예제 #1
0
/*
 * Called at inode eviction from icache
 */
void ext3_evict_inode (struct inode *inode)
{
	struct ext3_inode_info *ei = EXT3_I(inode);
	struct ext3_block_alloc_info *rsv;
	handle_t *handle;
	int want_delete = 0;

	trace_ext3_evict_inode(inode);
	if (!inode->i_nlink && !is_bad_inode(inode)) {
		dquot_initialize(inode);
		want_delete = 1;
	}

	/*
	 * When journalling data dirty buffers are tracked only in the journal.
	 * So although mm thinks everything is clean and ready for reaping the
	 * inode might still have some pages to write in the running
	 * transaction or waiting to be checkpointed. Thus calling
	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
	 * these buffers can cause data loss. Also even if we did not discard
	 * these buffers, we would have no way to find them after the inode
	 * is reaped and thus user could see stale data if he tries to read
	 * them before the transaction is checkpointed. So be careful and
	 * force everything to disk here... We use ei->i_datasync_tid to
	 * store the newest transaction containing inode's data.
	 *
	 * Note that directories do not have this problem because they don't
	 * use page cache.
	 *
	 * The s_journal check handles the case when ext3_get_journal() fails
	 * and puts the journal inode.
	 */
	if (inode->i_nlink && ext3_should_journal_data(inode) &&
	    EXT3_SB(inode->i_sb)->s_journal &&
	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
	    inode->i_ino != EXT3_JOURNAL_INO) {
		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;

		log_start_commit(journal, commit_tid);
		log_wait_commit(journal, commit_tid);
		filemap_write_and_wait(&inode->i_data);
	}
	truncate_inode_pages(&inode->i_data, 0);

	ext3_discard_reservation(inode);
	rsv = ei->i_block_alloc_info;
	ei->i_block_alloc_info = NULL;
	if (unlikely(rsv))
		kfree(rsv);

	if (!want_delete)
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
		ext3_orphan_del(NULL, inode);
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
		ext3_truncate(inode);
	/*
	 * Kill off the orphan record created when the inode lost the last
	 * link.  Note that ext3_orphan_del() has to be able to cope with the
	 * deletion of a non-existent orphan - ext3_truncate() could
	 * have removed the record.
	 */
	ext3_orphan_del(handle, inode);
	ei->i_dtime = get_seconds();

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
	if (ext3_mark_inode_dirty(handle, inode)) {
		/* If that failed, just dquot_drop() and be done with that */
		dquot_drop(inode);
		clear_inode(inode);
	} else {
		ext3_xattr_delete_inode(handle, inode);
		dquot_free_inode(inode);
		dquot_drop(inode);
		clear_inode(inode);
		ext3_free_inode(handle, inode);
	}
	ext3_journal_stop(handle);
	return;
no_delete:
	clear_inode(inode);
	dquot_drop(inode);
}
예제 #2
0
파일: fsync.c 프로젝트: Terune/Os
int ext3_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
    struct timespec before,after;
    printk(KERN_DEBUG"fsync start\n");
    getnstimeofday(&before);

	struct inode *inode = file->f_mapping->host;
	struct ext3_inode_info *ei = EXT3_I(inode);
	journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
	int ret, needs_barrier = 0;
	tid_t commit_tid;

	trace_ext3_sync_file_enter(file, datasync);

	if (inode->i_sb->s_flags & MS_RDONLY) {
		/* Make sure that we read updated state */
		smp_rmb();
		if (EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)
        {
            getnstimeofday(&after);
            printk(KERN_DEBUG"fsync time:%.01f us",after.tv_nsec-before.tv_nsec);
            return -EROFS;
        }
            getnstimeofday(&after);
            printk(KERN_DEBUG"fsync time:%.01f us",after.tv_nsec-before.tv_nsec);
            return 0;
	}
	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (ret)
		goto out;

	J_ASSERT(ext3_journal_current_handle() == NULL);

	/*
	 * data=writeback,ordered:
	 *  The caller's filemap_fdatawrite()/wait will sync the data.
	 *  Metadata is in the journal, we wait for a proper transaction
	 *  to commit here.
	 *
	 * data=journal:
	 *  filemap_fdatawrite won't do anything (the buffers are clean).
	 *  ext3_force_commit will write the file data into the journal and
	 *  will wait on that.
	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
	 *  (they were dirtied by commit).  But that's OK - the blocks are
	 *  safe in-journal, which is all fsync() needs to ensure.
	 */
	if (ext3_should_journal_data(inode)) {
		ret = ext3_force_commit(inode->i_sb);
		goto out;
	}

	if (datasync)
		commit_tid = atomic_read(&ei->i_datasync_tid);
	else
		commit_tid = atomic_read(&ei->i_sync_tid);

	if (test_opt(inode->i_sb, BARRIER) &&
	    !journal_trans_will_send_data_barrier(journal, commit_tid))
		needs_barrier = 1;
	log_start_commit(journal, commit_tid);
	ret = log_wait_commit(journal, commit_tid);

	/*
	 * In case we didn't commit a transaction, we have to flush
	 * disk caches manually so that data really is on persistent
	 * storage
	 */
	if (needs_barrier) {
		int err;

		err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
		if (!ret)
			ret = err;
	}
out:
    getnstimeofday(&after);
    printk(KERN_DEBUG"fsync time:%.01f us",after.tv_nsec-before.tv_nsec);
    trace_ext3_sync_file_exit(inode, ret);
	return ret;
}
예제 #3
0
파일: checkpoint.c 프로젝트: hugh712/Jollen
/*
 * Clean up a transaction's checkpoint list.  
 *
 * We wait for any pending IO to complete and make sure any clean
 * buffers are removed from the transaction. 
 *
 * Return 1 if we performed any actions which might have destroyed the
 * checkpoint.  (journal_remove_checkpoint() deletes the transaction when
 * the last checkpoint buffer is cleansed)
 *
 * Called with the journal locked.
 * Called with journal_datalist_lock held.
 */
static int __cleanup_transaction(journal_t *journal, transaction_t *transaction)
{
	struct journal_head *jh, *next_jh, *last_jh;
	struct buffer_head *bh;
	int ret = 0;

	assert_spin_locked(&journal_datalist_lock);
	jh = transaction->t_checkpoint_list;
	if (!jh)
		return 0;

	last_jh = jh->b_cpprev;
	next_jh = jh;
	do {
		jh = next_jh;
		bh = jh2bh(jh);
		if (buffer_locked(bh)) {
			atomic_inc(&bh->b_count);
			spin_unlock(&journal_datalist_lock);
			unlock_journal(journal);
			wait_on_buffer(bh);
			/* the journal_head may have gone by now */
			BUFFER_TRACE(bh, "brelse");
			__brelse(bh);
			goto out_return_1;
		}
		
		if (jh->b_transaction != NULL) {
			transaction_t *transaction = jh->b_transaction;
			tid_t tid = transaction->t_tid;

			spin_unlock(&journal_datalist_lock);
			log_start_commit(journal, transaction);
			unlock_journal(journal);
			log_wait_commit(journal, tid);
			goto out_return_1;
		}

		/*
		 * We used to test for (jh->b_list != BUF_CLEAN) here.
		 * But unmap_underlying_metadata() can place buffer onto
		 * BUF_CLEAN. Since refile_buffer() no longer takes buffers
		 * off checkpoint lists, we cope with it here
		 */
		/*
		 * AKPM: I think the buffer_jdirty test is redundant - it
		 * shouldn't have NULL b_transaction?
		 */
		next_jh = jh->b_cpnext;
		if (!buffer_dirty(bh) && !buffer_jdirty(bh)) {
			BUFFER_TRACE(bh, "remove from checkpoint");
			__journal_remove_checkpoint(jh);
			__journal_remove_journal_head(bh);
			refile_buffer(bh);
			__brelse(bh);
			ret = 1;
		}
		
		jh = next_jh;
	} while (jh != last_jh);

	return ret;
out_return_1:
	lock_journal(journal);
	spin_lock(&journal_datalist_lock);
	return 1;
}
예제 #4
0
/*
 * Clean up a transaction's checkpoint list.
 *
 * We wait for any pending IO to complete and make sure any clean
 * buffers are removed from the transaction.
 *
 * Return 1 if we performed any actions which might have destroyed the
 * checkpoint.  (journal_remove_checkpoint() deletes the transaction when
 * the last checkpoint buffer is cleansed)
 *
 * Called with j_list_lock held.
 */
static int __cleanup_transaction(journal_t *journal, transaction_t *transaction)
{
	struct journal_head *jh, *next_jh, *last_jh;
	struct buffer_head *bh;
	int ret = 0;

	assert_spin_locked(&journal->j_list_lock);
	jh = transaction->t_checkpoint_list;
	if (!jh)
		return 0;

	last_jh = jh->b_cpprev;
	next_jh = jh;
	do {
		jh = next_jh;
		bh = jh2bh(jh);
		if (buffer_locked(bh)) {
			atomic_inc(&bh->b_count);
			spin_unlock(&journal->j_list_lock);
			wait_on_buffer(bh);
			/* the journal_head may have gone by now */
			BUFFER_TRACE(bh, "brelse");
			__brelse(bh);
			goto out_return_1;
		}

		/*
		 * This is foul
		 */
		if (!jbd_trylock_bh_state(bh)) {
			jbd_sync_bh(journal, bh);
			goto out_return_1;
		}

		if (jh->b_transaction != NULL) {
			transaction_t *t = jh->b_transaction;
			tid_t tid = t->t_tid;

			spin_unlock(&journal->j_list_lock);
			jbd_unlock_bh_state(bh);
			log_start_commit(journal, tid);
			log_wait_commit(journal, tid);
			goto out_return_1;
		}

		/*
		 * AKPM: I think the buffer_jbddirty test is redundant - it
		 * shouldn't have NULL b_transaction?
		 */
		next_jh = jh->b_cpnext;
		if (!buffer_dirty(bh) && !buffer_jbddirty(bh)) {
			BUFFER_TRACE(bh, "remove from checkpoint");
			__journal_remove_checkpoint(jh);
			jbd_unlock_bh_state(bh);
			journal_remove_journal_head(bh);
			__brelse(bh);
			ret = 1;
		} else {
			jbd_unlock_bh_state(bh);
		}
	} while (jh != last_jh);

	return ret;
out_return_1:
	spin_lock(&journal->j_list_lock);
	return 1;
}