_VECTORIZATION) &&
                    !isComplexType(kextra->dtype));

    /*
     * it's needed now to adjust addressing mode of A so as to don't
     * exceed the bound of A
     */
    if (tailM) {
        setFetchAddrMode(mulOpts.fctx,
                         addrMode | FETCH_ADDR_A_CYCLICAL |
                         FETCH_ADDR_K_CYCLICAL);
        extraNew.flags |= KEXTRA_TAILS_K_LOWER;
    }

    genMulOnDiagonalTile(ctx, &gset, &tileSet, &mulOpts);
    gset.tileBX = tileSet.bStage2;
    if (tailM) {
        setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
    }

    kgenAddStmt(ctx, "// Write back the given result\n");

    upFlags = kextraToUpresFlags(CLBLAS_TRSM, kflags);
    upFlags |= tailStatusToUpresFlags(tailStatus);

    if (lds_diagonal) {
       sprintf(tmp, "tmpB[%%u * %u + bid]", l1Pans);
    }

    genResultUpdateWithFlags(ctx, CLBLAS_TRSM, &gset, upFlags,
                                 NULL, NULL, lds_diagonal ? tmp : NULL);

    kgenEndBranch(ctx, NULL);   // multiply on the inverted tile path
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    // continue the tile update
    kgenAddBlankLine(ctx);
    sprintfStage2Condition(tmp, &gset, 1);
    kgenBeginBranch(ctx, tmp);
    genCheckShiftTailB(ctx, &gset, 0, &tailStatus);
    if (lds_diagonal) {
        // TODO: add here storing to LDS as well
    }
    else {
		addrMode |= FETCH_ADDR_B_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
        tileMulGen(ctx, &gset, &mulOpts);
    }
    kgenEndBranch(ctx, NULL);           // tile update path
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    kgenEndBranch(ctx, NULL);           // second stage loop

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "currM -= %lu;\n", subdims[0].y);
        kgenAddStmt(ctx, tmp);
    }

    kgenEndBranch(ctx, NULL);           // loop over M

    ret = kgenEndFuncBody(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyFetchContext(mulOpts.fctx);
    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}
예제 #5
0
파일: trsm.c 프로젝트: AndreasMiller/clBLAS
static void
genTileInverting(
    struct KgenContext *ctx,
    const BlasGenSettings *gset,
    const TileSet *tileSet)
{
    char tmp[1024];
    const CLBLASKernExtra *kextra = gset->kextra;
    KernelExtraFlags kflags = kextra->flags;
    DataType dtype = kextra->dtype;
    const SubproblemDim *dim = &gset->subdims[1];
    unsigned int accLen;
    unsigned int i, j, k;
    Tile srcTile;
    Tile dstTile;
    bool isU, isComplex;
    bool isInlined = gset->flags & BGF_EXPLICIT_INLINE;
    const char* typeNameA;
    const char* typeNameB;

    memcpy(&srcTile, &tileSet->bAsSqA, sizeof(srcTile));
    memcpy(&dstTile, &tileSet->squareA, sizeof(dstTile));

    getVectorTypeName(kextra->dtype, dstTile.vecLen, &typeNameA, NULL);
    getVectorTypeName(kextra->dtype, srcTile.vecLen, &typeNameB, NULL);
    isU = isMatrixUpper(kflags);
    isComplex = isComplexType(dtype);

    if (isComplex || dstTile.trans) {
        accLen = 1;
    }
    else {
        accLen = umin(srcTile.vecLen, dstTile.vecLen);
        accLen = umin(accLen, srcTile.nrCols);
    }

    if (!isInlined) {
        dstTile.baseName = "a";
        srcTile.baseName = "b";
        sprintf(tmp, "void\n"
                     "invertTile(%s *a, %s *b)\n",
                typeNameA, typeNameB);
        kgenDeclareFunction(ctx, tmp);
        kgenBeginFuncBody(ctx);
    }
    else {
        kgenAddStmt(ctx, "// Invert tile\n");
    }

    // made destination block unit
    genZeroTile(ctx, &dstTile);
    for (i = 0; i < dim->y; i++) {
        genSetUnitInTile(ctx, &dstTile, i, i);
    }
    kgenAddBlankLine(ctx);

    for (i = 0; i < dim->y; i++) {
        Kstring src, srcDiag, dst, dstLast;

        // current source diagonal element
        sprintfInvertedElement(&srcDiag, &srcTile, i, i, 1, isU);
        for (j = i; j < dim->y; j++) {
            // current source non diagonal element
            if (i) {
                sprintfInvertedElement(&src, &srcTile, j, i - 1, 1, isU);
            }

            for (k = 0; k < dim->y; k += accLen) {
                // current updated vectorized element
                sprintfInvertedElement(&dst, &dstTile, j, k, accLen, isU);

                // update
                if (i) {
                    // last updated vectorized element
                    sprintfInvertedElement(&dstLast, &dstTile, i - 1, k,
                                           accLen, isU);
                    if (isComplex) {
                        sprintf(tmp, "%s -= mul(%s, %s);\n",
                                dst.buf, dstLast.buf, src.buf);
                    }
                    else {
                        sprintf(tmp, "%s -= %s * %s;\n",
                                dst.buf, dstLast.buf, src.buf);
                    }
                    kgenAddStmt(ctx, tmp);
                }

                // divide on the diagonal element
                if (j == i) {
                    if (isComplex) {
                        sprintf(tmp, "%s = div(%s, %s);\n",
                                dst.buf, dst.buf, srcDiag.buf);
                    }
                    else {
                        sprintf(tmp, "%s /= %s;\n", dst.buf, srcDiag.buf);
                    }
                    kgenAddStmt(ctx, tmp);
                }
            }
        }
        if (i != dim->y - 1) {
            kgenAddBlankLine(ctx);
        }
    }

    if (!isInlined) {
        kgenEndFuncBody(ctx);
    }
    kgenAddBlankLine(ctx);

}
예제 #6
0
// Preparation function for images based kernel generator
static ssize_t
preparator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    char tmp[4096], conjStr[1024];
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    CopyImgFuncs copyImgFuncs;
    DataType dtype = kextra->dtype;
    BlasGenSettings gset;
    unsigned int vecLen;
    unsigned int tsize;
    const char *typeName;
    char fpref;
    bool b;
    size_t localBufSize;
    ssize_t ret;
    const char *conjCond;

    const char *functionHeadA =
        "int tra, aligned;\n"
        "const uint bpr = (K + %lu) / %lu;\n"
        "uint m = (gid / bpr) * %lu;\n"
        "uint k = (gid %% bpr) * %lu;\n"
        "uint x, y;\n"
        "__local %s temp[%lu];\n"
        "\n"
        "A += offsetA;\n"
        "tra = (!transA && order == clblasColumnMajor) ||\n"
        "      (transA && order == clblasRowMajor);\n"
        "if (m >= M) {\n"
        "     return;\n"
        "}\n";

    const char *functionHeadB =
        "int trb, aligned;\n"
        "const uint bpr = (K + %lu) / %lu;\n"
        "const uint n = (gid / bpr) * %lu;\n"
        "const uint k = (gid %% bpr) * %lu;\n"
        "uint x, y;\n"
        "__local %s temp[%lu];\n"
        "\n"
        "B += offsetB;\n"
        "trb = (!transB && order == clblasRowMajor) ||\n"
        "      (transB && order == clblasColumnMajor);\n"
        "if (n >= N) {\n"
        "    return;\n"
        "}\n";

    // Distribute blocks across compute units and copy matrix A to image.
    // Transposition and filling with zeros in unaligned cases is made using
    // buffer in local memory.
    const char *copyToImageA =
        "//copy matrix A block\n"
        "y = m + %u <= M ? %u : M - m;\n"
        "x = k + %u <= K ? %u : K - k;\n"
        "aligned = (x == %u) && (y == %u) && %d;\n"
        "int atcase = aligned * 10 + tra;\n"
        "%s" // conjugated check
        "if (atcase != 10) {\n"
        "    %s((__local float4*)temp);\n"
        "    barrier(CLK_LOCAL_MEM_FENCE);\n"
        "}\n"
        "switch(atcase) {\n"
        "case 10: //aligned, not transposed\n"
        "    %s(imgA, k / %u, m, (GPtr)A, m, k, lda);\n"
        "    break;\n"
        "%s" // conjugated case
        "case 1: //not aligned, transposed\n"
        "    // generic transposed global to local\n"
        "    %s((LPtr)temp, (GPtr)A, k, m, x, y, %u, lda);\n"
        "    break;\n"
        "case 0: //not aligned, not transposed\n"
        "    // generic global to local\n"
        "    %s((LPtr) temp, (GPtr)A, m, k, y, x, %u, lda);\n"
        "    break;\n"
        "case 11: //aligned, transposed\n"
        "    // optimized transposed global to local\n"
        "    %s((LPtr) temp, (GPtr)A, k, m, lda);\n"
        "    break;\n"
        "}\n"
        "if (atcase != 10) {\n"
        "    barrier(CLK_LOCAL_MEM_FENCE);\n"
        "    %s(imgA, k / %u, m, (LPtr) temp);\n"
        "}\n"
        "\n";

    const char *copyToImageB =
            "//copy matrix B block\n"
            "y = n + %u <= N ? %u : N - n;\n"
            "x = k + %u <= K ? %u : K - k;\n"
            "aligned = (x == %u) && (y == %u) && %d;\n"
            "int atcase = aligned * 10 + trb;\n"
            "%s" // conjugated check
            "if (atcase != 10) {\n"
            "    %s((__local float4*)temp);\n"
            "    barrier(CLK_LOCAL_MEM_FENCE);\n"
            "}\n"
            "switch (atcase) {\n"
            "case 10: //aligned, not transposed\n"
            "    %s(imgB, k / %u, n, (GPtr)B, n, k, ldb);\n"
            "    break;\n"
            "%s" // conjugated case
            "case 1: //not aligned, transposed\n"
            "    // generic transposed global to local\n"
            "    %s((LPtr)temp, (GPtr)B, k, n, x, y, %u, ldb);\n"
            "    break;\n"
            "case 0: //not aligned, not transposed\n"
            "    // generic global to local\n"
            "    %s((LPtr)temp, (GPtr)B, n, k, y, x, %u, ldb);\n"
            "    break;\n"
            "case 11: //transposed, aligned\n"
            "    // optimized transposed global to local\n"
            "    %s((LPtr)temp, (GPtr)B, k, n, ldb);\n"
            "    break;\n"
            "}\n"
            "if (atcase != 10) {\n"
            "    barrier(CLK_LOCAL_MEM_FENCE);\n"
            "    %s(imgB, k / %u, n, (LPtr)temp);\n"
            "}\n"
            "\n";

    memset(&copyImgFuncs, 0, sizeof(copyImgFuncs));
    memset(&gset, 0, sizeof(gset));

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    tsize = dtypeSize(dtype);

    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);
    declareBlasEnums(ctx);

    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.kextra = kextra;
    gset.pgran = pgran;

    // generate necessary memory to image copying functions
    generateImageCopyFuncs(&copyImgFuncs, ctx, CLBLAS_GEMM, &gset);

    kgenAddBlankLine(ctx);
    vecLen = sizeof(cl_float4) / dtypeSize(dtype);
    typeName = dtypeBuiltinType(dtype);
    fpref = dtypeToBlasPrefix(dtype);

    if (kextra->kernType == CLBLAS_PREP_A_KERNEL) {
        sprintf(tmp, prepareImagesGemmDeclA, fpref, typeName, typeName);
        kgenDeclareFunction(ctx, tmp);
        ret = kgenBeginFuncBody(ctx);

        // same local buffer is used for both matrix A and matrix B blocks
        localBufSize = subdims[1].y * fl4RowWidth(subdims[1].bwidth, tsize);
        localBufSize *= vecLen;

        kgenDeclareGroupID(ctx, "gid", pgran);
        sprintf(tmp, functionHeadA,
                subdims[1].bwidth - 1, subdims[1].bwidth,
                subdims[1].y, subdims[1].bwidth,
                typeName, localBufSize);
        kgenAddStmt(ctx, tmp);

        if (isComplexType(dtype)) {
            conjCond = "atcase += ((atcase == 10) && "
                    "(transA == clblasConjTrans)) ? 100 : 0;\n";
            sprintf(conjStr, "case 110: //conjugated, not transposed, aligned\n"
                             "    %s((LPtr)temp, (GPtr)A, m, k, lda);\n"
                             "    break;\n",
                    copyImgFuncs.globalToLocal[MATRIX_A]);
        }
        else {
            conjCond = "";
            strcpy(conjStr, "");
        }

        sprintf(tmp, copyToImageA,
                subdims[1].y, subdims[1].y, // y = m + dy <= M ?...
                subdims[1].bwidth, subdims[1].bwidth, // x = k + bw <= K ?...
                subdims[1].bwidth, subdims[1].y, // aligned = (x==bw1)&&(y==dy1)
                (kextra->flags & KEXTRA_NO_COPY_VEC_A) == 0,
                conjCond,
                copyImgFuncs.zeroBlock[MATRIX_A],
                copyImgFuncs.globalToImage[MATRIX_A],
                vecLen,
                conjStr,
                copyImgFuncs.globalToLocalTransposedGeneric[MATRIX_A],
                subdims[1].bwidth,
                copyImgFuncs.globalToLocalGeneric[MATRIX_A],
                subdims[1].bwidth,
                copyImgFuncs.globalToLocalTransposed[MATRIX_A],
                copyImgFuncs.localToImage[MATRIX_A],
                vecLen);
        kgenAddStmt(ctx, tmp);
    }
    else { // PREP_B
        sprintf(tmp, prepareImagesGemmDeclB, fpref, typeName, typeName);
        kgenDeclareFunction(ctx, tmp);
        ret = kgenBeginFuncBody(ctx);

        // same local buffer is used for both matrix A and matrix B blocks
        localBufSize = subdims[1].x * fl4RowWidth(subdims[1].bwidth, tsize);
        localBufSize *= vecLen;

        kgenDeclareGroupID(ctx, "gid", pgran);
        sprintf(tmp, functionHeadB,
                subdims[1].bwidth - 1, subdims[1].bwidth,
                subdims[1].x, subdims[1].bwidth,
                typeName, localBufSize);
        kgenAddStmt(ctx, tmp);

        if (isComplexType(dtype)) {
            conjCond = "atcase += ((atcase == 10) && "
                    "(transB == clblasConjTrans)) ? 100 : 0;\n";
            sprintf(conjStr, "case 110: //conjugated, not transposed, aligned\n"
                             "    %s((LPtr)temp, (GPtr)B, n, k, ldb);\n"
                             "    break;\n",
                    copyImgFuncs.globalToLocal[MATRIX_B]);
        }
        else {
            conjCond = "";
            strcpy(conjStr, "");
        }

        sprintf(tmp, copyToImageB,
                subdims[1].x, subdims[1].x, // y = n + dy <= N ?...
                subdims[1].bwidth, subdims[1].bwidth, // x = k + bw <= K ?...
                subdims[1].bwidth, subdims[1].x, // aligned = (x==bw1)&&(y==dx1)
                (kextra->flags & KEXTRA_NO_COPY_VEC_B) == 0,
                conjCond,
                copyImgFuncs.zeroBlock[MATRIX_B],
                copyImgFuncs.globalToImage[MATRIX_B],
                vecLen,
                conjStr,
                copyImgFuncs.globalToLocalTransposedGeneric[MATRIX_B],
                subdims[1].bwidth,
                copyImgFuncs.globalToLocalGeneric[MATRIX_B],
                subdims[1].bwidth,
                copyImgFuncs.globalToLocalTransposed[MATRIX_B],
                copyImgFuncs.localToImage[MATRIX_B],
                vecLen);
        kgenAddStmt(ctx, tmp);
    }

    kgenEndFuncBody(ctx);

    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }
    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}
예제 #7
0
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    char tmp[4096], tmp1[4096];
    char *p;
    // is the iteration over N, N at the top level
    const char *typeName;
    char fpref;
    DataType dtype = kextra->dtype;
    ssize_t ret;
    BlasGenSettings gset;
    BlkMulOpts mulOpts;
    unsigned int tsize;
    unsigned int vecLen, outVecLen;
    bool b;
    const char *outTypeName;
    unsigned int i;
    unsigned int nrRegs, regPitch;
    int tra, trb;
    char vect[2] = {'y', 'x'};

    const char *coordConstants =
        "const uint workItemM = get_global_id(0) * %lu;\n"
        "const uint workItemN = get_global_id(1) * %lu;\n"
        "const int2 skewRow = (int2)(0, get_local_id(0) %% %lu);\n"
        "uint vectK = (K + %u) / %u;\n";

    /*
     *  template for image based gemm preparation part
     *  for two dimensional work space
     */
    const char *localVariables =
        "uint k0;\n"
        "int2 coordA = (int2)(0, workItemM);\n"
        "int2 coordB = (int2)(0, workItemN);\n"
        "%s c[%u];\n\n";

    tsize = dtypeSize(dtype);
    vecLen = sizeof(cl_float4) / dtypeSize(dtype);
    if (isComplexType(dtype)) {
        regPitch = (unsigned int)subdims[1].x;
    }
    else {
        regPitch = (unsigned int) fl4RowWidth(subdims[1].x, tsize) *
                    sizeof(cl_float4) / tsize;
    }

    memset(&gset, 0, sizeof(gset));
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.kextra = kextra;
    gset.pgran = pgran;
    initKernelVarNames(&gset.varNames, kextra->flags);

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations and auxiliary functions
    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);

    typeName = dtypeBuiltinType(dtype);
    fpref = dtypeToBlasPrefix(dtype);

    // now, generate the kernel

    sprintf(tmp, imgGemmDecl, pgran->wgSize[0], pgran->wgSize[1], fpref,
            typeName, typeName, typeName);
    kgenDeclareFunction(ctx, tmp);
    ret = kgenBeginFuncBody(ctx);

    // constants
    sprintf(tmp, coordConstants,
            subdims[1].y, subdims[1].x, subdims[1].y,
            vecLen - 1, vecLen);
    kgenAddStmt(ctx, tmp);

    /*
     * Calculate local buffer pitches, and then declare local
     * variables
     */
    getResultGPRsInfo(dtype, &subdims[1], vecLen, &nrRegs, &outTypeName);

    sprintf(tmp, localVariables, outTypeName, nrRegs);
    kgenAddStmt(ctx, tmp);

    // check if offset exceeds matrix
    kgenAddStmt(ctx, "if ((workItemM >= M) ||"
                         "(workItemN >= N)) {\n"
                     "    return;\n"
                     "}\n");

    kgenAddStmt(ctx, "C += offsetC;\n");

    // zero C block
    sprintf(tmp, "for (k0 = 0; k0 < %u; k0++) {\n"
                 "    c[k0] = 0;\n"
                 "}\n\n",
            nrRegs);
    kgenAddStmt(ctx, tmp);

    // block multiplication inlined function
    sprintf(tmp, "for (k0 = 0; k0 < vectK; k0 += %lu)",
            subdims[1].bwidth / vecLen);
    kgenBeginBranch(ctx, tmp);

    mulOpts.aMobj = CLMEM_IMAGE;
    mulOpts.bMobj = CLMEM_IMAGE;
    mulOpts.flags = BLKMUL_OUTPUT_PRIVATE | BLKMUL_SKEW_ROW | BLKMUL_INLINE;
    if (isComplexType(dtype)) {
        mulOpts.core = BLKMUL_SEPARATE_MULADD;
    }
    else {
        mulOpts.core = BLKMUL_MAD;
    }
    mulOpts.argNames.coordA = "coordA";
    mulOpts.argNames.coordB = "coordB";
    mulOpts.argNames.skewCol = "skewCol";
    mulOpts.argNames.skewRow = "skewRow";
    mulOpts.argNames.k = "k0";
    mulOpts.argNames.vectBoundK = "vectK";
    ret = blkMulGen(ctx, subdims, dtype, &mulOpts);
    if (ret) {
        destroyKgenContext(ctx);
        return -EOVERFLOW;
    }

    // update image coordinates
    sprintf(tmp, "\ncoordA.x += %lu;\n"
                 "coordB.x += %lu;\n",
            subdims[1].bwidth / vecLen, subdims[1].bwidth / vecLen);
    kgenAddStmt(ctx, tmp);

    kgenEndBranch(ctx, NULL);

    // reorder the given solution
    outVecLen = isComplexType(dtype) ? 1 : vecLen;
    p = tmp1;
    for (i = 0; i < regPitch / outVecLen; i++) {
        unsigned int k = (unsigned int)(subdims[1].y - 1) *
                         regPitch / outVecLen + i;

        sprintf(p,  "\n"
                    "    tmp = c[%u];\n"
                    "    for (j = %lu; j >= 0; j--) {\n"
                    "        c[(j+1) * %u + %u] = c[j * %u + %u];\n"
                    "    }\n"
                    "    c[%u] = tmp;\n",
                k, subdims[1].y - 2, regPitch / outVecLen,
                i, regPitch / outVecLen, i, i);
        p += strlen(p);
    }
    sprintf(tmp, "\n"
                 "for (k0 = 0; k0 < skewRow.y; k0++) {\n"
                 "    int j;\n"
                 "    %s tmp;\n"
                 "%s"
                 "}\n"
                 "\n",
                 outTypeName, tmp1);
    kgenAddStmt(ctx, tmp);

    tra = isMatrixAccessColMaj(CLBLAS_GEMM, kextra->flags, MATRIX_A);
    trb = isMatrixAccessColMaj(CLBLAS_GEMM, kextra->flags, MATRIX_B);
    sprintf(tmp, "coordA.%c = workItemM;\n"
                 "coordB.%c = workItemN;\n\n",
            vect[tra], vect[trb]);
    kgenAddStmt(ctx, tmp);

    // write back the tile evaluated
    generateResultUpdateOld(ctx, CLBLAS_GEMM, &gset, NULL, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}
예제 #8
0
void
genInvertingBlockFunc(
    struct KgenContext *ctx,
    size_t pitch,
    DataType dtype,
    KernelExtraFlags kflags)
{
    char tmp[1024];
    const char *ctype;
    ctype = dtypeBuiltinType(dtype);

    sprintf(tmp, "void\ninvert(__local %s *src, __local %s *dst, int lid, "
                              "int lastRow)\n", ctype, ctype);
    kgenDeclareFunction(ctx, tmp);
    kgenBeginFuncBody(ctx);
    kgenAddStmt(ctx, "int i, k;\n");

    if (isComplexType(dtype)) {
        sprintf(tmp, "dst[lid * %lu + lid].x = 1.f;\n", pitch);
    }
    else {
        sprintf(tmp, "dst[lid * %lu + lid] = 1.f;\n", pitch);
    }
    kgenAddStmt(ctx, tmp);

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "for (i = lastRow - 1; i >= 0; i--)");
    }
    else {
        sprintf(tmp, "for (i = 0; i < lastRow; i++)");
    }
    kgenBeginBranch(ctx, tmp);

    if (isComplexType(dtype)) {
        sprintf(tmp, "dst[i * %lu + lid] = div(dst[i * %lu + lid], "
                     "src[i * %lu + i]);\n", pitch, pitch, pitch);
    }
    else {
        sprintf(tmp, "dst[i * %lu + lid] = dst[i * %lu + lid] / "
                     "src[i * %lu + i];\n", pitch, pitch, pitch);
    }
    kgenAddStmt(ctx, tmp);

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "for (k = 0; k < i; k++)");
    }
    else {
        sprintf(tmp, "for (k = i + 1; k < %lu; k++)", pitch);
    }
    kgenBeginBranch(ctx, tmp);
    if (isComplexType(dtype)) {
        sprintf(tmp, "dst[k * %lu + lid] = dst[k * %lu + lid] - "
                     "mul(src[k * %lu + i], dst[i * %lu + lid]);\n",
                pitch, pitch, pitch, pitch);
    }
    else {
        sprintf(tmp, "dst[k * %lu + lid] = dst[k * %lu + lid] - "
                      "dst[i * %lu + lid] * src[k * %lu + i];\n",
                pitch, pitch, pitch, pitch);
    }
    kgenAddStmt(ctx, tmp);
    kgenEndBranch(ctx, NULL);
    kgenEndBranch(ctx, NULL);
    kgenEndFuncBody(ctx);
}
예제 #9
0
파일: symv.c 프로젝트: AndreasMiller/clBLAS
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    bool upper = ((kflags & KEXTRA_UPPER_TRIANG) != 0) ^
                  ((kflags & KEXTRA_COLUMN_MAJOR) != 0);
    char tmp[2048];
    const char *typeName;
    DataType dtype = kextra->dtype;
    BlasGenSettings gset, tgset, lset, gset1;
    CLBLASKernExtra kextraTmp;
    TileMulOpts mulOpts, tmulOpts;
    KernelVarNames *vnames = &gset.varNames;
    ssize_t ret;
    size_t vecLen = kextra->vecLen;
    const char *outTypeName;
    bool b;
    TilePostFetchPrivate pfPriv;
    struct symvPrivate priv;
    size_t wgSize;
    bool tailM = (kflags & KEXTRA_TAILS_M) != 0;
    bool tailK = (kflags & KEXTRA_TAILS_K) != 0;
    bool tra = (kflags & KEXTRA_COLUMN_MAJOR) != 0;
    bool rowMaj = !isMatrixAccessColMaj(CLBLAS_SYMV, kflags, MATRIX_A);
    bool isComplex = isComplexType(dtype);
    Tile tileb;
    const char *gid = "get_group_id(0)";
    const char *lid = "get_local_id(0)";
    bool isHoriz = subdims[1].bwidth >= subdims[1].y;
    unsigned int bStep = subdims[0].bwidth / subdims[1].bwidth;
    unsigned int cLocal;
    unsigned int nPlans;

    wgSize = (subdims[0].y / subdims[1].y) *
            (subdims[0].bwidth / subdims[1].bwidth);
    assert(pgran->wgSize[0] == wgSize);
    assert(subdims[0].x == 1);
    assert(subdims[1].x == 1);

    memset(&gset, 0, sizeof(gset));
    memset(&mulOpts, 0, sizeof(mulOpts));
    memset(&pfPriv, 0, sizeof(pfPriv));
    memset(&priv, 0, sizeof(priv));
    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations
    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);

    typeName = dtypeBuiltinType(dtype);

    declareSymvKernel(ctx, dtype, pgran, kflags);

    ret = kgenBeginFuncBody(ctx);
    /* 1D work space. Matrix is divided among wi, each calculates it's own
     * part of vector y */

    kgenAddStmt(ctx, "#define M actualN\n");
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.subdims[0].itemX = gset.subdims[0].x = 1;
    gset.subdims[1].itemX = gset.subdims[1].x = 1;
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;
    gset.flags |= BGF_WHOLE_A | BGF_UPTRS;

    gset.kextra = kextra;
    gset.pgran = pgran;

    initDefaultTiles(&gset, CLBLAS_SYMV, 0, PRIV_STORAGE_VARIABLE_SET);
    gset.tileA.vecLen = umin(8u, tra ? gset.tileA.nrCols : gset.tileA.nrRows);

    if (isComplex) {
         gset.tileCY.vecLen = 1;
    }
    declareTileStorages(ctx, &gset);
    genZeroTile(ctx, &gset.tileCY);
    getVectorTypeName(dtype, gset.tileCY.vecLen, &outTypeName, NULL);
    cLocal = wgSize / bStep;
    nPlans = gset.tileCY.nrRows / gset.tileCY.vecLen;

    sprintf(tmp, "__local %s localRes[%u][%u];\n",
                outTypeName, pgran->wgSize[0], nPlans);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint coordA = (%s * %u + %s / %u) * %lu + startN;\n",
                 gid, cLocal, lid, bStep, subdims[1].y);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint n = coordA;\n");
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint k0 = (%s %% %u) * %lu;\n",
                 lid,  bStep, subdims[1].bwidth);
    kgenAddStmt(ctx, tmp);
    kgenAddStmt(ctx, "actualN += startN;\n");

    kgenAddBlankLine(ctx);

    kgenBeginBranch(ctx,"if (coordA < actualN && k0 < N)");

    genIncPointers(ctx, kflags);
    sprintf(tmp,
            "const GPtr Ag = {(__global %s*)A};\n"
            "const GPtr Xg = {(__global %s*)X};\n",
            typeName, typeName);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    kgenAddStmt(ctx, "uint k = k0;\n");

    if (tailK) {
        sprintf(tmp, "uint Ntail = N %% %lu;\n", subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        sprintf(tmp, "uint Ktail = N %% %lu;\n\n", subdims[1].y);
        kgenAddStmt(ctx, tmp);
        kgenBeginBranch(ctx, "if (n + Ktail < N)");
        kgenAddStmt(ctx, "N -= Ntail;\n");
        kgenAddBlankLine(ctx);
    }

    mulOpts.flags |= TILEMUL_OPTIMIZE_COORD_CALC;
    if (tailM) {
        vnames->sizeM = "N";
    }

    vnames->A = "Ag";
    vnames->B = "Xg";
    vnames->coordA = "coordA";
    vnames->coordB = ""; //should not be used for vector
    vnames->k = "k";
    vnames->lda = "lda";
    vnames->sizeK = "N";
    vnames->sizeM = "N";

    mulOpts.flags |= TILEMUL_NOT_FETCH_B | TILEMUL_TRB | TILEMUL_NOT_INC_K;
    if ((kflags & KEXTRA_CONJUGATE_A) != 0) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if ((kflags & KEXTRA_ENABLE_MAD) != 0) {
        mulOpts.core = TILEMUL_MAD;
    }
    else {
        mulOpts.core = TILEMUL_MULADD;
    }
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;

    if (rowMaj) {
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    if (upper) {
        kgenAddStmt(ctx, "// k loop over column from the beginning of the column till the diagonal\n");
    }
    else {
        kgenAddStmt(ctx, "// k loop over row from the beginning of the row till the diagonal\n");
    }
    sprintf(tmp, "for (; k < n/%lu*%lu; k += %lu)",
        subdims[1].bwidth, subdims[1].bwidth, bStep*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    upper ^= rowMaj;
    tra ^= rowMaj;
    if (upper ^ rowMaj && tra) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    gset.tileA.trans ^= !upper;
    tgset = gset;
    tmulOpts = mulOpts;

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailK)
    {
            kextraTmp = *kextra;
            gset1 = gset;

            kextraTmp.vecLen = 1;
            gset1.kextra = &kextraTmp;

            gset1.subdims[0].bwidth = gset1.subdims[1].bwidth = 1;

            gset1.tileBX.nrRows = 1;
            gset1.tileA.nrCols = 1;
            kextraTmp.vecLenA = 1;
    }


    if (isHoriz)
    {
        lset = gset;
        lset.subdims[0].bwidth = lset.subdims[1].bwidth =
            lset.subdims[1].y = umin(subdims[1].bwidth, subdims[1].y);
        lset.tileA.nrCols = lset.tileA.nrRows =
            lset.tileBX.nrRows = lset.subdims[1].y;

        kgenAddStmt(ctx, "// the diagonal\n");
        kgenBeginBranch(ctx, "if (k <= n)");
        kgenAddStmt(ctx, "uint k1 = k;\n");

        if (subdims[1].bwidth != subdims[1].y) {
            kgenAddStmt(ctx, "// the pred diagonal\n");
            sprintf(tmp, "for (; k < n; k += %lu)", lset.subdims[1].bwidth);
            kgenBeginBranch(ctx, tmp);

            genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

            ret = tileMulGen(ctx, &lset, &mulOpts);
            if (ret != 0) {
                return ret;
            }
            kgenEndBranch(ctx, NULL); /* k loop */
        }

        initTile(&tileb, "b", lset.subdims[1].bwidth, lset.subdims[1].bwidth,
            lset.subdims[1].bwidth, lset.tileA.dtype, PRIV_STORAGE_VARIABLE_SET,
            lset.tileA.trans, lset.tileA.packed);
        declareOneTileStorage(ctx, &tileb);

        genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                mulOpts.flags, kflags);

        priv.mulOpts = &mulOpts;
        priv.pfPriv = &pfPriv;
        priv.tilea = lset.tileA;
        priv.diag = false;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &lset;
        lset.tileA = tileb;
        mulOpts.postFetch = genPostFetchMirror;
        mulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &lset, &mulOpts);
        if (ret != 0) {
            return ret;
        }

        if (upper ^ rowMaj && tra) {
            mulOpts.flags &= ~TILEMUL_TRA;
        }
        else {
            mulOpts.flags |= TILEMUL_TRA;
        }
        gset.tileA.trans = lset.tileA.trans ^= true;
        mulOpts.postFetch = NULL;
        mulOpts.postFetchPriv = NULL;

        if (subdims[1].bwidth != subdims[1].y) {
            size_t width = umax(subdims[1].bwidth, subdims[1].y);
            kgenAddStmt(ctx, "// the post diagonal\n");
            if (tailK) {
                kgenBeginBranch(ctx, "if(k < N)");
            }
            sprintf(tmp, "for (k += %lu; k < n/%lu*%lu+%lu; k += %lu)",
                    lset.subdims[1].bwidth,
                    width, width, width,
                    lset.subdims[1].bwidth);
            kgenBeginBranch(ctx, tmp);

            genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

            ret = tileMulGen(ctx, &lset, &mulOpts);
            if (ret != 0) {
                return ret;
            }
            kgenEndBranch(ctx, NULL); /* k loop */

            if (tailK) {
                kgenEndBranch(ctx, NULL);
                kgenBeginBranch(ctx, "else");
                /* Handle tail along vector X */

                kgenAddStmt(ctx, "N += Ntail;\n");

                mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
#if 1
                sprintf(tmp, "for (k += %lu; k < actualN; k++)",
                    lset.subdims[1].bwidth);
                kgenBeginBranch(ctx, tmp);

                gset1.tileA.trans = gset.tileA.trans;

                genFetchX(ctx, &gset1.tileBX, gset1.kextra->vecLen, dtype, vnames,
                          mulOpts.flags, kflags);
                ret = tileMulGen(ctx, &gset1, &mulOpts);
                if (ret != 0) {
                    return ret;
                }
                kgenEndBranch(ctx, NULL); /* k loop for tails along vector X */
#else
                mulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_NOT_INC_K;
                genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                          mulOpts.flags, kflags);
                ret = tileMulGen(ctx, &gset, &mulOpts);
                if (ret != 0) {
                    return ret;
                }
#endif

                mulOpts.flags &= ~TILEMUL_GLOBAL_CYCLIC_A;
                kgenEndBranch(ctx, NULL);
            }
        }

        sprintf(tmp, "k = k1 + %lu;\n", bStep*subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenEndBranch(ctx, NULL);
    }
    else
    {

        kgenAddStmt(ctx, "// the diagonal\n");
        sprintf(tmp, "if (k <= (n  + (get_local_id(0)%%%lu)*%lu))",
            subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        kgenBeginBranch(ctx, tmp);

        genFetchX(ctx, &gset.tileBX, gset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

        kgenBeginBranch(ctx, NULL);

        priv.mulOpts = &mulOpts;
        priv.pfPriv = &pfPriv;
        priv.diag = true;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &gset;
        mulOpts.postFetch = genPostFetchVertDiag;
        mulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);

        if (upper ^ rowMaj && tra) {
            mulOpts.flags &= ~TILEMUL_TRA;
        }
        else {
            mulOpts.flags |= TILEMUL_TRA;
        }
        gset.tileA.trans ^= true;
        lset = gset;

        sprintf(tmp, "n += (get_local_id(0)%%%lu)*%lu;\n",
            subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenBeginBranch(ctx, NULL);

        priv.diag = false;
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);

        mulOpts.postFetch = NULL;
        mulOpts.postFetchPriv = NULL;

        sprintf(tmp, "k += %lu;\n", bStep*subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenEndBranch(ctx, NULL); /* if */
    }

    if (upper) {
        kgenAddStmt(ctx, "// k loop over row from the diagonal till the right\n");
    }
    else {
        kgenAddStmt(ctx, "// k loop over column from the diagonal till the bottom\n");
    }
    sprintf(tmp, "for (; k < N; k += %lu)", bStep*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailK) {
        /* Handle tail along vector X */
        kgenAddStmt(ctx, "N += Ntail;\n");

        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
#if 1
        sprintf(tmp, "for (; k < N; k++)");
        kgenBeginBranch(ctx, tmp);

        gset1.tileA.trans = gset.tileA.trans;

        genFetchX(ctx, &gset1.tileBX, gset1.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        ret = tileMulGen(ctx, &gset1, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL); /* k loop for tails along vector X */
#else
        mulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_NOT_INC_K;
        genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
#endif

        kgenEndBranch(ctx, NULL);

        kgenBeginBranch(ctx, "else");

        sprintf(tmp, "for (; k < N; k += %lu)", bStep*subdims[1].bwidth);
        kgenBeginBranch(ctx, tmp);

        tmulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_GLOBAL_CYCLIC_A;
        genFetchX(ctx, &tgset.tileBX, tgset.kextra->vecLen, dtype, vnames,
                tmulOpts.flags, kflags);

        priv.mulOpts = &tmulOpts;
        priv.pfPriv = &pfPriv;
        pfPriv.gset = &tgset;
        priv.diag = false;

        pfPriv.funcID = CLBLAS_SYMV;
        tmulOpts.postFetch = genPostFetchDiag;
        tmulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &tgset, &tmulOpts);
        if (ret != 0) {
            return ret;
        }

        if (isHoriz) {
            sprintf(tmp, "if (k + %lu > N) break;\n", subdims[1].bwidth);
        }
        else {
            sprintf(tmp, "if (k + %lu > N + (get_local_id(0)%%%lu)*%lu) break;\n",
                subdims[1].y, subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        }
        kgenAddStmt(ctx, tmp);

        kgenEndBranch(ctx, NULL); /* k loop */

        kgenBeginBranch(ctx, "if (k < N)");
        if (isHoriz) {
            kgenAddStmt(ctx, "k = n;\n");
        }
        else {
            sprintf(tmp, "n += (get_local_id(0)%%%lu)*%lu;\n",
                subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
            kgenAddStmt(ctx, tmp);
        }

        genFetchX(ctx, &lset.tileBX, lset.kextra->vecLen, dtype, vnames,
                tmulOpts.flags, kflags);

        priv.mulOpts = &tmulOpts;
        priv.pfPriv = &pfPriv;
        priv.diag = true;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &lset;
        tmulOpts.postFetch = genPostFetchDiag;
        tmulOpts.postFetchPriv = &priv;

        if (!isHoriz) {
            if (upper ^ rowMaj && tra) {
                tmulOpts.flags &= ~TILEMUL_TRA;
            }
            else {
                tmulOpts.flags |= TILEMUL_TRA;
            }
            kgenAddStmt(ctx, "Ktail = N - n;\n");
            priv.coord = true;
        }
        else {
            priv.coord = false;
        }
        tmulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_GLOBAL_CYCLIC_A | TILEMUL_GLOBAL_CYCLIC_K;


        ret = tileMulGen(ctx, &lset, &tmulOpts);
        if (ret != 0) {
            return ret;
        }

        kgenEndBranch(ctx, NULL);

        kgenEndBranch(ctx, NULL);
    }


    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        mulOpts.flags &= ~TILEMUL_BW_STRIDE;
    }

    kgenEndBranch(ctx,NULL);

    genStoreLocalResult(ctx, &gset.tileCY, lid);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    sprintf(tmp, "if ((%s %% %u) == 0 && coordA < actualN && k0 < N)", lid, bStep);
    kgenBeginBranch(ctx, tmp);

    genAddLocalResult(ctx, &gset.tileCY, lid, bStep, 1);

    /* write back the results */
    /* y := alpha*A*x + beta*y */
    sprintf(tmp,"(%s - startN)", vnames->coordA);
    setResultPos(ctx, kflags, tmp);

    updateResultVectorTiled(ctx, kflags, vecLen, &gset.tileCY);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);
    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);
    return (ret < 0) ? -EOVERFLOW : ret;
}
예제 #10
0
파일: gemv.c 프로젝트: AndreasMiller/clBLAS
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    size_t staggered = ((extraData_t*)&kextra->solverPriv)->staggered;
    //yes, KEXTRA_TAILS_K because it is set if N % bw != 0
    bool tailN = ((kflags & KEXTRA_TAILS_K) != 0);
    bool tailM = ((kflags & KEXTRA_TAILS_M) != 0);
    char tmp[4096];
    DataType dtype = kextra->dtype;
    bool doubleBased = isDoubleBasedType(dtype);
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    KernelVarNames *vnames = &gset.varNames;
    ssize_t ret;
    TilePostFetchPrivate pfPriv;
    unsigned int vecLen = kextra->vecLen;
    const char *outTypeName;
    const char *gid = "get_group_id(0)";
    const char *lid = "get_local_id(0)";
    const char *typeName;
    size_t wgSize;
    //unsigned int nStep = 32;
    unsigned int bStep = subdims[0].bwidth / subdims[1].bwidth; //8;
    unsigned int cLocal;
    bool isComplex = isComplexType(dtype);
    unsigned int nPlans;

    typeName = dtypeBuiltinType(dtype);
    memset(&gset, 0, sizeof(gset));
    memset(&mulOpts, 0, sizeof(mulOpts));
    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations
    kgenDeclareUptrs(ctx, doubleBased);

    // now, generate the kernel
    declareGemvKernel(ctx, dtype, pgran, kflags);
    ret = kgenBeginFuncBody(ctx);
    kgenAddStmt(ctx, "// M always denotes length of Y "
                     "and N denotes length of X in the kernel\n");
    /* 1D work space. Matrix is divided among wi, each calculates it's own
     * part of vector y */

    wgSize = (subdims[0].y / subdims[1].y) *
            (subdims[0].bwidth / subdims[1].bwidth);
    assert(pgran->wgSize[0] == wgSize);
    assert(subdims[0].x == 1);
    assert(subdims[1].x == 1);
    cLocal = wgSize/bStep;

    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.subdims[0].itemX = gset.subdims[0].x = 1;
    gset.subdims[1].itemX = gset.subdims[1].x = 1;
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;

    gset.pgran = pgran;
    gset.kextra = kextra;
    gset.flags = BGF_UPTRS;

    initDefaultTiles(&gset, CLBLAS_GEMV, 0, PRIV_STORAGE_VARIABLE_SET);
    if (isComplex) {
         gset.tileCY.vecLen = 1;
    }
    declareTileStorages(ctx, &gset);
    genZeroTile(ctx, &gset.tileCY);
    getVectorTypeName(dtype, gset.tileCY.vecLen, &outTypeName, NULL);
    nPlans = gset.tileCY.nrRows / gset.tileCY.vecLen;

    sprintf(tmp, "__local %s localRes[%u][%u];\n",
                outTypeName, pgran->wgSize[0], nPlans);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint coordA = (%s * %u + %s %% %u) * %lu;\n",
                 gid, bStep, lid, bStep, subdims[1].y);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint k0 = (%s / %u) * %lu;\n",
                 lid,  bStep, subdims[1].bwidth);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    kgenBeginBranch(ctx,"if (coordA < M && k0 < N)");

    genIncPointers(ctx, kflags);
    sprintf(tmp,
            "const GPtr Ag = {(__global %s*)A};\n"
            "const GPtr Xg = {(__global %s*)X};\n",
            typeName, typeName);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    if (tailN) {
        sprintf(tmp, "uint Ntail = N %% %lu;\n", subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenAddStmt(ctx, "N -= Ntail;\n");
        kgenAddBlankLine(ctx);
    }

    mulOpts.flags |= TILEMUL_OPTIMIZE_COORD_CALC;
    if (tailM) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
    }

    vnames->A = "Ag";
    vnames->B = "Xg";
    vnames->coordA = "coordA";
    vnames->coordB = ""; //should not be used for vector
    vnames->k = "k";
    vnames->lda = "lda";
    vnames->sizeK = "N";
    vnames->sizeM = "M";

    mulOpts.flags |= TILEMUL_NOT_FETCH_B | TILEMUL_TRB | TILEMUL_C_COLUMN_MAJOR | TILEMUL_NOT_INC_K;
    if ((kflags & KEXTRA_CONJUGATE_A) != 0) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if (isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    if ((kflags & KEXTRA_ENABLE_MAD) != 0) {
        mulOpts.core = TILEMUL_MAD;
    }
    else {
        mulOpts.core = TILEMUL_MULADD;
    }
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = pgran->wgSize[0] * subdims[1].bwidth;
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    sprintf(tmp, "uint k = k0;\nfor (; k < N; k += %lu)", cLocal*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    if (staggered) {
        vnames->k = "k1";
        sprintf(tmp, "const uint k1 = (k + get_group_id(0)*%lu)%%N;\n",staggered);
        kgenAddStmt(ctx, tmp);
    }

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    vnames->k = "k";
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailN) {
        /* Handle tail along vector X */
        kgenAddStmt(ctx, "N += Ntail;\n");
        kgenBeginBranch(ctx, "if (k < N)");

        mulOpts.flags |= TILEMUL_SKEW_B;
        genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_K|TILEMUL_WRAP_AROUND_TAIL;
        setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);
    }

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = subdims[1].bwidth;
        mulOpts.flags &= ~TILEMUL_BW_STRIDE;
    }

    kgenEndBranch(ctx,NULL);

    genStoreLocalResult(ctx, &gset.tileCY, lid);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    sprintf(tmp, "if (%s < %u && coordA < M && k0 < N)", lid, bStep);
    kgenBeginBranch(ctx, tmp);

    genAddLocalResult(ctx, &gset.tileCY, lid, cLocal, bStep);

    /* write back the results */
    /* y := alpha*A*x + beta*y */
    setResultPos(ctx, kflags, vnames->coordA);

    updateResultVectorTiled(ctx, kflags, vecLen, &gset.tileCY);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);
    return (ret < 0) ? -EOVERFLOW : ret;
}
예제 #11
0
void
genTest(
    struct KgenContext *ctx,
    BlasGenSettings *gset,
    TileMulOpts *mulOpts,
    bool separateFetch)
{
    char s[1024];
    Kstring kstr;
    char *tName, tVect[64], *ptrName;
    KernelVarNames *vnames = &gset->varNames;
    DataType dtype = gset->kextra->dtype;
    const SubproblemDim *subdims = gset->subdims;
    unsigned int vecLen = gset->kextra->vecLen;
    size_t m, n, k;
    unsigned int i, j;
    bool tra, trb, localA, localB, vecCoords;
    int ret;
    TileMulFlags flags = mulOpts->flags;
    FetchOpts fetchOpts;

    m = gset->subdims[1].y;
    n = gset->subdims[1].x;
    k = gset->subdims[1].bwidth;

    tra = ((flags & TILEMUL_TRA) != 0);
    trb = ((flags & TILEMUL_TRB) != 0);
    localA = (mulOpts->memA == CLMEM_LOCAL_MEMORY);
    localB = (mulOpts->memB == CLMEM_LOCAL_MEMORY);

    vecCoords = ((flags & TILEMUL_OPTIMIZE_VEC_COORDS) != 0);

    tVect[0] = '\0';

    if (vecCoords && vecLen != 1) {
        sprintf(tVect, "%u", vecLen);
    }

    switch (dtype) {
    case TYPE_FLOAT:
        tName = "float";
        ptrName = "f";
        break;
    case TYPE_DOUBLE:
        tName = "double";
        ptrName = "d";
        break;
    case TYPE_COMPLEX_FLOAT:
        tName = "float2";
        ptrName = "f2v";
        break;
    case TYPE_COMPLEX_DOUBLE:
        tName = "double2";
        ptrName = "d2v";
        break;
    default:
        return;
    }

    if (vecCoords) {
        //Do not use GPtrs in fetching
        vnames->A = "A";
        vnames->B = "B";
    }
    else {
        vnames->A = localA ? "LAptr" : "((GPtr)A)";
        vnames->B = localB ? "LBptr" : "((GPtr)B)";
    }
    if (!localA) {
        vnames->lda = "lda";

    }
    if (!localB) {
        vnames->ldb = "ldb";
    }
    vnames->sizeM = "M";
    vnames->sizeN = "N";
    vnames->sizeK = "K";
    vnames->skewA = "skewA";
    vnames->skewB = "skewB";
    vnames->skewK = "skewK";
    vnames->coordA = "workItemM";
    vnames->coordB = "workItemN";
    vnames->k = "k";

    kgenAddBlankLine(ctx);
    sprintf(s, "__attribute__((reqd_work_group_size(%i, %i, 1)))\n",
            ITEM_WORK_M, ITEM_WORK_N);
    kgenAddStmt(ctx, s);
    kgenAddStmt(ctx, "__kernel void\n");
    sprintf(s, "%s(\n", kernelName);
    kgenAddStmt(ctx, s);
    sprintf(s,"    %s alpha,\n", tName);
    kgenAddStmt(ctx, s);
    sprintf(s,"    __global %s%s *A,\n", tName, tVect);
    kgenAddStmt(ctx, s);
    sprintf(s,"    __global %s%s *B,\n", tName, tVect);
    kgenAddStmt(ctx, s);
    kgenAddStmt(ctx, "    uint M,\n"
                     "    uint N,\n"
                     "    uint K,\n");
    sprintf(s,
            "    __global %s *C,\n"
            "    const uint iter)\n", tName);
    kgenAddStmt(ctx, s);
    kgenBeginFuncBody(ctx);
    sprintf(s, "uint workItemM = %lu * get_global_id(0);\n"
               "uint workItemN = %lu * get_global_id(1);\n",
            m, n);
    kgenAddStmt(ctx, s);
    if ((flags & TILEMUL_SKEW_A) != 0) {
        kgenAddStmt(ctx, "uint skewA = 0u;\n");
    }
    if ((flags & TILEMUL_SKEW_B) != 0) {
        kgenAddStmt(ctx, "uint skewB = 0u;\n");
    }
    if ((flags & TILEMUL_SKEW_K) != 0) {
        kgenAddStmt(ctx, "uint skewK = 0u;\n");
    }

    if (localA) {
        sprintf(s, "__local %s LA[%lu];\n",
                tName, subdims[0].bwidth * subdims[0].y);
        kgenAddStmt(ctx, s);
    }
    else { //global A
        sprintf(s, "uint lda = %s;\n", tra ? "M" : "K");
        kgenAddStmt(ctx, s);
    }
    if (localB) {
        sprintf(s, "__local %s LB[%lu];\n",
                tName, subdims[0].bwidth * subdims[0].x);
        kgenAddStmt(ctx, s);
    }
    else { //global B
        sprintf(s, "uint ldb = %s;\n", trb ? "K" : "N");
        kgenAddStmt(ctx, s);
    }

    initDefaultTiles(gset, CLBLAS_GEMM, TILE_PACKED, PRIV_STORAGE_ARRAY);
    declareTileStorages(ctx, gset);

    if (vecCoords) {
        size_t ha, hb;
        char *str;

        ha = tra ? k : m;
        hb = trb ? n : k;

        if (ha > 1) {
            str = s;
            str += sprintf(str, "uint%lu ca = {0", ha);
            for (i = 1; i < ha; i++) {
                str += sprintf(str, ", %s * %u / %u", vnames->lda, i, vecLen);
            }
            str += sprintf(str, "};\n");
            kgenAddStmt(ctx, s);
        }
        else {
            kgenAddStmt(ctx, "uint ca = 0;\n");
        }
        vnames->vectCoordA = "ca";

        if (hb > 1) {
            str = s;
            str += sprintf(str, "uint%lu cb = {0", hb);
            for (i = 1; i < hb; i++) {
                str += sprintf(str, ", %s * %u / %u", vnames->ldb, i, vecLen);
            }
            str += sprintf(str, "};\n");
            kgenAddStmt(ctx, s);
        }
        else {
            kgenAddStmt(ctx, "uint cb = 0;\n");
        }
        vnames->vectCoordB = "cb";

//        uint4 ca = {0, vecLDA, vecLDA * 2, vecLDA * 3};
//        uint4 cb = {0, vecLDB, vecLDB * 2, vecLDB * 3};
    }

    kgenAddBlankLine(ctx);

    sprintf(s, "for (int it = 0; it < iter; it++)");
    kgenBeginBranch(ctx, s);

    if (!(localA && localB)) {
        kgenAddStmt(ctx, "uint k = 0;\n");
    }

    genZeroTile(ctx, &gset->tileCY);

    if (vecCoords) {
        char *coordsA[2] = {"workItemM", "k"};
        char *coordsB[2] = {"k", "workItemN"};
        sprintf(s, "A += %s * (lda / %u) + %s / %u;\n",
                coordsA[tra], vecLen, coordsA[1 - tra], vecLen);
        kgenAddStmt(ctx, s);
        sprintf(s, "B += %s * (ldb / %u) + %s / %u;\n",
                coordsB[trb], vecLen, coordsB[1 - trb], vecLen);
        kgenAddStmt(ctx, s);
    }

    sprintf(s, "for (int k0 = 0; k0 < K; k0 += %lu)", subdims[0].bwidth);
    kgenBeginBranch(ctx, s);

    /* Copy data to local memory. We know that the size of matrix is the same
     * that the size of one block and use that.
     */
    if (localA) {
        sprintf(s,
                "event_t evA = async_work_group_copy(LA, A, %lu, 0);\n"
                "wait_group_events(1, &evA);\n"
                "barrier(CLK_LOCAL_MEM_FENCE);\n",
                subdims[0].y * subdims[0].bwidth);
        kgenAddStmt(ctx, s);
        kgenAddStmt(ctx, "LPtr LAptr;\n");
        if (tra) {
            sprintf(s,
                    "LAptr.%s = LA + workItemM;\n", ptrName);
        }
        else {
            sprintf(s,
                    "LAptr.%s = LA + workItemM * %lu;\n",
                    ptrName, subdims[0].bwidth);
        }
        kgenAddStmt(ctx, s);
    }
    if (localB) {
        sprintf(s,
                "event_t evB = async_work_group_copy(LB, B, %lu, 0);\n"
                "wait_group_events(1, &evB);\n"
                "barrier(CLK_LOCAL_MEM_FENCE);\n",
                subdims[0].x * subdims[0].bwidth);
        kgenAddStmt(ctx, s);
        kgenAddStmt(ctx, "LPtr LBptr;\n");
        if (trb) {
            sprintf(s, "LBptr.%s = LB + workItemN * %lu;\n",
                    ptrName, subdims[0].bwidth);
        }
        else {
            sprintf(s, "LBptr.%s = LB + workItemN;\n", ptrName);
        }
        kgenAddStmt(ctx, s);
    }

    if (!separateFetch) {
        ret = tileMulGen(ctx, gset, mulOpts);
        checkRet(ret, "Multiplier");
    }
    else {
        Tile *tileA = &gset->tileA;
        Tile *tileB = &gset->tileBX;

        memset(&fetchOpts, 0, sizeof(fetchOpts));
        if (localA) {
            fetchOpts.memA = CLMEM_LOCAL_MEMORY;
        }
        if (localB) {
            fetchOpts.memB = CLMEM_LOCAL_MEMORY;
        }

        genFillTileWithNAN(ctx, tileA);
        genFillTileWithNAN(ctx, tileB);

        if (subdims[0].bwidth != subdims[1].bwidth) {
            sprintf(s, "for (int k1 = 0; k1 < %lu; k1 += %lu)",
                    subdims[0].bwidth, k);
            kgenBeginBranch(ctx, s);
        }

#if JUST_MULTIPLICATION
        for (i = 0; i < tileA->nrRows; i++) {
            for(j = 0; j < tileA->nrCols; j++) {
                sprintfTileElement(&kstr, tileA, i, j, 1);
                sprintf(s, "%s = %u;\n", kstr.buf, i * tileA->nrCols + j);
                kgenAddStmt(ctx, s);
            }
        }

        for (i = 0; i < tileB->nrRows; i++) {
            for(j = 0; j < tileB->nrCols; j++) {
                sprintfTileElement(&kstr, tileB, i, j, 1);
                sprintf(s, "%s = %u;\n", kstr.buf, i * tileB->nrCols + j);
                kgenAddStmt(ctx, s);
            }
        }
#else
        fetchOpts.mrole = MATRIX_B;
        fetchOpts.lineOffset = 0;
        fetchOpts.linesNum = (tileB->trans) ? tileB->nrCols : tileB->nrRows;
        ret = genFetchInputTile(ctx, NULL, gset, &fetchOpts);
        checkRet(ret, "Fetching tile b");

        fetchOpts.mrole = MATRIX_A;
        fetchOpts.linesNum = (tileA->trans) ? tileA->nrCols : tileA->nrRows;
        kgenAddBlankLine(ctx);
        fetchOpts.lineOffset = 0;
        ret = genFetchInputTile(ctx, NULL, gset, &fetchOpts);
        checkRet(ret, "Fetching tile a");
#endif
        ret = genMulTiles(ctx, gset, mulOpts);
        checkRet(ret, "Multiplier");
#if ! JUST_MULTIPLICATION
        sprintf(s, "k += %lu;\n", k);
        kgenAddStmt(ctx, s);
#endif
        if (subdims[0].bwidth != subdims[1].bwidth) {
            kgenEndBranch(ctx, NULL);
        }
    }
    kgenEndBranch(ctx, NULL); // K loop
    kgenEndBranch(ctx, NULL); // iterations loop

    kgenAddBlankLine(ctx);

    for (i = 0; i < m; i++) {
        for (j = 0; j < n; j++) {
            sprintfTileElement(&kstr, &gset->tileCY, i, j, 1);
                sprintf(s,
                        "((GPtr)C).%s"
                    "[(%d + workItemM) * N  + %d + workItemN] = %s;\n",
                    ptrName, i, j, kstr.buf);
                kgenAddStmt(ctx, s);
            }
                }

    kgenEndFuncBody(ctx);
}
예제 #12
0
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    char tmp[4096];
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    DataType dtype = kextra->dtype;
    bool doubleBased = isDoubleBasedType(dtype);
    size_t staggered = ((extraData_t*)&kextra->solverPriv)->staggered;
    int ret;
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    int tra = isMatrixAccessColMaj(CLBLAS_TRMM, kflags, MATRIX_A);
    int trb = isMatrixAccessColMaj(CLBLAS_TRMM, kflags, MATRIX_B);
    unsigned int l1Pans;
    TilePostFetchPrivate pfPriv[2];
    UpdateResultFlags upResFlags;
    TailStatus tailStatus;
    bool subgMode = false;
    SubgVarNames subgVNames;

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // mismatching subdims define case with subgroup decomposition
    subgMode = ( subdims[0].bwidth != subdims[1].bwidth );

    memset(&gset, 0, sizeof(gset));
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.flags = BGF_DISTINCT_VECLEN;

    gset.flags |= BGF_WHOLE_A;

    /*FIXME: This used to be a workaround for compilation issues with dtrmm on
     * cpu. Normally BGF_WHOLE_A should be enabled always. But for now,
     * there are wrong results for non-aligned cases on CPU and there is
     * no workaround yet.
    if (kflags & (KEXTRA_TAILS_M | KEXTRA_TAILS_N | KEXTRA_TAILS_K)) {
        gset.flags &= ~BGF_WHOLE_A;
    }*/
    gset.kextra = kextra;
    gset.pgran = pgran;
    //avoid [0].bw loop
    //gset.subdims[0].bwidth = gset.subdims[1].bwidth;

    memset(pfPriv, 0, sizeof(pfPriv));
    pfPriv[0].funcID = CLBLAS_TRMM;
    pfPriv[0].gset = &gset;
    if ((gset.flags & BGF_WHOLE_A) != 0) {
        pfPriv[0].wholeA = 1;
    }

    // at first, generate needed declarations
    kgenDeclareUptrs(ctx, doubleBased);

    // For inner callback, because both callbacks use own fetchNumA
    memcpy(&pfPriv[1], &pfPriv[0], sizeof(pfPriv[0]));

    // if both matrices are accessed row-major - using subgroup pattern
    if ( subgMode ) {

        declareTrxmKernel(ctx,
            dtype,
            pgran,
            kflags,
            CLBLAS_TRMM,
            "Subgroup",
            true,
            true);
        gset.flags |= BGF_UPTRS;
    }
    else {

        declareTrxmKernel(ctx,
            dtype,
            pgran,
            kflags,
            CLBLAS_TRMM,
            "Block",
            true,
            true);

    }
    kgenBeginFuncBody(ctx);

    initDefaultTiles(&gset, CLBLAS_TRMM, 0, PRIV_STORAGE_VARIABLE_SET);
    declareTileStorages(ctx, &gset);

    kgenAddStmt(ctx,
                "uint currM, currN;\n"
                "uint4 coord = 0; /* contains coordB, coordA, k */\n");

    kgenDeclareLocalID(ctx, "lid", pgran);
    kgenDeclareGroupID(ctx, "gid", pgran);

    if ( subgMode ) {

        gset.varNames.LDS = "scratch";

        // declaring variables used by subgroup mode
        subgVNames.itemId = "itemId";
        subgVNames.subgCoord = "subgCoord";

        kgenAddBlankLine( ctx );
        kgenAddBlankLine(ctx);

        kgenPrintf(ctx, "int2 %s;\n", subgVNames.itemId );
        kgenPrintf(ctx, "int2 %s;\n", subgVNames.subgCoord);

        // item ID
        kgenPrintf( ctx,
            "%s.x = get_local_id(0)%%%d;\n",
            subgVNames.itemId,
            subdims[0].bwidth/subdims[1].bwidth);

        // subgroup ID
        kgenPrintf( ctx,
            "%s.y = get_local_id(0)/%d;\n",
            subgVNames.itemId,
            subdims[0].bwidth/subdims[1].bwidth);

        // subgroup coordX
        kgenPrintf( ctx,
            "%s.x = %s.y/%d;\n",
            subgVNames.subgCoord,
            subgVNames.itemId,
            subdims[0].y/subdims[1].y );

        // subgroup coordY
        kgenPrintf( ctx,
            "%s.y = %s.y%%%d;\n",
            subgVNames.subgCoord,
            subgVNames.itemId,
            subdims[0].y/subdims[1].y );
    }

    kgenAddBlankLine(ctx);

    sprintf(tmp, "currN = gid * %lu;\n", subdims->x);
    kgenAddStmt(ctx, tmp);
    genInitCurrM(ctx, subdims, kflags);

    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        kgenAddStmt(ctx, "A += offA;\n");
    }
    genTrxmBMatrShift(ctx, kflags, true);

    if ( subgMode ) {
        kgenAddStmt(ctx,
            "GPtr Ag = {A};\n"
            "GPtr Bg = {B};\n");
    }

    l1Pans = (unsigned int)subdims[0].x / (unsigned int)subdims[1].x;

    memset(&mulOpts, 0, sizeof(mulOpts));
    mulOpts.core = ((kflags & KEXTRA_ENABLE_MAD) != 0)
            ? TILEMUL_MAD
            : TILEMUL_MULADD;
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;
    mulOpts.postFetch = NULL;
    mulOpts.postFetchPriv = &pfPriv;
    mulOpts.flags = TILEMUL_NO_FLAGS;
    mulOpts.flags |= TILEMUL_EXTERN_RDECL;

    if ( subgMode ) {

        mulOpts.flags |= TILEMUL_NOT_INC_K;
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    if (kflags & KEXTRA_TAILS_M_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
    }
    if (kflags & KEXTRA_TAILS_N_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_B;
    }
    if (kflags & KEXTRA_TAILS_K_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_K;
        mulOpts.flags |= TILEMUL_WRAP_AROUND_TAIL;
    }

    if (tra) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    if (!trb) {
        mulOpts.flags |= TILEMUL_TRB;
    }
    if (isMatrixConj(kflags, MATRIX_A)) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if (isMatrixConj(kflags, MATRIX_B)) {
        mulOpts.flags |= TILEMUL_CONJB;
    }

    initKernelVarNames(&gset.varNames);

    if ( subgMode ) {

        kgenPrintf( ctx,
            "coord.x = currN + %s.x*%d;\n",
            subgVNames.subgCoord,
            subdims[1].x );
    }
    else {

        sprintf(tmp, "coord.x = currN + lid %% %u * %lu;\n", l1Pans, subdims[1].x);
        kgenAddStmt(ctx, tmp);
    }

    // loop over M
    sprintf(tmp, "for (uint m0 = 0; m0 < M; m0 += %lu)", subdims[0].y);
    kgenBeginBranch(ctx, tmp);

    genStartPosK( ctx, subdims, kflags, subgMode );

    sprintf(tmp, "coord.z = kBegin;\n");
    kgenAddStmt(ctx, tmp);

    if ( subgMode ) {

        kgenPrintf(ctx,
            "coord.y = currM + %s.y*%d;\n",
            subgVNames.subgCoord,
            subdims[1].y);
    }
    else {

        sprintf( tmp,
            "coord.y = currM + lid / %u * %lu;\n",
            l1Pans,
            subdims[1].y );
        kgenAddStmt(ctx, tmp);
    }

    genZeroTile(ctx, &gset.tileCY);

    checkGenBeginHitMatrixBlock(ctx, kflags);
    tailStatus = checkGenAdjustTailCoords(ctx, CLBLAS_TRMM, &gset, NULL);

    // loops along 'K'
    if ( subgMode ) {
        ret = genSubgLoopsK( ctx, &gset, &mulOpts, &subgVNames, staggered);
    }
    else {
        ret = genLoopsK( ctx, &gset, &mulOpts, tmp );
    }

    if (ret != 0) {
        printf("%s", buf);
        return ret;
    }

    checkGenEndHitMatrixBlock(ctx, kflags);
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    // store results
    // for result update - x coordinate is in elements, not in vectors

    checkGenRestoreTailCoords(ctx, &gset, tailStatus);
    upResFlags = kextraToUpresFlags(CLBLAS_TRMM, kflags);
    upResFlags |= tailStatusToUpresFlags(tailStatus);
    upResFlags |= UPRES_INDEXING_WITH_CONSTANTS;
    upResFlags |= UPRES_TRIANG_WRITE_C;
    upResFlags |= UPRES_EXCEED_PROBLEM_CONDITION;

    if ( subgMode ) {

        mergeUpdateResult( ctx,
            CLBLAS_TRMM,
            &gset,
            &subgVNames,
            upResFlags,
            genResultUpdateWithFlags );
    }
    else {

        //checkGenBeginHitMatrixBlock(ctx, kflags);
        genResultUpdateWithFlags( ctx,
            CLBLAS_TRMM,
            &gset,
            upResFlags,
            NULL,
            NULL,
            NULL );
        //checkGenEndHitMatrixBlock(ctx, kflags);
    }

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "currM += %lu;\n", subdims[0].y);
    }
    else {
        sprintf(tmp, "currM -= %lu;\n", subdims[0].y);
    }
    kgenAddStmt(ctx, tmp);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}