예제 #1
0
파일: metadata.c 프로젝트: Anjali05/linux
int nfp_flower_metadata_init(struct nfp_app *app, u64 host_ctx_count,
			     unsigned int host_num_mems)
{
	struct nfp_flower_priv *priv = app->priv;
	int err, stats_size;

	hash_init(priv->mask_table);

	err = rhashtable_init(&priv->flow_table, &nfp_flower_table_params);
	if (err)
		return err;

	get_random_bytes(&priv->mask_id_seed, sizeof(priv->mask_id_seed));

	/* Init ring buffer and unallocated mask_ids. */
	priv->mask_ids.mask_id_free_list.buf =
		kmalloc_array(NFP_FLOWER_MASK_ENTRY_RS,
			      NFP_FLOWER_MASK_ELEMENT_RS, GFP_KERNEL);
	if (!priv->mask_ids.mask_id_free_list.buf)
		goto err_free_flow_table;

	priv->mask_ids.init_unallocated = NFP_FLOWER_MASK_ENTRY_RS - 1;

	/* Init timestamps for mask id*/
	priv->mask_ids.last_used =
		kmalloc_array(NFP_FLOWER_MASK_ENTRY_RS,
			      sizeof(*priv->mask_ids.last_used), GFP_KERNEL);
	if (!priv->mask_ids.last_used)
		goto err_free_mask_id;

	/* Init ring buffer and unallocated stats_ids. */
	priv->stats_ids.free_list.buf =
		vmalloc(array_size(NFP_FL_STATS_ELEM_RS,
				   priv->stats_ring_size));
	if (!priv->stats_ids.free_list.buf)
		goto err_free_last_used;

	priv->stats_ids.init_unalloc = div_u64(host_ctx_count, host_num_mems);

	stats_size = FIELD_PREP(NFP_FL_STAT_ID_STAT, host_ctx_count) |
		     FIELD_PREP(NFP_FL_STAT_ID_MU_NUM, host_num_mems - 1);
	priv->stats = kvmalloc_array(stats_size, sizeof(struct nfp_fl_stats),
				     GFP_KERNEL);
	if (!priv->stats)
		goto err_free_ring_buf;

	spin_lock_init(&priv->stats_lock);

	return 0;

err_free_ring_buf:
	vfree(priv->stats_ids.free_list.buf);
err_free_last_used:
	kfree(priv->mask_ids.last_used);
err_free_mask_id:
	kfree(priv->mask_ids.mask_id_free_list.buf);
err_free_flow_table:
	rhashtable_destroy(&priv->flow_table);
	return -ENOMEM;
}
예제 #2
0
파일: udl_dmabuf.c 프로젝트: krzk/linux
static int udl_prime_create(struct drm_device *dev,
			    size_t size,
			    struct sg_table *sg,
			    struct udl_gem_object **obj_p)
{
	struct udl_gem_object *obj;
	int npages;

	npages = size / PAGE_SIZE;

	*obj_p = NULL;
	obj = udl_gem_alloc_object(dev, npages * PAGE_SIZE);
	if (!obj)
		return -ENOMEM;

	obj->sg = sg;
	obj->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
	if (obj->pages == NULL) {
		DRM_ERROR("obj pages is NULL %d\n", npages);
		return -ENOMEM;
	}

	drm_prime_sg_to_page_addr_arrays(sg, obj->pages, NULL, npages);

	*obj_p = obj;
	return 0;
}
예제 #3
0
파일: ttm_tt.c 프로젝트: AlexShiLucky/linux
/**
 * Allocates storage for pointers to the pages that back the ttm.
 */
static int ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
{
	ttm->pages = kvmalloc_array(ttm->num_pages, sizeof(void*),
			GFP_KERNEL | __GFP_ZERO);
	if (!ttm->pages)
		return -ENOMEM;
	return 0;
}
예제 #4
0
/*
 * BLKREPORTZONE ioctl processing.
 * Called from blkdev_ioctl.
 */
int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
			      unsigned int cmd, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	struct request_queue *q;
	struct blk_zone_report rep;
	struct blk_zone *zones;
	int ret;

	if (!argp)
		return -EINVAL;

	q = bdev_get_queue(bdev);
	if (!q)
		return -ENXIO;

	if (!blk_queue_is_zoned(q))
		return -ENOTTY;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;

	if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report)))
		return -EFAULT;

	if (!rep.nr_zones)
		return -EINVAL;

	rep.nr_zones = min(blkdev_nr_zones(bdev), rep.nr_zones);

	zones = kvmalloc_array(rep.nr_zones, sizeof(struct blk_zone),
			       GFP_KERNEL | __GFP_ZERO);
	if (!zones)
		return -ENOMEM;

	ret = blkdev_report_zones(bdev, rep.sector,
				  zones, &rep.nr_zones,
				  GFP_KERNEL);
	if (ret)
		goto out;

	if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report))) {
		ret = -EFAULT;
		goto out;
	}

	if (rep.nr_zones) {
		if (copy_to_user(argp + sizeof(struct blk_zone_report), zones,
				 sizeof(struct blk_zone) * rep.nr_zones))
			ret = -EFAULT;
	}

 out:
	kvfree(zones);

	return ret;
}
예제 #5
0
파일: ttm_tt.c 프로젝트: AlexShiLucky/linux
static int ttm_sg_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
{
	ttm->dma_address = kvmalloc_array(ttm->ttm.num_pages,
					  sizeof(*ttm->dma_address),
					  GFP_KERNEL | __GFP_ZERO);
	if (!ttm->dma_address)
		return -ENOMEM;
	return 0;
}
예제 #6
0
static struct fdtable * alloc_fdtable(unsigned int nr)
{
	struct fdtable *fdt;
	void *data;

	/*
	 * Figure out how many fds we actually want to support in this fdtable.
	 * Allocation steps are keyed to the size of the fdarray, since it
	 * grows far faster than any of the other dynamic data. We try to fit
	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
	 * and growing in powers of two from there on.
	 */
	nr /= (1024 / sizeof(struct file *));
	nr = roundup_pow_of_two(nr + 1);
	nr *= (1024 / sizeof(struct file *));
	/*
	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
	 * had been set lower between the check in expand_files() and here.  Deal
	 * with that in caller, it's cheaper that way.
	 *
	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
	 * bitmaps handling below becomes unpleasant, to put it mildly...
	 */
	if (unlikely(nr > sysctl_nr_open))
		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;

	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
	if (!fdt)
		goto out;
	fdt->max_fds = nr;
	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
	if (!data)
		goto out_fdt;
	fdt->fd = data;

	data = kvmalloc(max_t(size_t,
				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
				 GFP_KERNEL_ACCOUNT);
	if (!data)
		goto out_arr;
	fdt->open_fds = data;
	data += nr / BITS_PER_BYTE;
	fdt->close_on_exec = data;
	data += nr / BITS_PER_BYTE;
	fdt->full_fds_bits = data;

	return fdt;

out_arr:
	kvfree(fdt->fd);
out_fdt:
	kfree(fdt);
out:
	return NULL;
}
예제 #7
0
static struct drm_gem_object *vgem_prime_import_sg_table(struct drm_device *dev,
			struct dma_buf_attachment *attach, struct sg_table *sg)
{
	struct drm_vgem_gem_object *obj;
	int npages;

	obj = __vgem_gem_create(dev, attach->dmabuf->size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	npages = PAGE_ALIGN(attach->dmabuf->size) / PAGE_SIZE;

	obj->table = sg;
	obj->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
	if (!obj->pages) {
		__vgem_gem_destroy(obj);
		return ERR_PTR(-ENOMEM);
	}

	obj->pages_pin_count++; /* perma-pinned */
	drm_prime_sg_to_page_addr_arrays(obj->table, obj->pages, NULL,
					npages);
	return &obj->base;
}
예제 #8
0
static int choke_change(struct Qdisc *sch, struct nlattr *opt,
			struct netlink_ext_ack *extack)
{
	struct choke_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_CHOKE_MAX + 1];
	const struct tc_red_qopt *ctl;
	int err;
	struct sk_buff **old = NULL;
	unsigned int mask;
	u32 max_P;

	if (opt == NULL)
		return -EINVAL;

	err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy, NULL);
	if (err < 0)
		return err;

	if (tb[TCA_CHOKE_PARMS] == NULL ||
	    tb[TCA_CHOKE_STAB] == NULL)
		return -EINVAL;

	max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;

	ctl = nla_data(tb[TCA_CHOKE_PARMS]);

	if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog))
		return -EINVAL;

	if (ctl->limit > CHOKE_MAX_QUEUE)
		return -EINVAL;

	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
	if (mask != q->tab_mask) {
		struct sk_buff **ntab;

		ntab = kvmalloc_array((mask + 1), sizeof(struct sk_buff *), GFP_KERNEL | __GFP_ZERO);
		if (!ntab)
			return -ENOMEM;

		sch_tree_lock(sch);
		old = q->tab;
		if (old) {
			unsigned int oqlen = sch->q.qlen, tail = 0;
			unsigned dropped = 0;

			while (q->head != q->tail) {
				struct sk_buff *skb = q->tab[q->head];

				q->head = (q->head + 1) & q->tab_mask;
				if (!skb)
					continue;
				if (tail < mask) {
					ntab[tail++] = skb;
					continue;
				}
				dropped += qdisc_pkt_len(skb);
				qdisc_qstats_backlog_dec(sch, skb);
				--sch->q.qlen;
				rtnl_qdisc_drop(skb, sch);
			}
			qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped);
			q->head = 0;
			q->tail = tail;
		}

		q->tab_mask = mask;
		q->tab = ntab;
	} else
		sch_tree_lock(sch);

	q->flags = ctl->flags;
	q->limit = ctl->limit;

	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
		      ctl->Plog, ctl->Scell_log,
		      nla_data(tb[TCA_CHOKE_STAB]),
		      max_P);
	red_set_vars(&q->vars);

	if (q->head == q->tail)
		red_end_of_idle_period(&q->vars);

	sch_tree_unlock(sch);
	choke_free(old);
	return 0;
}
예제 #9
0
int amdgpu_bo_list_ioctl(struct drm_device *dev, void *data,
				struct drm_file *filp)
{
	const uint32_t info_size = sizeof(struct drm_amdgpu_bo_list_entry);

	struct amdgpu_device *adev = dev->dev_private;
	struct amdgpu_fpriv *fpriv = filp->driver_priv;
	union drm_amdgpu_bo_list *args = data;
	uint32_t handle = args->in.list_handle;
	const void __user *uptr = u64_to_user_ptr(args->in.bo_info_ptr);

	struct drm_amdgpu_bo_list_entry *info;
	struct amdgpu_bo_list *list;

	int r;

	info = kvmalloc_array(args->in.bo_number,
			     sizeof(struct drm_amdgpu_bo_list_entry), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	/* copy the handle array from userspace to a kernel buffer */
	r = -EFAULT;
	if (likely(info_size == args->in.bo_info_size)) {
		unsigned long bytes = args->in.bo_number *
			args->in.bo_info_size;

		if (copy_from_user(info, uptr, bytes))
			goto error_free;

	} else {
		unsigned long bytes = min(args->in.bo_info_size, info_size);
		unsigned i;

		memset(info, 0, args->in.bo_number * info_size);
		for (i = 0; i < args->in.bo_number; ++i) {
			if (copy_from_user(&info[i], uptr, bytes))
				goto error_free;

			uptr += args->in.bo_info_size;
		}
	}

	switch (args->in.operation) {
	case AMDGPU_BO_LIST_OP_CREATE:
		r = amdgpu_bo_list_create(adev, filp, info, args->in.bo_number,
					  &handle);
		if (r)
			goto error_free;
		break;

	case AMDGPU_BO_LIST_OP_DESTROY:
		amdgpu_bo_list_destroy(fpriv, handle);
		handle = 0;
		break;

	case AMDGPU_BO_LIST_OP_UPDATE:
		r = -ENOENT;
		list = amdgpu_bo_list_get(fpriv, handle);
		if (!list)
			goto error_free;

		r = amdgpu_bo_list_set(adev, filp, list, info,
					      args->in.bo_number);
		amdgpu_bo_list_put(list);
		if (r)
			goto error_free;

		break;

	default:
		r = -EINVAL;
		goto error_free;
	}

	memset(args, 0, sizeof(*args));
	args->out.list_handle = handle;
	kvfree(info);

	return 0;

error_free:
	kvfree(info);
	return r;
}
예제 #10
0
static int amdgpu_bo_list_set(struct amdgpu_device *adev,
				     struct drm_file *filp,
				     struct amdgpu_bo_list *list,
				     struct drm_amdgpu_bo_list_entry *info,
				     unsigned num_entries)
{
	struct amdgpu_bo_list_entry *array;
	struct amdgpu_bo *gds_obj = adev->gds.gds_gfx_bo;
	struct amdgpu_bo *gws_obj = adev->gds.gws_gfx_bo;
	struct amdgpu_bo *oa_obj = adev->gds.oa_gfx_bo;

	unsigned last_entry = 0, first_userptr = num_entries;
	unsigned i;
	int r;
	unsigned long total_size = 0;

	array = kvmalloc_array(num_entries, sizeof(struct amdgpu_bo_list_entry), GFP_KERNEL);
	if (!array)
		return -ENOMEM;
	memset(array, 0, num_entries * sizeof(struct amdgpu_bo_list_entry));

	for (i = 0; i < num_entries; ++i) {
		struct amdgpu_bo_list_entry *entry;
		struct drm_gem_object *gobj;
		struct amdgpu_bo *bo;
		struct mm_struct *usermm;

		gobj = drm_gem_object_lookup(filp, info[i].bo_handle);
		if (!gobj) {
			r = -ENOENT;
			goto error_free;
		}

		bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
		drm_gem_object_put_unlocked(gobj);

		usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
		if (usermm) {
			if (usermm != current->mm) {
				amdgpu_bo_unref(&bo);
				r = -EPERM;
				goto error_free;
			}
			entry = &array[--first_userptr];
		} else {
			entry = &array[last_entry++];
		}

		entry->robj = bo;
		entry->priority = min(info[i].bo_priority,
				      AMDGPU_BO_LIST_MAX_PRIORITY);
		entry->tv.bo = &entry->robj->tbo;
		entry->tv.shared = !entry->robj->prime_shared_count;

		if (entry->robj->preferred_domains == AMDGPU_GEM_DOMAIN_GDS)
			gds_obj = entry->robj;
		if (entry->robj->preferred_domains == AMDGPU_GEM_DOMAIN_GWS)
			gws_obj = entry->robj;
		if (entry->robj->preferred_domains == AMDGPU_GEM_DOMAIN_OA)
			oa_obj = entry->robj;

		total_size += amdgpu_bo_size(entry->robj);
		trace_amdgpu_bo_list_set(list, entry->robj);
	}

	for (i = 0; i < list->num_entries; ++i)
		amdgpu_bo_unref(&list->array[i].robj);

	kvfree(list->array);

	list->gds_obj = gds_obj;
	list->gws_obj = gws_obj;
	list->oa_obj = oa_obj;
	list->first_userptr = first_userptr;
	list->array = array;
	list->num_entries = num_entries;

	trace_amdgpu_cs_bo_status(list->num_entries, total_size);
	return 0;

error_free:
	while (i--)
		amdgpu_bo_unref(&array[i].robj);
	kvfree(array);
	return r;
}
예제 #11
0
static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct mm_struct *mm = obj->userptr.mm->mm;
	struct page **pvec;
	struct sg_table *pages;
	bool active;
	int pinned;

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */

	if (obj->userptr.work) {
		/* active flag should still be held for the pending work */
		if (IS_ERR(obj->userptr.work))
			return PTR_ERR(obj->userptr.work);
		else
			return -EAGAIN;
	}

	pvec = NULL;
	pinned = 0;

	if (mm == current->mm) {
		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
				      GFP_KERNEL |
				      __GFP_NORETRY |
				      __GFP_NOWARN);
		if (pvec) /* defer to worker if malloc fails */
			pinned = __get_user_pages_fast(obj->userptr.ptr,
						       num_pages,
						       !i915_gem_object_is_readonly(obj),
						       pvec);
	}

	active = false;
	if (pinned < 0) {
		pages = ERR_PTR(pinned);
		pinned = 0;
	} else if (pinned < num_pages) {
		pages = __i915_gem_userptr_get_pages_schedule(obj);
		active = pages == ERR_PTR(-EAGAIN);
	} else {
		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
		active = !IS_ERR(pages);
	}
	if (active)
		__i915_gem_userptr_set_active(obj, true);

	if (IS_ERR(pages))
		release_pages(pvec, pinned);
	kvfree(pvec);

	return PTR_ERR_OR_ZERO(pages);
}
예제 #12
0
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	const int npages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
	if (pvec != NULL) {
		struct mm_struct *mm = obj->userptr.mm->mm;
		unsigned int flags = 0;

		if (!i915_gem_object_is_readonly(obj))
			flags |= FOLL_WRITE;

		ret = -EFAULT;
		if (mmget_not_zero(mm)) {
			down_read(&mm->mmap_sem);
			while (pinned < npages) {
				ret = get_user_pages_remote
					(work->task, mm,
					 obj->userptr.ptr + pinned * PAGE_SIZE,
					 npages - pinned,
					 flags,
					 pvec + pinned, NULL, NULL);
				if (ret < 0)
					break;

				pinned += ret;
			}
			up_read(&mm->mmap_sem);
			mmput(mm);
		}
	}

	mutex_lock(&obj->mm.lock);
	if (obj->userptr.work == &work->work) {
		struct sg_table *pages = ERR_PTR(ret);

		if (pinned == npages) {
			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
							       npages);
			if (!IS_ERR(pages)) {
				pinned = 0;
				pages = NULL;
			}
		}

		obj->userptr.work = ERR_CAST(pages);
		if (IS_ERR(pages))
			__i915_gem_userptr_set_active(obj, false);
	}
	mutex_unlock(&obj->mm.lock);

	release_pages(pvec, pinned);
	kvfree(pvec);

	i915_gem_object_put(obj);
	put_task_struct(work->task);
	kfree(work);
}
예제 #13
0
static int igt_wakeup(void *arg)
{
	I915_RND_STATE(prng);
	struct intel_engine_cs *engine = arg;
	struct igt_wakeup *waiters;
	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
	const int count = 4096;
	const u32 max_seqno = count / 4;
	atomic_t ready, set, done;
	int err = -ENOMEM;
	int n, step;

	mock_engine_reset(engine);

	waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
	if (!waiters)
		goto out_engines;

	/* Create a large number of threads, each waiting on a random seqno.
	 * Multiple waiters will be waiting for the same seqno.
	 */
	atomic_set(&ready, count);
	for (n = 0; n < count; n++) {
		waiters[n].wq = &wq;
		waiters[n].ready = &ready;
		waiters[n].set = &set;
		waiters[n].done = &done;
		waiters[n].engine = engine;
		waiters[n].flags = BIT(IDLE);

		waiters[n].tsk = kthread_run(igt_wakeup_thread, &waiters[n],
					     "i915/igt:%d", n);
		if (IS_ERR(waiters[n].tsk))
			goto out_waiters;

		get_task_struct(waiters[n].tsk);
	}

	for (step = 1; step <= max_seqno; step <<= 1) {
		u32 seqno;

		/* The waiter threads start paused as we assign them a random
		 * seqno and reset the engine. Once the engine is reset,
		 * we signal that the threads may begin their wait upon their
		 * seqno.
		 */
		for (n = 0; n < count; n++) {
			GEM_BUG_ON(!test_bit(IDLE, &waiters[n].flags));
			waiters[n].seqno =
				1 + prandom_u32_state(&prng) % max_seqno;
		}
		mock_seqno_advance(engine, 0);
		igt_wake_all_sync(&ready, &set, &done, &wq, count);

		/* Simulate the GPU doing chunks of work, with one or more
		 * seqno appearing to finish at the same time. A random number
		 * of threads will be waiting upon the update and hopefully be
		 * woken.
		 */
		for (seqno = 1; seqno <= max_seqno + step; seqno += step) {
			usleep_range(50, 500);
			mock_seqno_advance(engine, seqno);
		}
		GEM_BUG_ON(intel_engine_get_seqno(engine) < 1 + max_seqno);

		/* With the seqno now beyond any of the waiting threads, they
		 * should all be woken, see that they are complete and signal
		 * that they are ready for the next test. We wait until all
		 * threads are complete and waiting for us (i.e. not a seqno).
		 */
		if (!wait_var_event_timeout(&done,
					    !atomic_read(&done), 10 * HZ)) {
			pr_err("Timed out waiting for %d remaining waiters\n",
			       atomic_read(&done));
			err = -ETIMEDOUT;
			break;
		}

		err = check_rbtree_empty(engine);
		if (err)
			break;
	}

out_waiters:
	for (n = 0; n < count; n++) {
		if (IS_ERR(waiters[n].tsk))
			break;

		set_bit(STOP, &waiters[n].flags);
	}
	mock_seqno_advance(engine, INT_MAX); /* wakeup any broken waiters */
	igt_wake_all_sync(&ready, &set, &done, &wq, n);

	for (n = 0; n < count; n++) {
		if (IS_ERR(waiters[n].tsk))
			break;

		kthread_stop(waiters[n].tsk);
		put_task_struct(waiters[n].tsk);
	}

	kvfree(waiters);
out_engines:
	mock_engine_flush(engine);
	return err;
}
예제 #14
0
static int igt_insert_complete(void *arg)
{
	const u32 seqno_bias = 0x1000;
	struct intel_engine_cs *engine = arg;
	struct intel_wait *waiters;
	const int count = 4096;
	unsigned long *bitmap;
	int err = -ENOMEM;
	int n, m;

	mock_engine_reset(engine);

	waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
	if (!waiters)
		goto out_engines;

	bitmap = kcalloc(DIV_ROUND_UP(count, BITS_PER_LONG), sizeof(*bitmap),
			 GFP_KERNEL);
	if (!bitmap)
		goto out_waiters;

	for (n = 0; n < count; n++) {
		intel_wait_init_for_seqno(&waiters[n], n + seqno_bias);
		intel_engine_add_wait(engine, &waiters[n]);
		__set_bit(n, bitmap);
	}
	err = check_rbtree(engine, bitmap, waiters, count);
	if (err)
		goto out_bitmap;

	/* On each step, we advance the seqno so that several waiters are then
	 * complete (we increase the seqno by increasingly larger values to
	 * retire more and more waiters at once). All retired waiters should
	 * be woken and removed from the rbtree, and so that we check.
	 */
	for (n = 0; n < count; n = m) {
		int seqno = 2 * n;

		GEM_BUG_ON(find_first_bit(bitmap, count) != n);

		if (intel_wait_complete(&waiters[n])) {
			pr_err("waiter[%d, seqno=%d] completed too early\n",
			       n, waiters[n].seqno);
			err = -EINVAL;
			goto out_bitmap;
		}

		/* complete the following waiters */
		mock_seqno_advance(engine, seqno + seqno_bias);
		for (m = n; m <= seqno; m++) {
			if (m == count)
				break;

			GEM_BUG_ON(!test_bit(m, bitmap));
			__clear_bit(m, bitmap);
		}

		intel_engine_remove_wait(engine, &waiters[n]);
		RB_CLEAR_NODE(&waiters[n].node);

		err = check_rbtree(engine, bitmap, waiters, count);
		if (err) {
			pr_err("rbtree corrupt after seqno advance to %d\n",
			       seqno + seqno_bias);
			goto out_bitmap;
		}

		err = check_completion(engine, bitmap, waiters, count);
		if (err) {
			pr_err("completions after seqno advance to %d failed\n",
			       seqno + seqno_bias);
			goto out_bitmap;
		}
	}

	err = check_rbtree_empty(engine);
out_bitmap:
	kfree(bitmap);
out_waiters:
	kvfree(waiters);
out_engines:
	mock_engine_flush(engine);
	return err;
}
예제 #15
0
static int igt_random_insert_remove(void *arg)
{
	const u32 seqno_bias = 0x1000;
	I915_RND_STATE(prng);
	struct intel_engine_cs *engine = arg;
	struct intel_wait *waiters;
	const int count = 4096;
	unsigned int *order;
	unsigned long *bitmap;
	int err = -ENOMEM;
	int n;

	mock_engine_reset(engine);

	waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
	if (!waiters)
		goto out_engines;

	bitmap = kcalloc(DIV_ROUND_UP(count, BITS_PER_LONG), sizeof(*bitmap),
			 GFP_KERNEL);
	if (!bitmap)
		goto out_waiters;

	order = i915_random_order(count, &prng);
	if (!order)
		goto out_bitmap;

	for (n = 0; n < count; n++)
		intel_wait_init_for_seqno(&waiters[n], seqno_bias + n);

	err = check_rbtree(engine, bitmap, waiters, count);
	if (err)
		goto out_order;

	/* Add and remove waiters into the rbtree in random order. At each
	 * step, we verify that the rbtree is correctly ordered.
	 */
	for (n = 0; n < count; n++) {
		int i = order[n];

		intel_engine_add_wait(engine, &waiters[i]);
		__set_bit(i, bitmap);

		err = check_rbtree(engine, bitmap, waiters, count);
		if (err)
			goto out_order;
	}

	i915_random_reorder(order, count, &prng);
	for (n = 0; n < count; n++) {
		int i = order[n];

		intel_engine_remove_wait(engine, &waiters[i]);
		__clear_bit(i, bitmap);

		err = check_rbtree(engine, bitmap, waiters, count);
		if (err)
			goto out_order;
	}

	err = check_rbtree_empty(engine);
out_order:
	kfree(order);
out_bitmap:
	kfree(bitmap);
out_waiters:
	kvfree(waiters);
out_engines:
	mock_engine_flush(engine);
	return err;
}
예제 #16
0
int etnaviv_ioctl_gem_submit(struct drm_device *dev, void *data,
		struct drm_file *file)
{
	struct etnaviv_drm_private *priv = dev->dev_private;
	struct drm_etnaviv_gem_submit *args = data;
	struct drm_etnaviv_gem_submit_reloc *relocs;
	struct drm_etnaviv_gem_submit_pmr *pmrs;
	struct drm_etnaviv_gem_submit_bo *bos;
	struct etnaviv_gem_submit *submit;
	struct etnaviv_gpu *gpu;
	struct sync_file *sync_file = NULL;
	struct ww_acquire_ctx ticket;
	int out_fence_fd = -1;
	void *stream;
	int ret;

	if (args->pipe >= ETNA_MAX_PIPES)
		return -EINVAL;

	gpu = priv->gpu[args->pipe];
	if (!gpu)
		return -ENXIO;

	if (args->stream_size % 4) {
		DRM_ERROR("non-aligned cmdstream buffer size: %u\n",
			  args->stream_size);
		return -EINVAL;
	}

	if (args->exec_state != ETNA_PIPE_3D &&
	    args->exec_state != ETNA_PIPE_2D &&
	    args->exec_state != ETNA_PIPE_VG) {
		DRM_ERROR("invalid exec_state: 0x%x\n", args->exec_state);
		return -EINVAL;
	}

	if (args->flags & ~ETNA_SUBMIT_FLAGS) {
		DRM_ERROR("invalid flags: 0x%x\n", args->flags);
		return -EINVAL;
	}

	/*
	 * Copy the command submission and bo array to kernel space in
	 * one go, and do this outside of any locks.
	 */
	bos = kvmalloc_array(args->nr_bos, sizeof(*bos), GFP_KERNEL);
	relocs = kvmalloc_array(args->nr_relocs, sizeof(*relocs), GFP_KERNEL);
	pmrs = kvmalloc_array(args->nr_pmrs, sizeof(*pmrs), GFP_KERNEL);
	stream = kvmalloc_array(1, args->stream_size, GFP_KERNEL);
	if (!bos || !relocs || !pmrs || !stream) {
		ret = -ENOMEM;
		goto err_submit_cmds;
	}

	ret = copy_from_user(bos, u64_to_user_ptr(args->bos),
			     args->nr_bos * sizeof(*bos));
	if (ret) {
		ret = -EFAULT;
		goto err_submit_cmds;
	}

	ret = copy_from_user(relocs, u64_to_user_ptr(args->relocs),
			     args->nr_relocs * sizeof(*relocs));
	if (ret) {
		ret = -EFAULT;
		goto err_submit_cmds;
	}

	ret = copy_from_user(pmrs, u64_to_user_ptr(args->pmrs),
			     args->nr_pmrs * sizeof(*pmrs));
	if (ret) {
		ret = -EFAULT;
		goto err_submit_cmds;
	}

	ret = copy_from_user(stream, u64_to_user_ptr(args->stream),
			     args->stream_size);
	if (ret) {
		ret = -EFAULT;
		goto err_submit_cmds;
	}

	if (args->flags & ETNA_SUBMIT_FENCE_FD_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
			ret = out_fence_fd;
			goto err_submit_cmds;
		}
	}

	ww_acquire_init(&ticket, &reservation_ww_class);

	submit = submit_create(dev, gpu, args->nr_bos, args->nr_pmrs);
	if (!submit) {
		ret = -ENOMEM;
		goto err_submit_ww_acquire;
	}

	ret = etnaviv_cmdbuf_init(gpu->cmdbuf_suballoc, &submit->cmdbuf,
				  ALIGN(args->stream_size, 8) + 8);
	if (ret)
		goto err_submit_objects;

	submit->cmdbuf.ctx = file->driver_priv;
	submit->exec_state = args->exec_state;
	submit->flags = args->flags;

	ret = submit_lookup_objects(submit, file, bos, args->nr_bos);
	if (ret)
		goto err_submit_objects;

	ret = submit_lock_objects(submit, &ticket);
	if (ret)
		goto err_submit_objects;

	if (!etnaviv_cmd_validate_one(gpu, stream, args->stream_size / 4,
				      relocs, args->nr_relocs)) {
		ret = -EINVAL;
		goto err_submit_objects;
	}

	if (args->flags & ETNA_SUBMIT_FENCE_FD_IN) {
		submit->in_fence = sync_file_get_fence(args->fence_fd);
		if (!submit->in_fence) {
			ret = -EINVAL;
			goto err_submit_objects;
		}
	}

	ret = submit_fence_sync(submit);
	if (ret)
		goto err_submit_objects;

	ret = submit_pin_objects(submit);
	if (ret)
		goto err_submit_objects;

	ret = submit_reloc(submit, stream, args->stream_size / 4,
			   relocs, args->nr_relocs);
	if (ret)
		goto err_submit_objects;

	ret = submit_perfmon_validate(submit, args->exec_state, pmrs);
	if (ret)
		goto err_submit_objects;

	memcpy(submit->cmdbuf.vaddr, stream, args->stream_size);
	submit->cmdbuf.user_size = ALIGN(args->stream_size, 8);

	ret = etnaviv_gpu_submit(gpu, submit);
	if (ret)
		goto err_submit_objects;

	submit_attach_object_fences(submit);

	if (args->flags & ETNA_SUBMIT_FENCE_FD_OUT) {
		/*
		 * This can be improved: ideally we want to allocate the sync
		 * file before kicking off the GPU job and just attach the
		 * fence to the sync file here, eliminating the ENOMEM
		 * possibility at this stage.
		 */
		sync_file = sync_file_create(submit->out_fence);
		if (!sync_file) {
			ret = -ENOMEM;
			goto err_submit_objects;
		}
		fd_install(out_fence_fd, sync_file->file);
	}

	args->fence_fd = out_fence_fd;
	args->fence = submit->out_fence->seqno;

err_submit_objects:
	etnaviv_submit_put(submit);

err_submit_ww_acquire:
	ww_acquire_fini(&ticket);

err_submit_cmds:
	if (ret && (out_fence_fd >= 0))
		put_unused_fd(out_fence_fd);
	if (stream)
		kvfree(stream);
	if (bos)
		kvfree(bos);
	if (relocs)
		kvfree(relocs);
	if (pmrs)
		kvfree(pmrs);

	return ret;
}