예제 #1
0
void toggleLED() {
	
			// Toggle LED to see when we're sending frames

	static uint8_t toggle = 0;
	toggle ^= 1;
	if(toggle) {
		led_setRGB(255, 255, 255);
	}
	else {
		led_setRGB(0, 0, 0);
	}
}
void cc_setLED()
{
	BlobA *blob;
	uint32_t area, color, r, g, b;
	uint8_t brightness;

	blob = (BlobA *)g_blobs->getMaxBlob();
	if (blob)
	{
		if (blob->m_model<=NUM_MODELS)
			color = g_colors[blob->m_model];
		else
			color = g_colors[0];

		area = (blob->m_right - blob->m_left)*(blob->m_bottom - blob->m_top);
		brightness = ledBrightness(area);
		b = color&0xff;
		b = b ? (b*brightness>>8)+1 : 0;
		color >>= 8;
		g = color&0xff;
		g = g ? (g*brightness>>8)+1 : 0;
		color >>= 8;
		r = color&0xff;
		r = r ? (r*brightness>>8)+1 : 0;
		led_setRGB(r, g, b);
	}
	else
예제 #3
0
// this routine needs to provide good feedback to the user as to whether the camera sees and segments the object correctly.
// The key is to integrate the "growing algorithm" such that the growing algorithm is executed continuously and feedback about
// the "goodness" of the grown region is returned.  We're choosing goodness to be some combination of size (because the bigger 
// the grown region the better) and saturation (because more saturation the more likely we've found the intended target, vs 
// the background, which is typically not saturated.)  
// In general with an RGB LED, you can only communicate 2 things--- brightness and hue, so you have 2 dof to play with....   
void scaleLED(uint32_t r, uint32_t g, uint32_t b, uint32_t n)
{
	uint32_t max, min, current, sat, t; 

#if 0  // it seems that green is a little attenuated on this sensor
	t = (uint32_t)(G_GAIN*g);
	if (t>255)
		g = 255;
	else
		g = t;
#endif

   	// find min
	min = MIN(r, g);
	min = MIN(min, b);

	// find max
	max = MAX(r, g);
	max = MAX(max, b);

	// subtract min and form sataration from the distance from origin
	sat = sqrt((float)((r-min)*(r-min) + (g-min)*(g-min) + (b-min)*(b-min)));
	if (sat>30) // limit saturation to preven things from getting too bright
		sat = 30;
	if (sat<10) // anything less than 15 is pretty uninteresting, no sense in displaying....
		current = 0;
	else
	{
		//sat2 = exp(sat/13.0f);
		//current = (uint32_t)(SAT_GAIN*sat2) + (uint32_t)(AREA_GAIN*n) + (uint32_t)(SA_GAIN*n*sat2);
		current = (uint32_t)(SA_GAIN*n*sat);
	}
	if (current>LED_MAX_CURRENT/5)
		current = LED_MAX_CURRENT/5;
	led_setMaxCurrent(current);

#if 0
	// find reasonable bias to subtract out
	bias = min*75/100;
	r -= bias;
	g -= bias;
	b -= bias;
	
	// saturate
	m = 255.0f/(max-bias);
	r = (uint8_t)(m*r);
	g = (uint8_t)(m*g);
	b = (uint8_t)(m*b);
#endif
#if 1
	// saturate
	rgbUnpack(saturate(rgbPack(r, g, b)), &r, &g, &b);
#endif
	//cprintf("r %d g %d b %d min %d max %d sat %d sat2 %d n %d\n", r, g, b, min, max, sat, sat2, n);
	led_setRGB(r, g, b);	 	
}
void ButtonMachine::ledPipe()
{
	uint8_t r, g, b;

	BlobA blob(m_index, (CAM_RES2_WIDTH-BT_CENTER_SIZE)/2, (CAM_RES2_WIDTH+BT_CENTER_SIZE)/2, (CAM_RES2_HEIGHT-BT_CENTER_SIZE)/2, (CAM_RES2_HEIGHT+BT_CENTER_SIZE)/2);
	cc_sendBlobs(g_chirpUsb, &blob, 1);

	getColor(&r, &g, &b);
	saturate(&r, &g, &b);
	led_setRGB(r, g, b);	 	
}
예제 #5
0
void handleButton()
{
	static uint32_t btPrev = 0;
	uint32_t bt; 
	static uint8_t r, g, b;

	bt = button();

	if (bt)
	{
		cam_getFrame((uint8_t *)SRAM0_LOC, SRAM0_SIZE, 0x21, 0, 0, 320, 200);
		getColor(&r, &g, &b);
		saturate(&r, &g, &b);
		led_setRGB(r, g, b);	 	
	}
	else if (btPrev)
	{
		led_setRGB(0, 0, 0);
		delayus(50000);
		led_setRGB(r, g, b);	 	
		delayus(50000);
		led_setRGB(0, 0, 0);
		delayus(50000);
		led_setRGB(r, g, b);	 	
		delayus(50000);
		led_setRGB(0, 0, 0);		
	}

	btPrev = bt;
}
예제 #6
0
void edgeDetect_run()
{
	cam_setBrightness(BRIGHTNESS); 				// 0 to 255
	uint8_t *frame = (uint8_t *)SRAM1_LOC;
	uint8_t *frameloc = (uint8_t *)(SRAM1_LOC + 2);
	uint8_t *sendPositions = (uint8_t*)(SRAM1_LOC);
	float theta;
	// recieve the command to get a frame
	while(1) {
		led_setRGB(255, 0, 0);
		
		while(1) {
			if(UART_DATA_AVAILABLE) {
				//rxbuf = UART_ReceiveByte(LPC_USART0);
				theta = (float)UART_DATA_AVAILABLE;
				UART_DATA_AVAILABLE = 0;
				break;
			}
		}
		
		theta = (float)(theta*(3.14159/180.0));
		
		led_setRGB(0, 255, 0);
		
			cam_getFrame(frameloc, SRAM1_SIZE, CAM_GRAB_M1R2, 0, 0, RES_WIDTH, RES_HEIGHT);
			// second time through gets a frame fine
			frameloc = frame;
			for(uint16_t y = 1 + OFFSET; y < (RES_HEIGHT - OFFSET); y += 2) {
				uint16_t ypo = y + 1;
				uint16_t ymo = y - 1;
				for(uint16_t x = 1 + OFFSET; x < (RES_WIDTH - OFFSET); x += 2) {
					uint16_t xpo = x + 1;
					uint16_t xmo = x - 1;
					uint16_t grad; 
					
					uint16_t intense_XPO_Y = frameloc[y*RES_WIDTH + xpo] + frameloc[ypo*RES_WIDTH + xpo+1] + 
							(frameloc[ypo*RES_WIDTH + xpo] + frameloc[y*RES_WIDTH + xpo+1])/2;
					
					uint16_t intense_XMO_Y = frameloc[y*RES_WIDTH + xmo] + frameloc[ypo*RES_WIDTH + x] + 
							(frameloc[ypo*RES_WIDTH + xmo] + frameloc[y*RES_WIDTH + x])/2;
					
					uint16_t intense_X_YPO = frameloc[ypo*RES_WIDTH + x] + frameloc[(ypo+1)*RES_WIDTH + xpo] + 
							(frameloc[(ypo+1)*RES_WIDTH + x] + frameloc[ypo*RES_WIDTH + xpo])/2;
					
					uint16_t intense_XPO_YPO = frameloc[ypo*RES_WIDTH + xpo] + frameloc[(ypo+1)*RES_WIDTH + xpo+1] + 
							(frameloc[(ypo+1)*RES_WIDTH + xpo] + frameloc[ypo*RES_WIDTH + xpo+1])/2;
					
					uint16_t intense_XMO_YPO = frameloc[(ypo)*RES_WIDTH + xmo] + frameloc[(ypo+1)*RES_WIDTH + x] + 
							(frameloc[(ypo+1)*RES_WIDTH + xmo] + frameloc[ypo*RES_WIDTH + x])/2;
					
					uint16_t intense_X_YMO = frameloc[ymo*RES_WIDTH + x] + frameloc[y*RES_WIDTH + xpo] + 
							(frameloc[y*RES_WIDTH + x] + frameloc[ymo*RES_WIDTH + xpo])/2;
							
					uint16_t intense_XPO_YMO = frameloc[ymo*RES_WIDTH + xpo] + frameloc[y*RES_WIDTH + xpo+1] + 
							(frameloc[y*RES_WIDTH + xpo] + frameloc[ymo*RES_WIDTH + xpo+1])/2;
							
					uint16_t intense_XMO_YMO = frameloc[ymo*RES_WIDTH + xmo] + frameloc[y*RES_WIDTH + x] + 
							(frameloc[y*RES_WIDTH + xmo] + frameloc[ymo*RES_WIDTH + x])/2;
					
					uint16_t grad1 = abs(intense_XPO_Y - intense_XMO_Y
						+ intense_XPO_YPO - intense_XMO_YPO
						+ intense_XPO_YMO - intense_XMO_YMO);
						
					uint16_t grad2 = abs(intense_X_YPO -	intense_X_YMO
						+ intense_XPO_YPO -	intense_XPO_YMO
						+ intense_XMO_YPO - intense_XMO_YMO);
					
					grad = grad1 + grad2;
					

					// when it loops a second time through, it cannot make it passed the next line
					// Deleted if statement, hopefully that'll do 'er. Really inefficient though

					if(grad > THREASHOLD) {
						frameloc[ymo*RES_WIDTH + xmo] = 255;
						frameloc[y*RES_WIDTH + xmo] = 255;
						frameloc[ymo*RES_WIDTH + x] = 255;
						frameloc[y*RES_WIDTH + x] = 255;
					}
					else {
						frameloc[ymo*RES_WIDTH + xmo] = 0;
						frameloc[y*RES_WIDTH + xmo] = 0;
						frameloc[ymo*RES_WIDTH + x] = 0;
						frameloc[y*RES_WIDTH + x] = 0;
					}
					
					
					/*				TEST DIAGONAL LINE
					if( y == x) {
						
						frameloc[ymo*RES_WIDTH + xmo] = 255;
						frameloc[y*RES_WIDTH + xmo] = 255;
						frameloc[ymo*RES_WIDTH + x] = 255;
						frameloc[y*RES_WIDTH + x] = 255;
					}
					else {
						frameloc[ymo*RES_WIDTH + xmo] = 0;
						frameloc[y*RES_WIDTH + xmo] = 0;
						frameloc[ymo*RES_WIDTH + x] = 0;
						frameloc[y*RES_WIDTH + x] = 0;
					}
					*/
			}
		}
			
			led_setRGB(255, 0, 255);
		
			// floor detection & 
		uint16_t count = 0;
		for(float x = (POS_OFFSET); x < (RES_WIDTH - POS_OFFSET); x += 2.0) {
			
			float xPos;
			for(float y = (RES_HEIGHT - POS_OFFSET); y > POS_OFFSET; y -= 2.0) {
				
				if(frameloc[((uint8_t)y)*RES_WIDTH + (uint16_t)x] != 0) {
					float yPos;
					
					double theta_ph = atan(((2.0*y-200.0)/200.0)*TAN_FOVH_DIV_2);		// This works
					double cos_theta_ph = cos(theta_ph);
					//sendPositions[count] = cos_theta_ph*128;
					double cos_theta_minus_ph = cos(theta - theta_ph);
					//sendPositions[count] = cos_theta_minus_ph*128;
					//sendPositions[count] = (int8_t)(theta_ph * (180.0/3.142));				// these two lines send x,y pairs
					//sendPositions[count] = (cos_theta_ph)/(cos_theta_minus_ph);
					yPos = ((double)((3.8)*((cos_theta_ph))))/(cos_theta_minus_ph) + 
										(0.0)*tan(theta - theta_ph);
					
					xPos = (yPos*(2.0*x - 320.0))/417.0;	// hopefully the x cord. won't be super inaccurate. Not crucial though.

			  	
					//sendPositions[2*count + 1] = yPos;	  //(int8_t)yPos;
					
					//sendPositions[2*count] = x;				// these two lines send x,y pairs
					sendPositions[count] = yPos;	  //(int8_t)yPos;
					
					count++;
					break;
				}
				else {
					// color the floor a different color. Not used in this scenario
				}
			}
		}
		
		UART_Send(LPC_USART0, sendPositions, count, BLOCKING);	// sends x,y pairs
		//UART_Send(LPC_USART0, sendPositions, count, BLOCKING);	// sends only the y distance
		count = 0;
		
		// Byte packing for processing script
		/*
		for(uint16_t y = 0; y < RES_HEIGHT/2; y += 1) {
			for (uint16_t x = 0; x < RES_WIDTH/2; x += 8) {
		*/
		
	/*		// Checkerboard for configuring things
				if(y&1) 
					frameloc[y*20 + x/8] = 0x55;
				else
					frameloc[y*20 + x/8] = 0xAA;
	*/
	/*
					frameloc[y*(RES_WIDTH/16) + x/8] = (frameloc[(y*2+1)*RES_WIDTH + (2*(x+0)+1)] & 0x80) | 
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+1)+1)] & 0x40) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+2)+1)] & 0x20) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+3)+1)] & 0x10) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+4)+1)] & 0x08) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+5)+1)] & 0x04) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+6)+1)] & 0x02) |
																					(frameloc[(y*2+1)*RES_WIDTH + (2*(x+7)+1)] & 0x01); 

			}
		}
		*/
				
		// UART_Send(LPC_USART0, frameloc, 16000, BLOCKING);   // Send the frame to see it in tera term. NO BYTE PACK
		// frame[0] = 'A';																		 // key byte
		// UART_Send(LPC_USART0, frameloc, 2001, BLOCKING);		 // Send the frame byte packed to see it in processing
		
		//UART_Send(LPC_USART0, sendPositions, (RES_WIDTH - 2*POS_OFFSET)>>1, BLOCKING);
		
		// clear array
		for(uint8_t x = 0; x < 240; x++) {
			sendPositions[x] = 255;
		}
		
		toggleLED();
		
	}
}
예제 #7
0
void handleRecv()
{
	uint8_t i, a;
	static uint16_t w=0xffff;
	static uint8_t lastByte;
	uint16_t s0, s1;
	Iserial *serial = ser_getSerial();

	for (i=0; i<10; i++)
	{
		switch(g_state)
		{	
		case 0: // reset 
			lastByte = 0xff;  // This is not part of any of the sync word most significant bytes
			g_state = 1;
		 	break;

		case 1:	// sync word
			if(serial->receive(&a, 1))
			{
				w = lastByte << 8;
				w |= a;
				lastByte = a;
				g_state = 2;	// compare
			}
			break;

		case 2:	 // receive data byte(s)
			if (w==SYNC_SERVO)
			{	// read rest of data
				if (serial->receiveLen()>=4)
				{
					serial->receive((uint8_t *)&s0, 2);
					serial->receive((uint8_t *)&s1, 2);

					//cprintf("servo %d %d\n", s0, s1);
					rcs_setPos(0, s0);
					rcs_setPos(1, s1);

					g_state = 0;
				}
			}
			else if (w==SYNC_CAM_BRIGHTNESS)
			{
				if(serial->receive(&a, 1))
				{
					cam_setBrightness(a);
					g_state = 0;
				}
			}
			else if (w==SYNC_SET_LED)
			{
				if (serial->receiveLen()>=3)
				{
					uint8_t r, g, b;
					serial->receive(&r, 1);
					serial->receive(&g, 1);
					serial->receive(&b, 1);

					led_setRGB(r, g, b);
					//cprintf("%x %x %x\n", r, g ,b);

					g_ledSet = true; // it will stay true until the next power cycle
					g_state = 0;
				}
			}
			else 
				g_state = 1; // try another word, but read only a byte
			break;

		default:
			g_state = 0; // try another whole word
			break;
		}
	}
}
예제 #8
0
void edgeDetect_highres_run()
{
	
	uint8_t *frame = (uint8_t *)SRAM1_LOC;
	uint8_t *frameloc = (uint8_t *)(SRAM1_LOC + 0);
	uint8_t *sendPositions = (uint8_t*)(SRAM1_LOC);
	float theta;
	
	// recieve the command to get a frame
	while(1) {
		
		// red LED: Stopped waiting for data
		led_setRGB(255, 0, 0);
		
		while(1) {
			if(UART_DATA_AVAILABLE) {		// Data has come!
				theta = (float)UART_DATA_AVAILABLE;
				UART_DATA_AVAILABLE = 0;
				break;
			}
		}
		
		if(theta > 45) {
			// make sure that theta is casted as a float
			theta = (float)(theta*(3.14159/180.0));
			
			// green LED, lets go!
			led_setRGB(0, 255, 0);
			
		// grab frame
			cam_getFrame(frameloc, SRAM1_SIZE, CAM_GRAB_M1R2, 0, 0, RES_WIDTH, RES_HEIGHT);
		
			frameloc = frame;			// 
		
		// double for loop for calculating edges
			for(uint16_t y = 1; y < (RES_HEIGHT); y += 1) {
				uint16_t ypo = y + 1;
				uint16_t ymo = y - 1;
				for(uint16_t x = 1; x < (RES_WIDTH); x += 1) {
					uint16_t xpo = x + 1;
					uint16_t xmo = x - 1;
					
				// Gradient calculation
					
					// intensity calculation for the pixel groups around each pixel
					uint16_t intense_XPO_Y;
					uint16_t intense_XMO_Y;
					uint16_t intense_X_YPO;
					uint16_t intense_XPO_YPO;
					uint16_t intense_XMO_YPO;
					uint16_t intense_X_YMO;
					uint16_t intense_XPO_YMO;
					uint16_t intense_XMO_YMO;
					
					if( ( (x % 2 == 0) && (y % 2 == 0) ) || ( (x % 2 == 1) && (y % 2 == 1) ) )  {			// We are on a blue or red pixel
						
						intense_XPO_Y = intensityCalc_GreenPixel(frameloc, xpo, y);
							
						intense_XMO_Y = intensityCalc_GreenPixel(frameloc, xmo, y);
						
						intense_X_YPO = intensityCalc_GreenPixel(frameloc, x, ypo);
						
						intense_XPO_YPO = intensityCalc_BlueRedPixel(frameloc, xpo, ypo);
						
					  intense_XMO_YPO = intensityCalc_BlueRedPixel(frameloc, xmo, ypo);
						
						intense_X_YMO = intensityCalc_GreenPixel(frameloc, x, ymo);
								
						intense_XPO_YMO = intensityCalc_BlueRedPixel(frameloc, xpo, ymo);
								
						intense_XMO_YMO = intensityCalc_BlueRedPixel(frameloc, xmo, ymo);
					} 
					else {			// We are on a green pixel
 
						intense_XPO_Y = intensityCalc_BlueRedPixel(frameloc, xpo, y);
							
						intense_XMO_Y = intensityCalc_BlueRedPixel(frameloc, xmo, y);
						
						intense_X_YPO = intensityCalc_BlueRedPixel(frameloc, x, ypo);
						
						intense_XPO_YPO = intensityCalc_GreenPixel(frameloc, xpo, ypo);
						
					  intense_XMO_YPO = intensityCalc_GreenPixel(frameloc, xmo, ypo);
						
						intense_X_YMO = intensityCalc_BlueRedPixel(frameloc, x, ymo);
								
						intense_XPO_YMO = intensityCalc_GreenPixel(frameloc, xpo, ymo);
								
						intense_XMO_YMO = intensityCalc_GreenPixel(frameloc, xmo, ymo);
						
					}
					
					float grad1 = abs(intense_XPO_Y - intense_XMO_Y
						+ intense_XPO_YPO - intense_XMO_YPO
						+ intense_XPO_YMO - intense_XMO_YMO);
						
					float grad2 = abs(intense_X_YPO -	intense_X_YMO
						+ intense_XPO_YPO -	intense_XPO_YMO
						+ intense_XMO_YPO - intense_XMO_YMO);
				
								// Threashold detection
					if( (grad1 + grad2) > THREASHOLD_LOW ) {
						// EDGE
						frameloc[y*RES_WIDTH + x] = 255;
					}
					else {
						// NO EDGE
						frameloc[y*RES_WIDTH + x] = 0;
					}
				}
			} // end nested for loop
				
			led_setRGB(255, 0, 255);	// Purple LED
			
				// floor detection & distance extrapolation
			uint16_t count = 0;
			for(float x = (POS_OFFSET); x < (RES_WIDTH - POS_OFFSET); x += 1.0) {	// start on the left
				
				float xPos;
				for(float y = (RES_HEIGHT - POS_OFFSET); y > POS_OFFSET; y -= 1.0) {	// start from the bottom
					
					if(frameloc[((uint16_t)y)*RES_WIDTH + (uint16_t)x] != 0) {
						float yPos;
						
						double theta_ph = atan(((2.0*y-200.0)/200.0)*TAN_FOVH_DIV_2);		// angle of the pixel
						double cos_theta_ph = cos(theta_ph);											// used in the computations
						double cos_theta_minus_ph = cos(theta - theta_ph);				// used in the computations
						
						yPos = ((double)((3.9)*((cos_theta_ph))))/(cos_theta_minus_ph) + 
											(2.1)*tan(theta - theta_ph);		// y distance from the bot
						xPos = (yPos*(2.0*x - 320.0))/417.0;			// x distance from the bot

						sendPositions[2*count] = xPos;				// these two lines send x,y pairs
						sendPositions[2*count + 1] = yPos;
						
						count++;		// count of the number of edges of obsticles detected
						break;			// stop looking for the edge, break to the next x co-ordinate
					}
					else {
						// color the floor a different color. Not used in this scenario
					}
				}
			}
			
			UART_Send(LPC_USART0, sendPositions, 2*count, BLOCKING);	// sends x,y pairs
			count = 0;
			
			// clear array
			for(uint16_t x = 0; x < 640; x++) {
				sendPositions[x] = 255;
			}
			
		} // end edge detecting
		
		else if(theta > 1 ) {	// Servo move routine
			uint16_t position;
			int8_t retVal;
			// Move the servo based on the input from the PIC
			// theta == 2 corrisponds to a 45 degree angle,
			// theta == 42 corrisponds to a 135 degree angle.
			
			position = (position - 2)*(25);
			retVal = rcs_setPos(1, position);
			
			if(retVal == 0) {
				
				uint8_t retStr[] = "successful Servo Move\n\r";
				UART_Send(LPC_USART0, retStr, 24, BLOCKING);
			}
			else {
				uint8_t retStr[] = "Error: Servo Move\n\r";
				UART_Send(LPC_USART0, retStr, 20, BLOCKING);
			}
		}
		else {		// theta == 1, they are asking for my ID
			
			// tell the processing script/pic/whatever that I am the pixy
			uint8_t ID[] = "I am the Pixy!\n\r";
			UART_Send(LPC_USART0, ID, 17, BLOCKING);
		}
	}
}