extern "C" magma_err_t magma_ssytrd(char uplo, magma_int_t n, float *a, magma_int_t lda, float *d, float *e, float *tau, float *work, magma_int_t lwork, magma_int_t *info, magma_queue_t queue) { /* -- clMAGMA (version 1.0.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver April 2012 Purpose ======= SSYTRD reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T. Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = 'U', the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). D (output) REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). E (output) REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. TAU (output) REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = 'U': if UPLO = 'L': ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). ===================================================================== */ char uplo_[2] = {uplo, 0}; magma_int_t ldda = lda; magma_int_t nb = magma_get_ssytrd_nb(n); float c_neg_one = MAGMA_S_NEG_ONE; float c_one = MAGMA_S_ONE; float d_one = MAGMA_D_ONE; magma_int_t kk, nx; magma_int_t i, j, i_n; magma_int_t iinfo; magma_int_t ldwork, lddwork, lwkopt; magma_int_t lquery; *info = 0; int upper = lapackf77_lsame(uplo_, "U"); lquery = lwork == -1; if (! upper && ! lapackf77_lsame(uplo_, "L")) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } else if (lwork < nb*n && ! lquery) { *info = -9; } if (*info == 0) { /* Determine the block size. */ ldwork = lddwork = n; lwkopt = n * nb; // ACD // MAGMA_S_SET2REAL( work[0], lwkopt ); MAGMA_S_SET2REAL( work[0], (float) lwkopt ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } magmaFloat_ptr da; size_t da_offset = 0; if (MAGMA_SUCCESS != magma_malloc( &da, (n*ldda + 2*n*nb )*sizeof(float))) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magmaFloat_ptr dwork = da; size_t dwork_offset = da_offset + (n)*ldda; if (n < 2048) nx = n; else nx = 512; if (upper) { /* Copy the matrix to the GPU */ magma_ssetmatrix( n, n, A(0, 0), 0, lda, dA(0, 0), ldda, queue ); /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ kk = n - (n - nx + nb - 1) / nb * nb; for (i = n - nb; i >= kk; i -= nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel (no need for the 1st iteration) */ if (i!=n-nb) magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), 0, lda, queue ); magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau, work, ldwork, dA(0, 0), ldda, dwork, dwork_offset, lddwork, queue); /* Update the unreduced submatrix A(0:i-2,0:i-2), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( i + nb, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue ); magma_ssyr2k(magma_uplo_const(uplo), MagmaNoTrans, i, nb, c_neg_one, dA(0, i), ldda, dwork, dwork_offset, lddwork, d_one, dA(0, 0), ldda, queue); /* Copy superdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { MAGMA_S_SET2REAL( *A(j-1, j), e[j - 1] ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), 0, lda, queue ); /* Use unblocked code to reduce the last or only block */ lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo); } else { /* Copy the matrix to the GPU */ if (1<=n-nx) magma_ssetmatrix( n, n, A(0,0), 0, lda, dA(0,0), ldda, queue ); #ifdef FAST_SYMV // TODO this leaks memory from da, above magmaFloat_ptr dwork2; if (MAGMA_SUCCESS != magma_malloc( &dwork2, (n*n)*sizeof(float) )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } size_t dwork2_offset = 0; #endif /* Reduce the lower triangle of A */ for (i = 0; i < n-nx; i += nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel (no need for the 1st iteration) */ if (i!=0) magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), 0, lda, queue ); #ifdef FAST_SYMV // unported magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i], work, ldwork, dA(i, i), ldda, dwork, lddwork, dwork2, n*n); #else magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i], work, ldwork, dA(i, i), ldda, dwork, dwork_offset, lddwork, queue); #endif /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( n-i, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue ); magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, dA(i+nb, i), ldda, dwork, (dwork_offset+nb), lddwork, d_one, dA(i+nb, i+nb), ldda, queue); /* Copy subdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { MAGMA_S_SET2REAL( *A(j+1, j), e[j] ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } #ifdef FAST_SYMV magma_free( dwork2 ); #endif /* Use unblocked code to reduce the last or only block */ if (1<=n-nx) magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), 0, lda, queue ); i_n = n-i; lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i], &tau[i], work, &lwork, &iinfo); } magma_free( da ); // ACD // MAGMA_S_SET2REAL( work[0], lwkopt ); MAGMA_S_SET2REAL( work[0], (float) lwkopt ); return *info; } /* magma_ssytrd */
/** Purpose ------- SSYTRD reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. Arguments --------- @param[in] num_gpus INTEGER The number of GPUs. num_gpus > 0. @param[in] num_streams INTEGER The number of GPU streams used for update. 10 >= num_streams > 0. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] d REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). @param[out] e REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower. @param[out] tau REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_ssyev_comp ********************************************************************/ extern "C" magma_int_t magma_ssytrd_mgpu( magma_int_t num_gpus, magma_int_t num_streams, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *d, float *e, float *tau, float *work, magma_int_t lwork, magma_int_t *info) { #define A(i, j) (A + (j)*lda + (i)) #define dA(id, i, j) (dA[(id)] + (j)*ldda + (i)) #define dW(id, i, j) (dwork[(id)] + (j)*ldda + (i)) const char* uplo_ = lapack_uplo_const( uplo ); magma_int_t ln, ldda; magma_int_t nb = magma_get_ssytrd_nb(n), ib; float c_neg_one = MAGMA_S_NEG_ONE; float c_one = MAGMA_S_ONE; float d_one = MAGMA_D_ONE; //float mv_time = 0.0; #ifdef PROFILE_SY2RK float up_time = 0.0; #endif magma_int_t kk, nx; magma_int_t i = 0, ii, iii, j, did, i_n; magma_int_t iinfo; magma_int_t ldwork, lddwork, lwkopt, ldwork2; magma_int_t lquery; magma_queue_t stream[MagmaMaxGPUs][10]; float *dx[MagmaMaxGPUs], *dy[MagmaMaxGPUs], *hwork; float *dwork2[MagmaMaxGPUs]; *info = 0; int upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } else if (lwork < nb*n && ! lquery) { *info = -9; } else if ( num_streams > 2 ) { *info = 2; // TODO fix } /* Determine the block size. */ ldwork = lddwork = n; lwkopt = n * nb; if (*info == 0) { work[0] = MAGMA_S_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); float *dA[MagmaMaxGPUs]; float *dwork[MagmaMaxGPUs]; float times[11]; for( did=0; did < 11; did++ ) times[did] = 0; //#define PROFILE_SY2RK #ifdef PROFILE_SY2RK magma_event_t start, stop; float etime; magma_setdevice(0); magma_event_create( &start ); magma_event_create( &stop ); #endif ldda = lda; ln = ((nb*(1+n/(nb*num_gpus))+31)/32)*32; ldwork2 = (1+ n / nb + (n % nb != 0)) * ldda; for( did=0; did < num_gpus; did++ ) { magma_setdevice(did); // TODO fix memory leak if ( MAGMA_SUCCESS != magma_smalloc(&dA[did], ln*ldda+3*lddwork*nb) || MAGMA_SUCCESS != magma_smalloc(&dx[did], num_streams*n) || MAGMA_SUCCESS != magma_smalloc(&dy[did], num_streams*n) || MAGMA_SUCCESS != magma_smalloc(&dwork2[did], ldwork2 ) ) { for( i=0; i < did; i++ ) { magma_setdevice(i); magma_free(dA[i]); magma_free(dx[i]); magma_free(dy[i]); } *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dwork[did] = dA[did] + ln*ldda; for( kk=0; kk < num_streams; kk++ ) magma_queue_create(&stream[did][kk]); } magma_setdevice(0); // TODO fix memory leak dwork2 if ( MAGMA_SUCCESS != magma_smalloc_pinned( &hwork, num_streams*num_gpus*n ) ) { for( i=0; i < num_gpus; i++ ) { magma_setdevice(i); magma_free(dA[i]); magma_free(dx[i]); magma_free(dy[i]); } *info = MAGMA_ERR_HOST_ALLOC; return *info; } if (n < 2048) nx = n; else nx = 512; if (upper) { /* Copy the matrix to the GPU */ if (1 <= n-nx) { magma_shtodhe(num_gpus, uplo, n, nb, A, lda, dA, ldda, stream, &iinfo ); } /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ for (i = nb*((n-1)/nb); i >= nx; i -= nb) { ib = min(nb, n-i); ii = nb*(i/(nb*num_gpus)); did = (i/nb)%num_gpus; /* wait for the next panel */ if (i != nb*((n-1)/nb)) { magma_setdevice(did); magma_queue_sync(stream[did][0]); } magma_slatrd_mgpu(num_gpus, uplo, n, i+ib, ib, nb, A(0, 0), lda, e, tau, work, ldwork, dA, ldda, 0, dwork, i+ib, dwork2, ldwork2, 1, dx, dy, hwork, stream, times); magma_ssyr2k_mgpu(num_gpus, MagmaUpper, MagmaNoTrans, nb, i, ib, c_neg_one, dwork, i+ib, 0, d_one, dA, ldda, 0, num_streams, stream); /* get the next panel */ if (i-nb >= nx ) { ib = min(nb, n-(i-nb)); ii = nb*((i-nb)/(nb*num_gpus)); did = ((i-nb)/nb)%num_gpus; magma_setdevice(did); magma_sgetmatrix_async( (i-nb)+ib, ib, dA(did, 0, ii), ldda, A(0, i-nb), lda, stream[did][0] ); } /* Copy superdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+ib; ++j) { if ( j > 0 ) { *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 ); } d[j] = MAGMA_S_REAL( *A(j, j) ); } } /* end of for i=... */ if ( nx > 0 ) { if (1 <= n-nx) { /* else A is already on CPU */ for (i=0; i < nx; i += nb) { ib = min(nb, n-i); ii = nb*(i/(nb*num_gpus)); did = (i/nb)%num_gpus; magma_setdevice(did); magma_sgetmatrix_async( nx, ib, dA(did, 0, ii), ldda, A(0, i), lda, stream[did][0] ); } } for( did=0; did < num_gpus; did++ ) { magma_setdevice(did); magma_queue_sync(stream[did][0]); } /* Use unblocked code to reduce the last or only block */ lapackf77_ssytd2(uplo_, &nx, A(0, 0), &lda, d, e, tau, &iinfo); } } else { trace_init( 1, num_gpus, num_streams, (CUstream_st**)stream ); /* Copy the matrix to the GPU */ if (1 <= n-nx) { magma_shtodhe(num_gpus, uplo, n, nb, A, lda, dA, ldda, stream, &iinfo ); } /* Reduce the lower triangle of A */ for (i = 0; i < n-nx; i += nb) { ib = min(nb, n-i); ii = nb*(i/(nb*num_gpus)); did = (i/nb)%num_gpus; /* Reduce columns i:i+ib-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel (no need for the 1st iteration) */ if (i != 0) { magma_setdevice(did); trace_gpu_start( did, 0, "comm", "get" ); magma_sgetmatrix_async( n-i, ib, dA(did, i, ii), ldda, A(i,i), lda, stream[did][0] ); trace_gpu_end( did, 0 ); magma_queue_sync(stream[did][0]); magma_setdevice(0); } magma_slatrd_mgpu(num_gpus, uplo, n, n-i, ib, nb, A(i, i), lda, &e[i], &tau[i], work, ldwork, dA, ldda, i, dwork, (n-i), dwork2, ldwork2, 1, dx, dy, hwork, stream, times ); #ifdef PROFILE_SY2RK magma_setdevice(0); if ( i > 0 ) { cudaEventElapsedTime(&etime, start, stop); up_time += (etime/1000.0); } magma_event_record(start, 0); #endif magma_ssyr2k_mgpu(num_gpus, MagmaLower, MagmaNoTrans, nb, n-i-ib, ib, c_neg_one, dwork, n-i, ib, d_one, dA, ldda, i+ib, num_streams, stream); #ifdef PROFILE_SY2RK magma_setdevice(0); magma_event_record(stop, 0); #endif /* Copy subdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+ib; ++j) { if ( j+1 < n ) { *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 ); } d[j] = MAGMA_S_REAL( *A(j, j) ); } } /* for i=... */ /* Use unblocked code to reduce the last or only block */ if ( i < n ) { iii = i; i_n = n-i; if ( i > 0 ) { for (; i < n; i += nb) { ib = min(nb, n-i); ii = nb*(i/(nb*num_gpus)); did = (i/nb)%num_gpus; magma_setdevice(did); magma_sgetmatrix_async( i_n, ib, dA(did, iii, ii), ldda, A(iii, i), lda, stream[did][0] ); } for( did=0; did < num_gpus; did++ ) { magma_setdevice(did); magma_queue_sync(stream[did][0]); } } lapackf77_ssytrd(uplo_, &i_n, A(iii, iii), &lda, &d[iii], &e[iii], &tau[iii], work, &lwork, &iinfo); } } #ifdef PROFILE_SY2RK magma_setdevice(0); if ( n > nx ) { cudaEventElapsedTime(&etime, start, stop); up_time += (etime/1000.0); } magma_event_destroy( start ); magma_event_destroy( stop ); #endif trace_finalize( "ssytrd.svg", "trace.css" ); for( did=0; did < num_gpus; did++ ) { magma_setdevice(did); for( kk=0; kk < num_streams; kk++ ) magma_queue_sync(stream[did][kk]); for( kk=0; kk < num_streams; kk++ ) magma_queue_destroy(stream[did][kk]); magma_free(dA[did]); magma_free(dx[did]); magma_free(dy[did]); magma_free(dwork2[did]); } magma_free_pinned(hwork); magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); work[0] = MAGMA_S_MAKE( lwkopt, 0 ); #ifdef PROFILE_SY2RK printf( " n=%d nb=%d\n", n, nb ); printf( " Time in SLARFG: %.2e seconds\n", times[0] ); //printf( " Time in SSYMV : %.2e seconds\n", mv_time ); printf( " Time in SSYR2K: %.2e seconds\n", up_time ); #endif return *info; } /* magma_ssytrd */
/** Purpose ------- SSYTRD reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] d REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). @param[out] e REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower. @param[out] tau REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= N*NB, where NB is the optimal blocksize given by magma_get_ssytrd_nb(). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_ssyev_comp ********************************************************************/ extern "C" magma_int_t magma_ssytrd(magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *d, float *e, float *tau, float *work, magma_int_t lwork, magma_int_t *info) { #define A(i, j) ( A + (j)*lda + (i)) #define dA(i, j) (dA + (j)*ldda + (i)) const char* uplo_ = lapack_uplo_const( uplo ); magma_int_t ldda = lda; magma_int_t nb = magma_get_ssytrd_nb(n); float c_neg_one = MAGMA_S_NEG_ONE; float c_one = MAGMA_S_ONE; float d_one = MAGMA_D_ONE; magma_int_t kk, nx; magma_int_t i, j, i_n; magma_int_t iinfo; magma_int_t ldwork, lddwork, lwkopt; magma_int_t lquery; *info = 0; int upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } else if (lwork < nb*n && ! lquery) { *info = -9; } /* Determine the block size. */ ldwork = lddwork = n; lwkopt = n * nb; if (*info == 0) { work[0] = MAGMA_S_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } float *dA; if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda + 2*n*nb )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } float *dwork = dA + n*ldda; if (n < 2048) nx = n; else nx = 512; if (upper) { /* Copy the matrix to the GPU */ magma_ssetmatrix( n, n, A(0, 0), lda, dA(0, 0), ldda ); /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ kk = n - (n - nx + nb - 1) / nb * nb; for (i = n - nb; i >= kk; i -= nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel (no need for the 1st iteration) */ if (i != n-nb) magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), lda ); magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau, work, ldwork, dA(0, 0), ldda, dwork, lddwork); /* Update the unreduced submatrix A(0:i-2,0:i-2), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( i + nb, nb, work, ldwork, dwork, lddwork ); magma_ssyr2k(uplo, MagmaNoTrans, i, nb, c_neg_one, dA(0, i), ldda, dwork, lddwork, d_one, dA(0, 0), ldda); /* Copy superdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), lda ); /* Use unblocked code to reduce the last or only block */ lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo); } else { /* Copy the matrix to the GPU */ if (1 <= n-nx) magma_ssetmatrix( n, n, A(0,0), lda, dA(0,0), ldda ); #ifdef FAST_HEMV // TODO this leaks memory from dA, above float *dwork2; if (MAGMA_SUCCESS != magma_smalloc( &dwork2, n*n )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } #endif /* Reduce the lower triangle of A */ for (i = 0; i < n-nx; i += nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel (no need for the 1st iteration) */ if (i != 0) magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), lda ); #ifdef FAST_HEMV magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i], work, ldwork, dA(i, i), ldda, dwork, lddwork, dwork2, n*n); #else magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i], work, ldwork, dA(i, i), ldda, dwork, lddwork); #endif /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( n-i, nb, work, ldwork, dwork, lddwork ); magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, dA(i+nb, i), ldda, &dwork[nb], lddwork, d_one, dA(i+nb, i+nb), ldda); /* Copy subdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } #ifdef FAST_HEMV magma_free( dwork2 ); #endif /* Use unblocked code to reduce the last or only block */ if (1 <= n-nx) magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), lda ); i_n = n-i; lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i], &tau[i], work, &lwork, &iinfo); } magma_free( dA ); work[0] = MAGMA_S_MAKE( lwkopt, 0 ); return *info; } /* magma_ssytrd */
/** Purpose ------- SSYTRD2_GPU reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. This version passes a workspace that is used in an optimized GPU matrix-vector product. Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] ldda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] d REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). @param[out] e REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower. @param[out] tau REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] wA (workspace) REAL array, dimension (LDA,N) On exit the diagonal, the upper part (UPLO=MagmaUpper) or the lower part (UPLO=MagmaLower) are copies of DA @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] dwork (workspace) REAL array on the GPU, dim (MAX(1,LDWORK)) @param[in] ldwork INTEGER The dimension of the array DWORK. LDWORK >= (n*n+64-1)/64 + 2*n*nb, where nb = magma_get_ssytrd_nb(n) @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_ssyev_comp ********************************************************************/ extern "C" magma_int_t magma_ssytrd2_gpu( magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, float *d, float *e, float *tau, float *wA, magma_int_t ldwa, float *work, magma_int_t lwork, magmaFloat_ptr dwork, magma_int_t ldwork, magma_int_t *info) { #define A(i, j) (wA + (j)*ldwa + (i)) #define dA(i, j) (dA + (j)*ldda + (i)) const char* uplo_ = lapack_uplo_const( uplo ); magma_int_t nb = magma_get_ssytrd_nb(n); float c_neg_one = MAGMA_S_NEG_ONE; float c_one = MAGMA_S_ONE; float d_one = MAGMA_D_ONE; magma_int_t kk, nx; magma_int_t i, j, i_n; magma_int_t iinfo; magma_int_t ldw, lddw, lwkopt; magma_int_t lquery; *info = 0; int upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,n)) { *info = -4; } else if (ldwa < max(1,n)) { *info = -9; } else if (lwork < 1 && ! lquery) { *info = -11; } /* Determine the block size. */ ldw = lddw = n; lwkopt = n * nb; if (*info == 0) { work[0] = MAGMA_S_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } if (n < 1024) nx = n; else nx = 300; if (ldwork < (ldw*n+64-1)/64 + 2*ldw*nb) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } if (upper) { /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ kk = n - (n - nx + nb - 1) / nb * nb; for (i = n - nb; i >= kk; i -= nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel */ magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), ldwa ); magma_slatrd2(uplo, i+nb, nb, A(0, 0), ldwa, e, tau, work, ldw, dA(0, 0), ldda, dwork, lddw, dwork + 2*ldw*nb, ldwork - 2*ldw*nb); /* Update the unreduced submatrix A(0:i-2,0:i-2), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( i + nb, nb, work, ldw, dwork, lddw ); magma_ssyr2k(uplo, MagmaNoTrans, i, nb, c_neg_one, dA(0, i), ldda, dwork, lddw, d_one, dA(0, 0), ldda); /* Copy superdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), ldwa ); /* Use CPU code to reduce the last or only block */ lapackf77_ssytrd(uplo_, &kk, A(0, 0), &ldwa, d, e, tau, work, &lwork, &iinfo); magma_ssetmatrix( kk, kk, A(0, 0), ldwa, dA(0, 0), ldda ); } else { /* Reduce the lower triangle of A */ for (i = 0; i < n-nx; i += nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel */ magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), ldwa ); magma_slatrd2(uplo, n-i, nb, A(i, i), ldwa, &e[i], &tau[i], work, ldw, dA(i, i), ldda, dwork, lddw, dwork + 2*ldw*nb, ldwork - 2*ldw*nb); /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( n-i, nb, work, ldw, dwork, lddw ); magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, dA(i+nb, i), ldda, &dwork[nb], lddw, d_one, dA(i+nb, i+nb), ldda); /* Copy subdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } /* Use unblocked code to reduce the last or only block */ magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), ldwa ); i_n = n-i; lapackf77_ssytrd(uplo_, &i_n, A(i, i), &ldwa, &d[i], &e[i], &tau[i], work, &lwork, &iinfo); magma_ssetmatrix( n-i, n-i, A(i, i), ldwa, dA(i, i), ldda ); } work[0] = MAGMA_S_MAKE( lwkopt, 0 ); return *info; } /* magma_ssytrd2_gpu */
/** Purpose ------- SSYTRD2_GPU reduces a real symmetric matrix A to real symmetric tridiagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. This version passes a workspace that is used in an optimized GPU matrix-vector product. Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array on the GPU, dimension (LDDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,N). @param[out] d REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). @param[out] e REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower. @param[out] tau REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] A (workspace) REAL array, dimension (LDA,N) On exit the diagonal, the upper part (if uplo=MagmaUpper) or the lower part (if uplo=MagmaLower) are copies of DA @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= N*NB, where NB is the optimal blocksize given by magma_get_ssytrd_nb(). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] dwork (workspace) REAL array on the GPU, dim (MAX(1,LDWORK)) @param[in] ldwork INTEGER The dimension of the array DWORK. LDWORK >= ldda*ceil(n/64) + 2*ldda*nb, where nb = magma_get_ssytrd_nb(n), and 64 is for the blocksize of magmablas_ssymv. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_ssyev_comp ********************************************************************/ extern "C" magma_int_t magma_ssytrd2_gpu( magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, float *d, float *e, float *tau, float *A, magma_int_t lda, float *work, magma_int_t lwork, magmaFloat_ptr dwork, magma_int_t ldwork, magma_int_t *info) { #define A(i_, j_) ( A + (i_) + (j_)*lda ) #define dA(i_, j_) (dA + (i_) + (j_)*ldda) /* Constants */ const float c_zero = MAGMA_S_ZERO; const float c_neg_one = MAGMA_S_NEG_ONE; const float c_one = MAGMA_S_ONE; const float d_one = MAGMA_D_ONE; /* Local variables */ const char* uplo_ = lapack_uplo_const( uplo ); magma_int_t nb = magma_get_ssytrd_nb( n ); magma_int_t kk, nx; magma_int_t i, j, i_n; magma_int_t iinfo; magma_int_t ldw, lddw, lwkopt; magma_int_t lquery; *info = 0; bool upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,n)) { *info = -4; } else if (lda < max(1,n)) { *info = -9; } else if (lwork < nb*n && ! lquery) { *info = -11; } else if (ldwork < ldda*magma_ceildiv(n,64) + 2*ldda*nb) { *info = -13; } /* Determine the block size. */ ldw = n; lddw = ldda; // hopefully ldda is rounded up to multiple of 32; ldwork is in terms of ldda, so lddw can't be > ldda. lwkopt = n * nb; if (*info == 0) { work[0] = magma_smake_lwork( lwkopt ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } // nx <= n is required // use LAPACK for n < 3000, otherwise switch at 512 if (n < 3000) nx = n; else nx = 512; float *work2; if (MAGMA_SUCCESS != magma_smalloc_cpu( &work2, n )) { *info = MAGMA_ERR_HOST_ALLOC; return *info; } magma_queue_t queue = NULL; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); // clear out dwork in case it has NANs (used as y in ssymv) // rest of dwork (used as work in magmablas_ssymv) doesn't need to be cleared magmablas_slaset( MagmaFull, n, nb, c_zero, c_zero, dwork, lddw, queue ); if (upper) { /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ kk = n - magma_roundup( n - nx, nb ); for (i = n - nb; i >= kk; i -= nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel */ magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), lda, queue ); magma_slatrd2( uplo, i+nb, nb, A(0, 0), lda, e, tau, work, ldw, work2, n, dA(0, 0), ldda, dwork, lddw, dwork + 2*lddw*nb, ldwork - 2*lddw*nb, queue ); /* Update the unreduced submatrix A(0:i-2,0:i-2), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( i + nb, nb, work, ldw, dwork, lddw, queue ); magma_ssyr2k( uplo, MagmaNoTrans, i, nb, c_neg_one, dA(0, i), ldda, dwork, lddw, d_one, dA(0, 0), ldda, queue ); /* Copy superdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), lda, queue ); /* Use CPU code to reduce the last or only block */ lapackf77_ssytrd( uplo_, &kk, A(0, 0), &lda, d, e, tau, work, &lwork, &iinfo ); magma_ssetmatrix( kk, kk, A(0, 0), lda, dA(0, 0), ldda, queue ); } else { /* Reduce the lower triangle of A */ for (i = 0; i < n-nx; i += nb) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ /* Get the current panel */ magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), lda, queue ); magma_slatrd2( uplo, n-i, nb, A(i, i), lda, &e[i], &tau[i], work, ldw, work2, n, dA(i, i), ldda, dwork, lddw, dwork + 2*lddw*nb, ldwork - 2*lddw*nb, queue ); /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' */ magma_ssetmatrix( n-i, nb, work, ldw, dwork, lddw, queue ); // cublas 6.5 crashes here if lddw % 32 != 0, e.g., N=250. magma_ssyr2k( MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, dA(i+nb, i), ldda, &dwork[nb], lddw, d_one, dA(i+nb, i+nb), ldda, queue ); /* Copy subdiagonal elements back into A, and diagonal elements into D */ for (j = i; j < i+nb; ++j) { *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 ); d[j] = MAGMA_S_REAL( *A(j, j) ); } } /* Use CPU code to reduce the last or only block */ magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), lda, queue ); i_n = n-i; lapackf77_ssytrd( uplo_, &i_n, A(i, i), &lda, &d[i], &e[i], &tau[i], work, &lwork, &iinfo ); magma_ssetmatrix( n-i, n-i, A(i, i), lda, dA(i, i), ldda, queue ); } magma_free_cpu( work2 ); magma_queue_destroy( queue ); work[0] = magma_smake_lwork( lwkopt ); return *info; } /* magma_ssytrd2_gpu */