예제 #1
0
파일: precond.c 프로젝트: mrirecon/bart
const struct operator_s* nufft_precond_create(const struct linop_s* nufft_op)
{
	const auto data = CAST_DOWN(nufft_data, linop_get_data(nufft_op));

	PTR_ALLOC(struct nufft_precond_data, pdata);
	SET_TYPEID(nufft_precond_data, pdata);

	assert(data->conf.toeplitz);

	int N = data->N;
	int ND = N + 1;

	pdata->N = N;
	pdata->cim_dims = *TYPE_ALLOC(long[ND]);
	pdata->pre_dims = *TYPE_ALLOC(long[ND]);
	pdata->cim_strs = *TYPE_ALLOC(long[ND]);
	pdata->pre_strs = *TYPE_ALLOC(long[ND]);

	md_copy_dims(ND, pdata->cim_dims, data->cim_dims);
	md_select_dims(ND, data->flags, pdata->pre_dims, pdata->cim_dims);

	md_calc_strides(ND, pdata->cim_strs, pdata->cim_dims, CFL_SIZE);
	md_calc_strides(ND, pdata->pre_strs, pdata->pre_dims, CFL_SIZE);

	pdata->pre = compute_precond(pdata->N, pdata->pre_dims, pdata->pre_strs, data->psf_dims, data->psf_strs, data->psf, data->linphase);

	pdata->fft_op = linop_fft_create(pdata->N, pdata->cim_dims, data->flags);

	const long* cim_dims = pdata->cim_dims;	// need to dereference pdata before PTR_PASS

	return operator_create(N, cim_dims, N, cim_dims, CAST_UP(PTR_PASS(pdata)), nufft_precond_apply, nufft_precond_del);
}
예제 #2
0
파일: model.c 프로젝트: andrewcurtis/bart
/**
 * Create sense operator, y = F S x,
 * where F is the Fourier transform and S is the sensitivity maps
 *
 * @param max_dims maximal dimensions across all data structures
 * @param sens_flags active map dimensions
 * @param sens sensitivities
 * @param gpu TRUE if using gpu
 */
struct linop_s* sense_init(const long max_dims[DIMS], 
			unsigned int sens_flags, const complex float* sens, bool gpu)
{
	long ksp_dims[DIMS];
	md_select_dims(DIMS, ~MAPS_FLAG, ksp_dims, max_dims);

	struct linop_s* fft = linop_fft_create(DIMS, ksp_dims, FFT_FLAGS, gpu);
	struct linop_s* maps = maps_create(max_dims, sens_flags, sens, gpu);

	struct linop_s* sense_op = linop_chain(maps, fft);

	linop_free(fft);
	linop_free(maps);

	return sense_op;
}
예제 #3
0
/**
 *
 * NUFFT operator initialization
 *
 * @param N		-	number of dimensions
 * @param ksp_dims      -	kspace dimension
 * @param cim_dims	-	coil images dimension
 * @param traj		-	trajectory
 * @param conf          -	configuration options
 * @param use_gpu       -	use gpu boolean
 *
 */
struct linop_s* nufft_create(unsigned int N, const long ksp_dims[N], const long cim_dims[N], const long traj_dims[N], const complex float* traj, const complex float* weights, struct nufft_conf_s conf, bool use_gpu)

{
	struct nufft_data* data = (struct nufft_data*)xmalloc(sizeof(struct nufft_data));

	data->N = N;
	data->use_gpu = use_gpu;
	data->traj = traj;
	data->conf = conf;

	data->width = 3.;
	data->beta = calc_beta(2., data->width);

	// get dims

	assert(md_check_compat(N - 3, 0, ksp_dims + 3, cim_dims + 3));

	unsigned int ND = N + 3;

	data->ksp_dims = xmalloc(ND * sizeof(long));
	data->cim_dims = xmalloc(ND * sizeof(long));
	data->cml_dims = xmalloc(ND * sizeof(long));
	data->img_dims = xmalloc(ND * sizeof(long));
	data->trj_dims = xmalloc(ND * sizeof(long));
	data->lph_dims = xmalloc(ND * sizeof(long));
	data->psf_dims = xmalloc(ND * sizeof(long));
	data->wgh_dims = xmalloc(ND * sizeof(long));

	data->ksp_strs = xmalloc(ND * sizeof(long));
	data->cim_strs = xmalloc(ND * sizeof(long));
	data->cml_strs = xmalloc(ND * sizeof(long));
	data->img_strs = xmalloc(ND * sizeof(long));
	data->trj_strs = xmalloc(ND * sizeof(long));
	data->lph_strs = xmalloc(ND * sizeof(long));
	data->psf_strs = xmalloc(ND * sizeof(long));
	data->wgh_strs = xmalloc(ND * sizeof(long));

	md_singleton_dims(ND, data->cim_dims);
	md_singleton_dims(ND, data->ksp_dims);

	md_copy_dims(N, data->cim_dims, cim_dims);
	md_copy_dims(N, data->ksp_dims, ksp_dims);


	md_select_dims(ND, FFT_FLAGS, data->img_dims, data->cim_dims);

	assert(3 == traj_dims[0]);
	assert(traj_dims[1] == ksp_dims[1]);
	assert(traj_dims[2] == ksp_dims[2]);
	assert(md_check_compat(N - 3, ~0, traj_dims + 3, ksp_dims + 3));
	assert(md_check_bounds(N - 3, ~0, traj_dims + 3, ksp_dims + 3));

	md_singleton_dims(ND, data->trj_dims);
	md_copy_dims(N, data->trj_dims, traj_dims);


	// get strides

	md_calc_strides(ND, data->cim_strs, data->cim_dims, CFL_SIZE);
	md_calc_strides(ND, data->img_strs, data->img_dims, CFL_SIZE);
	md_calc_strides(ND, data->trj_strs, data->trj_dims, CFL_SIZE);
	md_calc_strides(ND, data->ksp_strs, data->ksp_dims, CFL_SIZE);


	data->weights = NULL;

	if (NULL != weights) {

		md_singleton_dims(ND, data->wgh_dims);
		md_select_dims(N, ~MD_BIT(0), data->wgh_dims, data->trj_dims);
		md_calc_strides(ND, data->wgh_strs, data->wgh_dims, CFL_SIZE);

		complex float* tmp = md_alloc(ND, data->wgh_dims, CFL_SIZE);
		md_copy(ND, data->wgh_dims, tmp, weights, CFL_SIZE);
		data->weights = tmp;
	}


	complex float* roll = md_alloc(ND, data->img_dims, CFL_SIZE);
	rolloff_correction(2., data->width, data->beta, data->img_dims, roll);
	data->roll = roll;


	complex float* linphase = compute_linphases(N, data->lph_dims, data->img_dims);

	md_calc_strides(ND, data->lph_strs, data->lph_dims, CFL_SIZE);

	if (!conf.toeplitz)
		md_zmul2(ND, data->lph_dims, data->lph_strs, linphase, data->lph_strs, linphase, data->img_strs, data->roll);


	fftmod(ND, data->lph_dims, FFT_FLAGS, linphase, linphase);
	fftscale(ND, data->lph_dims, FFT_FLAGS, linphase, linphase);
//	md_zsmul(ND, data->lph_dims, linphase, linphase, 1. / (float)(data->trj_dims[1] * data->trj_dims[2]));

	complex float* fftm = md_alloc(ND, data->img_dims, CFL_SIZE);
	md_zfill(ND, data->img_dims, fftm, 1.);
	fftmod(ND, data->img_dims, FFT_FLAGS, fftm, fftm);
	data->fftmod = fftm;



	data->linphase = linphase;
	data->psf = NULL;

	if (conf.toeplitz) {

#if 0
		md_copy_dims(ND, data->psf_dims, data->lph_dims);
#else
		md_copy_dims(3, data->psf_dims, data->lph_dims);
		md_copy_dims(ND - 3, data->psf_dims + 3, data->trj_dims + 3);
		data->psf_dims[N] = data->lph_dims[N];
#endif
		md_calc_strides(ND, data->psf_strs, data->psf_dims, CFL_SIZE);
		data->psf = compute_psf2(N, data->psf_dims, data->trj_dims, data->traj, data->weights);
	}


	md_copy_dims(ND, data->cml_dims, data->cim_dims);
	data->cml_dims[N + 0] = data->lph_dims[N + 0];

	md_calc_strides(ND, data->cml_strs, data->cml_dims, CFL_SIZE);


	data->cm2_dims = xmalloc(ND * sizeof(long));
	// !
	md_copy_dims(ND, data->cm2_dims, data->cim_dims);
	for (int i = 0; i < 3; i++)
		data->cm2_dims[i] = (1 == cim_dims[i]) ? 1 : (2 * cim_dims[i]);



	data->grid = md_alloc(ND, data->cml_dims, CFL_SIZE);

	data->fft_op = linop_fft_create(ND, data->cml_dims, FFT_FLAGS, use_gpu);



	return linop_create(N, ksp_dims, N, cim_dims,
		data, nufft_apply, nufft_apply_adjoint, nufft_apply_normal, NULL, nufft_free_data);
}
예제 #4
0
파일: optreg.c 프로젝트: welcheb/bart
void opt_reg_configure(unsigned int N, const long img_dims[N], struct opt_reg_s* ropts, const struct operator_p_s* prox_ops[NUM_REGS], const struct linop_s* trafos[NUM_REGS], unsigned int llr_blk, bool randshift, bool use_gpu)
{
	float lambda = ropts->lambda;

	if (-1. == lambda)
		lambda = 0.;

	// if no penalities specified but regularization
	// parameter is given, add a l2 penalty

	struct reg_s* regs = ropts->regs;

	if ((0 == ropts->r) && (lambda > 0.)) {

		regs[0].xform = L2IMG;
		regs[0].xflags = 0u;
		regs[0].jflags = 0u;
		regs[0].lambda = lambda;
		ropts->r = 1;
	}



	int nr_penalties = ropts->r;
	long blkdims[MAX_LEV][DIMS];
	int levels;


	for (int nr = 0; nr < nr_penalties; nr++) {

		// fix up regularization parameter
		if (-1. == regs[nr].lambda)
			regs[nr].lambda = lambda;

		switch (regs[nr].xform) {

			case L1WAV:
				debug_printf(DP_INFO, "l1-wavelet regularization: %f\n", regs[nr].lambda);

				if (0 != regs[nr].jflags)
					debug_printf(DP_WARN, "joint l1-wavelet thresholding not currently supported.\n");

				long minsize[DIMS] = { [0 ... DIMS - 1] = 1 };
				minsize[0] = MIN(img_dims[0], 16);
				minsize[1] = MIN(img_dims[1], 16);
				minsize[2] = MIN(img_dims[2], 16);


				unsigned int wflags = 0;
				for (unsigned int i = 0; i < DIMS; i++) {

					if ((1 < img_dims[i]) && MD_IS_SET(regs[nr].xflags, i)) {

						wflags = MD_SET(wflags, i);
						minsize[i] = MIN(img_dims[i], 16);
					}
				}

				trafos[nr] = linop_identity_create(DIMS, img_dims);
				prox_ops[nr] = prox_wavelet3_thresh_create(DIMS, img_dims, wflags, minsize, regs[nr].lambda, randshift);
				break;

			case TV:
				debug_printf(DP_INFO, "TV regularization: %f\n", regs[nr].lambda);

				trafos[nr] = linop_grad_create(DIMS, img_dims, regs[nr].xflags);
				prox_ops[nr] = prox_thresh_create(DIMS + 1,
						linop_codomain(trafos[nr])->dims,
						regs[nr].lambda, regs[nr].jflags | MD_BIT(DIMS), use_gpu);
				break;

			case LLR:
				debug_printf(DP_INFO, "lowrank regularization: %f\n", regs[nr].lambda);

				// add locally lowrank penalty
				levels = llr_blkdims(blkdims, regs[nr].jflags, img_dims, llr_blk);

				assert(1 == levels);
				assert(levels == img_dims[LEVEL_DIM]);

				for(int l = 0; l < levels; l++)
#if 0
					blkdims[l][MAPS_DIM] = img_dims[MAPS_DIM];
#else
				blkdims[l][MAPS_DIM] = 1;
#endif

				int remove_mean = 0;

				trafos[nr] = linop_identity_create(DIMS, img_dims);
				prox_ops[nr] = lrthresh_create(img_dims, randshift, regs[nr].xflags, (const long (*)[DIMS])blkdims, regs[nr].lambda, false, remove_mean, use_gpu);
				break;

			case MLR:
#if 0
				// FIXME: multiscale low rank changes the output image dimensions 
				// and requires the forward linear operator. This should be decoupled...
				debug_printf(DP_INFO, "multi-scale lowrank regularization: %f\n", regs[nr].lambda);

				levels = multilr_blkdims(blkdims, regs[nr].jflags, img_dims, 8, 1);

				img_dims[LEVEL_DIM] = levels;
				max_dims[LEVEL_DIM] = levels;

				for(int l = 0; l < levels; l++)
					blkdims[l][MAPS_DIM] = 1;

				trafos[nr] = linop_identity_create(DIMS, img_dims);
				prox_ops[nr] = lrthresh_create(img_dims, randshift, regs[nr].xflags, (const long (*)[DIMS])blkdims, regs[nr].lambda, false, 0, use_gpu);

				const struct linop_s* decom_op = sum_create( img_dims, use_gpu );
				const struct linop_s* tmp_op = forward_op;
				forward_op = linop_chain(decom_op, forward_op);

				linop_free(decom_op);
				linop_free(tmp_op);
#else
				debug_printf(DP_WARN, "multi-scale lowrank regularization not yet supported: %f\n", regs[nr].lambda);
#endif

				break;

			case IMAGL1:
				debug_printf(DP_INFO, "l1 regularization of imaginary part: %f\n", regs[nr].lambda);

				trafos[nr] = linop_rdiag_create(DIMS, img_dims, 0, &(complex float){ 1.i });
				prox_ops[nr] = prox_thresh_create(DIMS, img_dims, regs[nr].lambda, regs[nr].jflags, use_gpu);
				break;

			case IMAGL2:
				debug_printf(DP_INFO, "l2 regularization of imaginary part: %f\n", regs[nr].lambda);

				trafos[nr] = linop_rdiag_create(DIMS, img_dims, 0, &(complex float){ 1.i });
				prox_ops[nr] = prox_leastsquares_create(DIMS, img_dims, regs[nr].lambda, NULL);
				break;

			case L1IMG:
				debug_printf(DP_INFO, "l1 regularization: %f\n", regs[nr].lambda);

				trafos[nr] = linop_identity_create(DIMS, img_dims);
				prox_ops[nr] = prox_thresh_create(DIMS, img_dims, regs[nr].lambda, regs[nr].jflags, use_gpu);
				break;

			case L2IMG:
				debug_printf(DP_INFO, "l2 regularization: %f\n", regs[nr].lambda);

				trafos[nr] = linop_identity_create(DIMS, img_dims);
				prox_ops[nr] = prox_leastsquares_create(DIMS, img_dims, regs[nr].lambda, NULL);
				break;

			case FTL1:
				debug_printf(DP_INFO, "l1 regularization of Fourier transform: %f\n", regs[nr].lambda);

				trafos[nr] = linop_fft_create(DIMS, img_dims, regs[nr].xflags);
				prox_ops[nr] = prox_thresh_create(DIMS, img_dims, regs[nr].lambda, regs[nr].jflags, use_gpu);
				break;
		}